/* * Linux on zSeries Channel Measurement Facility support * * Copyright IBM Corp. 2000, 2006 * * Authors: Arnd Bergmann * Cornelia Huck * * original idea from Natarajan Krishnaswami * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define KMSG_COMPONENT "cio" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include /* get_tod_clock() */ #include #include #include #include #include "cio.h" #include "css.h" #include "device.h" #include "ioasm.h" #include "chsc.h" /* * parameter to enable cmf during boot, possible uses are: * "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be * used on any subchannel * "s390cmf=" -- enable cmf and allocate enough memory to measure * subchannel, where is an integer * between 1 and 65535, default is 1024 */ #define ARGSTRING "s390cmf" /* indices for READCMB */ enum cmb_index { /* basic and exended format: */ cmb_ssch_rsch_count, cmb_sample_count, cmb_device_connect_time, cmb_function_pending_time, cmb_device_disconnect_time, cmb_control_unit_queuing_time, cmb_device_active_only_time, /* extended format only: */ cmb_device_busy_time, cmb_initial_command_response_time, }; /** * enum cmb_format - types of supported measurement block formats * * @CMF_BASIC: traditional channel measurement blocks supported * by all machines that we run on * @CMF_EXTENDED: improved format that was introduced with the z990 * machine * @CMF_AUTODETECT: default: use extended format when running on a machine * supporting extended format, otherwise fall back to * basic format */ enum cmb_format { CMF_BASIC, CMF_EXTENDED, CMF_AUTODETECT = -1, }; /* * format - actual format for all measurement blocks * * The format module parameter can be set to a value of 0 (zero) * or 1, indicating basic or extended format as described for * enum cmb_format. */ static int format = CMF_AUTODETECT; module_param(format, bint, 0444); /** * struct cmb_operations - functions to use depending on cmb_format * * Most of these functions operate on a struct ccw_device. There is only * one instance of struct cmb_operations because the format of the measurement * data is guaranteed to be the same for every ccw_device. * * @alloc: allocate memory for a channel measurement block, * either with the help of a special pool or with kmalloc * @free: free memory allocated with @alloc * @set: enable or disable measurement * @read: read a measurement entry at an index * @readall: read a measurement block in a common format * @reset: clear the data in the associated measurement block and * reset its time stamp * @align: align an allocated block so that the hardware can use it */ struct cmb_operations { int (*alloc) (struct ccw_device *); void (*free) (struct ccw_device *); int (*set) (struct ccw_device *, u32); u64 (*read) (struct ccw_device *, int); int (*readall)(struct ccw_device *, struct cmbdata *); void (*reset) (struct ccw_device *); void *(*align) (void *); /* private: */ struct attribute_group *attr_group; }; static struct cmb_operations *cmbops; struct cmb_data { void *hw_block; /* Pointer to block updated by hardware */ void *last_block; /* Last changed block copied from hardware block */ int size; /* Size of hw_block and last_block */ unsigned long long last_update; /* when last_block was updated */ }; /* * Our user interface is designed in terms of nanoseconds, * while the hardware measures total times in its own * unit. */ static inline u64 time_to_nsec(u32 value) { return ((u64)value) * 128000ull; } /* * Users are usually interested in average times, * not accumulated time. * This also helps us with atomicity problems * when reading sinlge values. */ static inline u64 time_to_avg_nsec(u32 value, u32 count) { u64 ret; /* no samples yet, avoid division by 0 */ if (count == 0) return 0; /* value comes in units of 128 µsec */ ret = time_to_nsec(value); do_div(ret, count); return ret; } /* * Activate or deactivate the channel monitor. When area is NULL, * the monitor is deactivated. The channel monitor needs to * be active in order to measure subchannels, which also need * to be enabled. */ static inline void cmf_activate(void *area, unsigned int onoff) { register void * __gpr2 asm("2"); register long __gpr1 asm("1"); __gpr2 = area; __gpr1 = onoff ? 2 : 0; /* activate channel measurement */ asm("schm" : : "d" (__gpr2), "d" (__gpr1) ); } static int set_schib(struct ccw_device *cdev, u32 mme, int mbfc, unsigned long address) { struct subchannel *sch; sch = to_subchannel(cdev->dev.parent); sch->config.mme = mme; sch->config.mbfc = mbfc; /* address can be either a block address or a block index */ if (mbfc) sch->config.mba = address; else sch->config.mbi = address; return cio_commit_config(sch); } struct set_schib_struct { u32 mme; int mbfc; unsigned long address; wait_queue_head_t wait; int ret; struct kref kref; }; static void cmf_set_schib_release(struct kref *kref) { struct set_schib_struct *set_data; set_data = container_of(kref, struct set_schib_struct, kref); kfree(set_data); } #define CMF_PENDING 1 static int set_schib_wait(struct ccw_device *cdev, u32 mme, int mbfc, unsigned long address) { struct set_schib_struct *set_data; int ret; spin_lock_irq(cdev->ccwlock); if (!cdev->private->cmb) { ret = -ENODEV; goto out; } set_data = kzalloc(sizeof(struct set_schib_struct), GFP_ATOMIC); if (!set_data) { ret = -ENOMEM; goto out; } init_waitqueue_head(&set_data->wait); kref_init(&set_data->kref); set_data->mme = mme; set_data->mbfc = mbfc; set_data->address = address; ret = set_schib(cdev, mme, mbfc, address); if (ret != -EBUSY) goto out_put; if (cdev->private->state != DEV_STATE_ONLINE) { /* if the device is not online, don't even try again */ ret = -EBUSY; goto out_put; } cdev->private->state = DEV_STATE_CMFCHANGE; set_data->ret = CMF_PENDING; cdev->private->cmb_wait = set_data; spin_unlock_irq(cdev->ccwlock); if (wait_event_interruptible(set_data->wait, set_data->ret != CMF_PENDING)) { spin_lock_irq(cdev->ccwlock); if (set_data->ret == CMF_PENDING) { set_data->ret = -ERESTARTSYS; if (cdev->private->state == DEV_STATE_CMFCHANGE) cdev->private->state = DEV_STATE_ONLINE; } spin_unlock_irq(cdev->ccwlock); } spin_lock_irq(cdev->ccwlock); cdev->private->cmb_wait = NULL; ret = set_data->ret; out_put: kref_put(&set_data->kref, cmf_set_schib_release); out: spin_unlock_irq(cdev->ccwlock); return ret; } void retry_set_schib(struct ccw_device *cdev) { struct set_schib_struct *set_data; set_data = cdev->private->cmb_wait; if (!set_data) { WARN_ON(1); return; } kref_get(&set_data->kref); set_data->ret = set_schib(cdev, set_data->mme, set_data->mbfc, set_data->address); wake_up(&set_data->wait); kref_put(&set_data->kref, cmf_set_schib_release); } static int cmf_copy_block(struct ccw_device *cdev) { struct subchannel *sch; void *reference_buf; void *hw_block; struct cmb_data *cmb_data; sch = to_subchannel(cdev->dev.parent); if (cio_update_schib(sch)) return -ENODEV; if (scsw_fctl(&sch->schib.scsw) & SCSW_FCTL_START_FUNC) { /* Don't copy if a start function is in progress. */ if ((!(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_SUSPENDED)) && (scsw_actl(&sch->schib.scsw) & (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) && (!(scsw_stctl(&sch->schib.scsw) & SCSW_STCTL_SEC_STATUS))) return -EBUSY; } cmb_data = cdev->private->cmb; hw_block = cmbops->align(cmb_data->hw_block); if (!memcmp(cmb_data->last_block, hw_block, cmb_data->size)) /* No need to copy. */ return 0; reference_buf = kzalloc(cmb_data->size, GFP_ATOMIC); if (!reference_buf) return -ENOMEM; /* Ensure consistency of block copied from hardware. */ do { memcpy(cmb_data->last_block, hw_block, cmb_data->size); memcpy(reference_buf, hw_block, cmb_data->size); } while (memcmp(cmb_data->last_block, reference_buf, cmb_data->size)); cmb_data->last_update = get_tod_clock(); kfree(reference_buf); return 0; } struct copy_block_struct { wait_queue_head_t wait; int ret; struct kref kref; }; static void cmf_copy_block_release(struct kref *kref) { struct copy_block_struct *copy_block; copy_block = container_of(kref, struct copy_block_struct, kref); kfree(copy_block); } static int cmf_cmb_copy_wait(struct ccw_device *cdev) { struct copy_block_struct *copy_block; int ret; unsigned long flags; spin_lock_irqsave(cdev->ccwlock, flags); if (!cdev->private->cmb) { ret = -ENODEV; goto out; } copy_block = kzalloc(sizeof(struct copy_block_struct), GFP_ATOMIC); if (!copy_block) { ret = -ENOMEM; goto out; } init_waitqueue_head(©_block->wait); kref_init(©_block->kref); ret = cmf_copy_block(cdev); if (ret != -EBUSY) goto out_put; if (cdev->private->state != DEV_STATE_ONLINE) { ret = -EBUSY; goto out_put; } cdev->private->state = DEV_STATE_CMFUPDATE; copy_block->ret = CMF_PENDING; cdev->private->cmb_wait = copy_block; spin_unlock_irqrestore(cdev->ccwlock, flags); if (wait_event_interruptible(copy_block->wait, copy_block->ret != CMF_PENDING)) { spin_lock_irqsave(cdev->ccwlock, flags); if (copy_block->ret == CMF_PENDING) { copy_block->ret = -ERESTARTSYS; if (cdev->private->state == DEV_STATE_CMFUPDATE) cdev->private->state = DEV_STATE_ONLINE; } spin_unlock_irqrestore(cdev->ccwlock, flags); } spin_lock_irqsave(cdev->ccwlock, flags); cdev->private->cmb_wait = NULL; ret = copy_block->ret; out_put: kref_put(©_block->kref, cmf_copy_block_release); out: spin_unlock_irqrestore(cdev->ccwlock, flags); return ret; } void cmf_retry_copy_block(struct ccw_device *cdev) { struct copy_block_struct *copy_block; copy_block = cdev->private->cmb_wait; if (!copy_block) { WARN_ON(1); return; } kref_get(©_block->kref); copy_block->ret = cmf_copy_block(cdev); wake_up(©_block->wait); kref_put(©_block->kref, cmf_copy_block_release); } static void cmf_generic_reset(struct ccw_device *cdev) { struct cmb_data *cmb_data; spin_lock_irq(cdev->ccwlock); cmb_data = cdev->private->cmb; if (cmb_data) { memset(cmb_data->last_block, 0, cmb_data->size); /* * Need to reset hw block as well to make the hardware start * from 0 again. */ memset(cmbops->align(cmb_data->hw_block), 0, cmb_data->size); cmb_data->last_update = 0; } cdev->private->cmb_start_time = get_tod_clock(); spin_unlock_irq(cdev->ccwlock); } /** * struct cmb_area - container for global cmb data * * @mem: pointer to CMBs (only in basic measurement mode) * @list: contains a linked list of all subchannels * @num_channels: number of channels to be measured * @lock: protect concurrent access to @mem and @list */ struct cmb_area { struct cmb *mem; struct list_head list; int num_channels; spinlock_t lock; }; static struct cmb_area cmb_area = { .lock = __SPIN_LOCK_UNLOCKED(cmb_area.lock), .list = LIST_HEAD_INIT(cmb_area.list), .num_channels = 1024, }; /* ****** old style CMB handling ********/ /* * Basic channel measurement blocks are allocated in one contiguous * block of memory, which can not be moved as long as any channel * is active. Therefore, a maximum number of subchannels needs to * be defined somewhere. This is a module parameter, defaulting to * a reasonable value of 1024, or 32 kb of memory. * Current kernels don't allow kmalloc with more than 128kb, so the * maximum is 4096. */ module_param_named(maxchannels, cmb_area.num_channels, uint, 0444); /** * struct cmb - basic channel measurement block * @ssch_rsch_count: number of ssch and rsch * @sample_count: number of samples * @device_connect_time: time of device connect * @function_pending_time: time of function pending * @device_disconnect_time: time of device disconnect * @control_unit_queuing_time: time of control unit queuing * @device_active_only_time: time of device active only * @reserved: unused in basic measurement mode * * The measurement block as used by the hardware. The fields are described * further in z/Architecture Principles of Operation, chapter 17. * * The cmb area made up from these blocks must be a contiguous array and may * not be reallocated or freed. * Only one cmb area can be present in the system. */ struct cmb { u16 ssch_rsch_count; u16 sample_count; u32 device_connect_time; u32 function_pending_time; u32 device_disconnect_time; u32 control_unit_queuing_time; u32 device_active_only_time; u32 reserved[2]; }; /* * Insert a single device into the cmb_area list. * Called with cmb_area.lock held from alloc_cmb. */ static int alloc_cmb_single(struct ccw_device *cdev, struct cmb_data *cmb_data) { struct cmb *cmb; struct ccw_device_private *node; int ret; spin_lock_irq(cdev->ccwlock); if (!list_empty(&cdev->private->cmb_list)) { ret = -EBUSY; goto out; } /* * Find first unused cmb in cmb_area.mem. * This is a little tricky: cmb_area.list * remains sorted by ->cmb->hw_data pointers. */ cmb = cmb_area.mem; list_for_each_entry(node, &cmb_area.list, cmb_list) { struct cmb_data *data; data = node->cmb; if ((struct cmb*)data->hw_block > cmb) break; cmb++; } if (cmb - cmb_area.mem >= cmb_area.num_channels) { ret = -ENOMEM; goto out; } /* insert new cmb */ list_add_tail(&cdev->private->cmb_list, &node->cmb_list); cmb_data->hw_block = cmb; cdev->private->cmb = cmb_data; ret = 0; out: spin_unlock_irq(cdev->ccwlock); return ret; } static int alloc_cmb(struct ccw_device *cdev) { int ret; struct cmb *mem; ssize_t size; struct cmb_data *cmb_data; /* Allocate private cmb_data. */ cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL); if (!cmb_data) return -ENOMEM; cmb_data->last_block = kzalloc(sizeof(struct cmb), GFP_KERNEL); if (!cmb_data->last_block) { kfree(cmb_data); return -ENOMEM; } cmb_data->size = sizeof(struct cmb); spin_lock(&cmb_area.lock); if (!cmb_area.mem) { /* there is no user yet, so we need a new area */ size = sizeof(struct cmb) * cmb_area.num_channels; WARN_ON(!list_empty(&cmb_area.list)); spin_unlock(&cmb_area.lock); mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA, get_order(size)); spin_lock(&cmb_area.lock); if (cmb_area.mem) { /* ok, another thread was faster */ free_pages((unsigned long)mem, get_order(size)); } else if (!mem) { /* no luck */ ret = -ENOMEM; goto out; } else { /* everything ok */ memset(mem, 0, size); cmb_area.mem = mem; cmf_activate(cmb_area.mem, 1); } } /* do the actual allocation */ ret = alloc_cmb_single(cdev, cmb_data); out: spin_unlock(&cmb_area.lock); if (ret) { kfree(cmb_data->last_block); kfree(cmb_data); } return ret; } static void free_cmb(struct ccw_device *cdev) { struct ccw_device_private *priv; struct cmb_data *cmb_data; spin_lock(&cmb_area.lock); spin_lock_irq(cdev->ccwlock); priv = cdev->private; if (list_empty(&priv->cmb_list)) { /* already freed */ goto out; } cmb_data = priv->cmb; priv->cmb = NULL; if (cmb_data) kfree(cmb_data->last_block); kfree(cmb_data); list_del_init(&priv->cmb_list); if (list_empty(&cmb_area.list)) { ssize_t size; size = sizeof(struct cmb) * cmb_area.num_channels; cmf_activate(NULL, 0); free_pages((unsigned long)cmb_area.mem, get_order(size)); cmb_area.mem = NULL; } out: spin_unlock_irq(cdev->ccwlock); spin_unlock(&cmb_area.lock); } static int set_cmb(struct ccw_device *cdev, u32 mme) { u16 offset; struct cmb_data *cmb_data; unsigned long flags; spin_lock_irqsave(cdev->ccwlock, flags); if (!cdev->private->cmb) { spin_unlock_irqrestore(cdev->ccwlock, flags); return -EINVAL; } cmb_data = cdev->private->cmb; offset = mme ? (struct cmb *)cmb_data->hw_block - cmb_area.mem : 0; spin_unlock_irqrestore(cdev->ccwlock, flags); return set_schib_wait(cdev, mme, 0, offset); } static u64 read_cmb(struct ccw_device *cdev, int index) { struct cmb *cmb; u32 val; int ret; unsigned long flags; ret = cmf_cmb_copy_wait(cdev); if (ret < 0) return 0; spin_lock_irqsave(cdev->ccwlock, flags); if (!cdev->private->cmb) { ret = 0; goto out; } cmb = ((struct cmb_data *)cdev->private->cmb)->last_block; switch (index) { case cmb_ssch_rsch_count: ret = cmb->ssch_rsch_count; goto out; case cmb_sample_count: ret = cmb->sample_count; goto out; case cmb_device_connect_time: val = cmb->device_connect_time; break; case cmb_function_pending_time: val = cmb->function_pending_time; break; case cmb_device_disconnect_time: val = cmb->device_disconnect_time; break; case cmb_control_unit_queuing_time: val = cmb->control_unit_queuing_time; break; case cmb_device_active_only_time: val = cmb->device_active_only_time; break; default: ret = 0; goto out; } ret = time_to_avg_nsec(val, cmb->sample_count); out: spin_unlock_irqrestore(cdev->ccwlock, flags); return ret; } static int readall_cmb(struct ccw_device *cdev, struct cmbdata *data) { struct cmb *cmb; struct cmb_data *cmb_data; u64 time; unsigned long flags; int ret; ret = cmf_cmb_copy_wait(cdev); if (ret < 0) return ret; spin_lock_irqsave(cdev->ccwlock, flags); cmb_data = cdev->private->cmb; if (!cmb_data) { ret = -ENODEV; goto out; } if (cmb_data->last_update == 0) { ret = -EAGAIN; goto out; } cmb = cmb_data->last_block; time = cmb_data->last_update - cdev->private->cmb_start_time; memset(data, 0, sizeof(struct cmbdata)); /* we only know values before device_busy_time */ data->size = offsetof(struct cmbdata, device_busy_time); /* convert to nanoseconds */ data->elapsed_time = (time * 1000) >> 12; /* copy data to new structure */ data->ssch_rsch_count = cmb->ssch_rsch_count; data->sample_count = cmb->sample_count; /* time fields are converted to nanoseconds while copying */ data->device_connect_time = time_to_nsec(cmb->device_connect_time); data->function_pending_time = time_to_nsec(cmb->function_pending_time); data->device_disconnect_time = time_to_nsec(cmb->device_disconnect_time); data->control_unit_queuing_time = time_to_nsec(cmb->control_unit_queuing_time); data->device_active_only_time = time_to_nsec(cmb->device_active_only_time); ret = 0; out: spin_unlock_irqrestore(cdev->ccwlock, flags); return ret; } static void reset_cmb(struct ccw_device *cdev) { cmf_generic_reset(cdev); } static void * align_cmb(void *area) { return area; } static struct attribute_group cmf_attr_group; static struct cmb_operations cmbops_basic = { .alloc = alloc_cmb, .free = free_cmb, .set = set_cmb, .read = read_cmb, .readall = readall_cmb, .reset = reset_cmb, .align = align_cmb, .attr_group = &cmf_attr_group, }; /* ******** extended cmb handling ********/ /** * struct cmbe - extended channel measurement block * @ssch_rsch_count: number of ssch and rsch * @sample_count: number of samples * @device_connect_time: time of device connect * @function_pending_time: time of function pending * @device_disconnect_time: time of device disconnect * @control_unit_queuing_time: time of control unit queuing * @device_active_only_time: time of device active only * @device_busy_time: time of device busy * @initial_command_response_time: initial command response time * @reserved: unused * * The measurement block as used by the hardware. May be in any 64 bit physical * location. * The fields are described further in z/Architecture Principles of Operation, * third edition, chapter 17. */ struct cmbe { u32 ssch_rsch_count; u32 sample_count; u32 device_connect_time; u32 function_pending_time; u32 device_disconnect_time; u32 control_unit_queuing_time; u32 device_active_only_time; u32 device_busy_time; u32 initial_command_response_time; u32 reserved[7]; }; /* * kmalloc only guarantees 8 byte alignment, but we need cmbe * pointers to be naturally aligned. Make sure to allocate * enough space for two cmbes. */ static inline struct cmbe *cmbe_align(struct cmbe *c) { unsigned long addr; addr = ((unsigned long)c + sizeof (struct cmbe) - sizeof(long)) & ~(sizeof (struct cmbe) - sizeof(long)); return (struct cmbe*)addr; } static int alloc_cmbe(struct ccw_device *cdev) { struct cmbe *cmbe; struct cmb_data *cmb_data; int ret; cmbe = kzalloc (sizeof (*cmbe) * 2, GFP_KERNEL); if (!cmbe) return -ENOMEM; cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL); if (!cmb_data) { ret = -ENOMEM; goto out_free; } cmb_data->last_block = kzalloc(sizeof(struct cmbe), GFP_KERNEL); if (!cmb_data->last_block) { ret = -ENOMEM; goto out_free; } cmb_data->size = sizeof(struct cmbe); spin_lock_irq(cdev->ccwlock); if (cdev->private->cmb) { spin_unlock_irq(cdev->ccwlock); ret = -EBUSY; goto out_free; } cmb_data->hw_block = cmbe; cdev->private->cmb = cmb_data; spin_unlock_irq(cdev->ccwlock); /* activate global measurement if this is the first channel */ spin_lock(&cmb_area.lock); if (list_empty(&cmb_area.list)) cmf_activate(NULL, 1); list_add_tail(&cdev->private->cmb_list, &cmb_area.list); spin_unlock(&cmb_area.lock); return 0; out_free: if (cmb_data) kfree(cmb_data->last_block); kfree(cmb_data); kfree(cmbe); return ret; } static void free_cmbe(struct ccw_device *cdev) { struct cmb_data *cmb_data; spin_lock_irq(cdev->ccwlock); cmb_data = cdev->private->cmb; cdev->private->cmb = NULL; if (cmb_data) kfree(cmb_data->last_block); kfree(cmb_data); spin_unlock_irq(cdev->ccwlock); /* deactivate global measurement if this is the last channel */ spin_lock(&cmb_area.lock); list_del_init(&cdev->private->cmb_list); if (list_empty(&cmb_area.list)) cmf_activate(NULL, 0); spin_unlock(&cmb_area.lock); } static int set_cmbe(struct ccw_device *cdev, u32 mme) { unsigned long mba; struct cmb_data *cmb_data; unsigned long flags; spin_lock_irqsave(cdev->ccwlock, flags); if (!cdev->private->cmb) { spin_unlock_irqrestore(cdev->ccwlock, flags); return -EINVAL; } cmb_data = cdev->private->cmb; mba = mme ? (unsigned long) cmbe_align(cmb_data->hw_block) : 0; spin_unlock_irqrestore(cdev->ccwlock, flags); return set_schib_wait(cdev, mme, 1, mba); } static u64 read_cmbe(struct ccw_device *cdev, int index) { struct cmbe *cmb; struct cmb_data *cmb_data; u32 val; int ret; unsigned long flags; ret = cmf_cmb_copy_wait(cdev); if (ret < 0) return 0; spin_lock_irqsave(cdev->ccwlock, flags); cmb_data = cdev->private->cmb; if (!cmb_data) { ret = 0; goto out; } cmb = cmb_data->last_block; switch (index) { case cmb_ssch_rsch_count: ret = cmb->ssch_rsch_count; goto out; case cmb_sample_count: ret = cmb->sample_count; goto out; case cmb_device_connect_time: val = cmb->device_connect_time; break; case cmb_function_pending_time: val = cmb->function_pending_time; break; case cmb_device_disconnect_time: val = cmb->device_disconnect_time; break; case cmb_control_unit_queuing_time: val = cmb->control_unit_queuing_time; break; case cmb_device_active_only_time: val = cmb->device_active_only_time; break; case cmb_device_busy_time: val = cmb->device_busy_time; break; case cmb_initial_command_response_time: val = cmb->initial_command_response_time; break; default: ret = 0; goto out; } ret = time_to_avg_nsec(val, cmb->sample_count); out: spin_unlock_irqrestore(cdev->ccwlock, flags); return ret; } static int readall_cmbe(struct ccw_device *cdev, struct cmbdata *data) { struct cmbe *cmb; struct cmb_data *cmb_data; u64 time; unsigned long flags; int ret; ret = cmf_cmb_copy_wait(cdev); if (ret < 0) return ret; spin_lock_irqsave(cdev->ccwlock, flags); cmb_data = cdev->private->cmb; if (!cmb_data) { ret = -ENODEV; goto out; } if (cmb_data->last_update == 0) { ret = -EAGAIN; goto out; } time = cmb_data->last_update - cdev->private->cmb_start_time; memset (data, 0, sizeof(struct cmbdata)); /* we only know values before device_busy_time */ data->size = offsetof(struct cmbdata, device_busy_time); /* conver to nanoseconds */ data->elapsed_time = (time * 1000) >> 12; cmb = cmb_data->last_block; /* copy data to new structure */ data->ssch_rsch_count = cmb->ssch_rsch_count; data->sample_count = cmb->sample_count; /* time fields are converted to nanoseconds while copying */ data->device_connect_time = time_to_nsec(cmb->device_connect_time); data->function_pending_time = time_to_nsec(cmb->function_pending_time); data->device_disconnect_time = time_to_nsec(cmb->device_disconnect_time); data->control_unit_queuing_time = time_to_nsec(cmb->control_unit_queuing_time); data->device_active_only_time = time_to_nsec(cmb->device_active_only_time); data->device_busy_time = time_to_nsec(cmb->device_busy_time); data->initial_command_response_time = time_to_nsec(cmb->initial_command_response_time); ret = 0; out: spin_unlock_irqrestore(cdev->ccwlock, flags); return ret; } static void reset_cmbe(struct ccw_device *cdev) { cmf_generic_reset(cdev); } static void * align_cmbe(void *area) { return cmbe_align(area); } static struct attribute_group cmf_attr_group_ext; static struct cmb_operations cmbops_extended = { .alloc = alloc_cmbe, .free = free_cmbe, .set = set_cmbe, .read = read_cmbe, .readall = readall_cmbe, .reset = reset_cmbe, .align = align_cmbe, .attr_group = &cmf_attr_group_ext, }; static ssize_t cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx) { return sprintf(buf, "%lld\n", (unsigned long long) cmf_read(to_ccwdev(dev), idx)); } static ssize_t cmb_show_avg_sample_interval(struct device *dev, struct device_attribute *attr, char *buf) { struct ccw_device *cdev; long interval; unsigned long count; struct cmb_data *cmb_data; cdev = to_ccwdev(dev); count = cmf_read(cdev, cmb_sample_count); spin_lock_irq(cdev->ccwlock); cmb_data = cdev->private->cmb; if (count) { interval = cmb_data->last_update - cdev->private->cmb_start_time; interval = (interval * 1000) >> 12; interval /= count; } else interval = -1; spin_unlock_irq(cdev->ccwlock); return sprintf(buf, "%ld\n", interval); } static ssize_t cmb_show_avg_utilization(struct device *dev, struct device_attribute *attr, char *buf) { struct cmbdata data; u64 utilization; unsigned long t, u; int ret; ret = cmf_readall(to_ccwdev(dev), &data); if (ret == -EAGAIN || ret == -ENODEV) /* No data (yet/currently) available to use for calculation. */ return sprintf(buf, "n/a\n"); else if (ret) return ret; utilization = data.device_connect_time + data.function_pending_time + data.device_disconnect_time; /* shift to avoid long long division */ while (-1ul < (data.elapsed_time | utilization)) { utilization >>= 8; data.elapsed_time >>= 8; } /* calculate value in 0.1 percent units */ t = (unsigned long) data.elapsed_time / 1000; u = (unsigned long) utilization / t; return sprintf(buf, "%02ld.%01ld%%\n", u/ 10, u - (u/ 10) * 10); } #define cmf_attr(name) \ static ssize_t show_##name(struct device *dev, \ struct device_attribute *attr, char *buf) \ { return cmb_show_attr((dev), buf, cmb_##name); } \ static DEVICE_ATTR(name, 0444, show_##name, NULL); #define cmf_attr_avg(name) \ static ssize_t show_avg_##name(struct device *dev, \ struct device_attribute *attr, char *buf) \ { return cmb_show_attr((dev), buf, cmb_##name); } \ static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL); cmf_attr(ssch_rsch_count); cmf_attr(sample_count); cmf_attr_avg(device_connect_time); cmf_attr_avg(function_pending_time); cmf_attr_avg(device_disconnect_time); cmf_attr_avg(control_unit_queuing_time); cmf_attr_avg(device_active_only_time); cmf_attr_avg(device_busy_time); cmf_attr_avg(initial_command_response_time); static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval, NULL); static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL); static struct attribute *cmf_attributes[] = { &dev_attr_avg_sample_interval.attr, &dev_attr_avg_utilization.attr, &dev_attr_ssch_rsch_count.attr, &dev_attr_sample_count.attr, &dev_attr_avg_device_connect_time.attr, &dev_attr_avg_function_pending_time.attr, &dev_attr_avg_device_disconnect_time.attr, &dev_attr_avg_control_unit_queuing_time.attr, &dev_attr_avg_device_active_only_time.attr, NULL, }; static struct attribute_group cmf_attr_group = { .name = "cmf", .attrs = cmf_attributes, }; static struct attribute *cmf_attributes_ext[] = { &dev_attr_avg_sample_interval.attr, &dev_attr_avg_utilization.attr, &dev_attr_ssch_rsch_count.attr, &dev_attr_sample_count.attr, &dev_attr_avg_device_connect_time.attr, &dev_attr_avg_function_pending_time.attr, &dev_attr_avg_device_disconnect_time.attr, &dev_attr_avg_control_unit_queuing_time.attr, &dev_attr_avg_device_active_only_time.attr, &dev_attr_avg_device_busy_time.attr, &dev_attr_avg_initial_command_response_time.attr, NULL, }; static struct attribute_group cmf_attr_group_ext = { .name = "cmf", .attrs = cmf_attributes_ext, }; static ssize_t cmb_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ccw_device *cdev = to_ccwdev(dev); int enabled; spin_lock_irq(cdev->ccwlock); enabled = !!cdev->private->cmb; spin_unlock_irq(cdev->ccwlock); return sprintf(buf, "%d\n", enabled); } static ssize_t cmb_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t c) { struct ccw_device *cdev = to_ccwdev(dev); unsigned long val; int ret; ret = kstrtoul(buf, 16, &val); if (ret) return ret; switch (val) { case 0: ret = disable_cmf(cdev); break; case 1: ret = enable_cmf(cdev); break; default: ret = -EINVAL; } return ret ? ret : c; } DEVICE_ATTR_RW(cmb_enable); int ccw_set_cmf(struct ccw_device *cdev, int enable) { return cmbops->set(cdev, enable ? 2 : 0); } /** * enable_cmf() - switch on the channel measurement for a specific device * @cdev: The ccw device to be enabled * * Returns %0 for success or a negative error value. * * Context: * non-atomic */ int enable_cmf(struct ccw_device *cdev) { int ret; ret = cmbops->alloc(cdev); cmbops->reset(cdev); if (ret) return ret; ret = cmbops->set(cdev, 2); if (ret) { cmbops->free(cdev); return ret; } ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group); if (!ret) return 0; cmbops->set(cdev, 0); //FIXME: this can fail cmbops->free(cdev); return ret; } /** * disable_cmf() - switch off the channel measurement for a specific device * @cdev: The ccw device to be disabled * * Returns %0 for success or a negative error value. * * Context: * non-atomic */ int disable_cmf(struct ccw_device *cdev) { int ret; ret = cmbops->set(cdev, 0); if (ret) return ret; cmbops->free(cdev); sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group); return ret; } /** * cmf_read() - read one value from the current channel measurement block * @cdev: the channel to be read * @index: the index of the value to be read * * Returns the value read or %0 if the value cannot be read. * * Context: * any */ u64 cmf_read(struct ccw_device *cdev, int index) { return cmbops->read(cdev, index); } /** * cmf_readall() - read the current channel measurement block * @cdev: the channel to be read * @data: a pointer to a data block that will be filled * * Returns %0 on success, a negative error value otherwise. * * Context: * any */ int cmf_readall(struct ccw_device *cdev, struct cmbdata *data) { return cmbops->readall(cdev, data); } /* Reenable cmf when a disconnected device becomes available again. */ int cmf_reenable(struct ccw_device *cdev) { cmbops->reset(cdev); return cmbops->set(cdev, 2); } static int __init init_cmf(void) { char *format_string; char *detect_string = "parameter"; /* * If the user did not give a parameter, see if we are running on a * machine supporting extended measurement blocks, otherwise fall back * to basic mode. */ if (format == CMF_AUTODETECT) { if (!css_general_characteristics.ext_mb) { format = CMF_BASIC; } else { format = CMF_EXTENDED; } detect_string = "autodetected"; } else { detect_string = "parameter"; } switch (format) { case CMF_BASIC: format_string = "basic"; cmbops = &cmbops_basic; break; case CMF_EXTENDED: format_string = "extended"; cmbops = &cmbops_extended; break; default: return 1; } pr_info("Channel measurement facility initialized using format " "%s (mode %s)\n", format_string, detect_string); return 0; } module_init(init_cmf); MODULE_AUTHOR("Arnd Bergmann "); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("channel measurement facility base driver\n" "Copyright IBM Corp. 2003\n"); EXPORT_SYMBOL_GPL(enable_cmf); EXPORT_SYMBOL_GPL(disable_cmf); EXPORT_SYMBOL_GPL(cmf_read); EXPORT_SYMBOL_GPL(cmf_readall);