// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Christoph Hellwig. * * DMA operations that map physical memory directly without using an IOMMU. */ #include /* for max_pfn */ #include #include #include #include #include #include #include #include #include #include /* * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it * it for entirely different regions. In that case the arch code needs to * override the variable below for dma-direct to work properly. */ unsigned int zone_dma_bits __ro_after_init = 24; static inline dma_addr_t phys_to_dma_direct(struct device *dev, phys_addr_t phys) { if (force_dma_unencrypted(dev)) return __phys_to_dma(dev, phys); return phys_to_dma(dev, phys); } static inline struct page *dma_direct_to_page(struct device *dev, dma_addr_t dma_addr) { return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); } u64 dma_direct_get_required_mask(struct device *dev) { phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; u64 max_dma = phys_to_dma_direct(dev, phys); return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; } gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, u64 *phys_limit) { u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); if (force_dma_unencrypted(dev)) *phys_limit = __dma_to_phys(dev, dma_limit); else *phys_limit = dma_to_phys(dev, dma_limit); /* * Optimistically try the zone that the physical address mask falls * into first. If that returns memory that isn't actually addressable * we will fallback to the next lower zone and try again. * * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding * zones. */ if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) return GFP_DMA; if (*phys_limit <= DMA_BIT_MASK(32)) return GFP_DMA32; return 0; } static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) { return phys_to_dma_direct(dev, phys) + size - 1 <= min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); } /* * Decrypting memory is allowed to block, so if this device requires * unencrypted memory it must come from atomic pools. */ static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp, unsigned long attrs) { if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)) return false; if (gfpflags_allow_blocking(gfp)) return false; if (force_dma_unencrypted(dev)) return true; if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP)) return false; if (dma_alloc_need_uncached(dev, attrs)) return true; return false; } static inline bool dma_should_free_from_pool(struct device *dev, unsigned long attrs) { if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL)) return true; if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && !force_dma_unencrypted(dev)) return false; if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP)) return true; return false; } static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, gfp_t gfp, unsigned long attrs) { size_t alloc_size = PAGE_ALIGN(size); int node = dev_to_node(dev); struct page *page = NULL; u64 phys_limit; if (attrs & DMA_ATTR_NO_WARN) gfp |= __GFP_NOWARN; /* we always manually zero the memory once we are done: */ gfp &= ~__GFP_ZERO; gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, &phys_limit); page = dma_alloc_contiguous(dev, alloc_size, gfp); if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { dma_free_contiguous(dev, page, alloc_size); page = NULL; } again: if (!page) page = alloc_pages_node(node, gfp, get_order(alloc_size)); if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { dma_free_contiguous(dev, page, size); page = NULL; if (IS_ENABLED(CONFIG_ZONE_DMA32) && phys_limit < DMA_BIT_MASK(64) && !(gfp & (GFP_DMA32 | GFP_DMA))) { gfp |= GFP_DMA32; goto again; } if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { gfp = (gfp & ~GFP_DMA32) | GFP_DMA; goto again; } } return page; } void *dma_direct_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { struct page *page; void *ret; if (dma_should_alloc_from_pool(dev, gfp, attrs)) { ret = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &page, gfp); if (!ret) return NULL; goto done; } page = __dma_direct_alloc_pages(dev, size, gfp, attrs); if (!page) return NULL; if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && !force_dma_unencrypted(dev)) { /* remove any dirty cache lines on the kernel alias */ if (!PageHighMem(page)) arch_dma_prep_coherent(page, size); /* return the page pointer as the opaque cookie */ ret = page; goto done; } if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && dma_alloc_need_uncached(dev, attrs)) || (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) { /* remove any dirty cache lines on the kernel alias */ arch_dma_prep_coherent(page, PAGE_ALIGN(size)); /* create a coherent mapping */ ret = dma_common_contiguous_remap(page, PAGE_ALIGN(size), dma_pgprot(dev, PAGE_KERNEL, attrs), __builtin_return_address(0)); if (!ret) goto out_free_pages; memset(ret, 0, size); goto done; } if (PageHighMem(page)) { /* * Depending on the cma= arguments and per-arch setup * dma_alloc_contiguous could return highmem pages. * Without remapping there is no way to return them here, * so log an error and fail. */ dev_info(dev, "Rejecting highmem page from CMA.\n"); goto out_free_pages; } ret = page_address(page); if (force_dma_unencrypted(dev)) set_memory_decrypted((unsigned long)ret, 1 << get_order(size)); memset(ret, 0, size); if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && dma_alloc_need_uncached(dev, attrs)) { arch_dma_prep_coherent(page, size); ret = arch_dma_set_uncached(ret, size); if (IS_ERR(ret)) goto out_free_pages; } done: if (force_dma_unencrypted(dev)) *dma_handle = __phys_to_dma(dev, page_to_phys(page)); else *dma_handle = phys_to_dma(dev, page_to_phys(page)); return ret; out_free_pages: dma_free_contiguous(dev, page, size); return NULL; } void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { unsigned int page_order = get_order(size); /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ if (dma_should_free_from_pool(dev, attrs) && dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) return; if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && !force_dma_unencrypted(dev)) { /* cpu_addr is a struct page cookie, not a kernel address */ dma_free_contiguous(dev, cpu_addr, size); return; } if (force_dma_unencrypted(dev)) set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) vunmap(cpu_addr); else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) arch_dma_clear_uncached(cpu_addr, size); dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size); } void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && dma_alloc_need_uncached(dev, attrs)) return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); } void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && dma_alloc_need_uncached(dev, attrs)) arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); else dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs); } #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ defined(CONFIG_SWIOTLB) void dma_direct_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_device(paddr, size, dir); } EXPORT_SYMBOL(dma_direct_sync_single_for_device); void dma_direct_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) { phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, SYNC_FOR_DEVICE); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_device(paddr, sg->length, dir); } } EXPORT_SYMBOL(dma_direct_sync_sg_for_device); #endif #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ defined(CONFIG_SWIOTLB) void dma_direct_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = dma_to_phys(dev, addr); if (!dev_is_dma_coherent(dev)) { arch_sync_dma_for_cpu(paddr, size, dir); arch_sync_dma_for_cpu_all(); } if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); } EXPORT_SYMBOL(dma_direct_sync_single_for_cpu); void dma_direct_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) { phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_cpu(paddr, sg->length, dir); if (unlikely(is_swiotlb_buffer(paddr))) swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, SYNC_FOR_CPU); } if (!dev_is_dma_coherent(dev)) arch_sync_dma_for_cpu_all(); } EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu); void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = dma_to_phys(dev, addr); if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) dma_direct_sync_single_for_cpu(dev, addr, size, dir); if (unlikely(is_swiotlb_buffer(phys))) swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs); } EXPORT_SYMBOL(dma_direct_unmap_page); void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, attrs); } EXPORT_SYMBOL(dma_direct_unmap_sg); #endif dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { phys_addr_t phys = page_to_phys(page) + offset; dma_addr_t dma_addr = phys_to_dma(dev, phys); if (unlikely(swiotlb_force == SWIOTLB_FORCE)) return swiotlb_map(dev, phys, size, dir, attrs); if (unlikely(!dma_capable(dev, dma_addr, size, true))) { if (swiotlb_force != SWIOTLB_NO_FORCE) return swiotlb_map(dev, phys, size, dir, attrs); dev_WARN_ONCE(dev, 1, "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); return DMA_MAPPING_ERROR; } if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) arch_sync_dma_for_device(phys, size, dir); return dma_addr; } EXPORT_SYMBOL(dma_direct_map_page); int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { int i; struct scatterlist *sg; for_each_sg(sgl, sg, nents, i) { sg->dma_address = dma_direct_map_page(dev, sg_page(sg), sg->offset, sg->length, dir, attrs); if (sg->dma_address == DMA_MAPPING_ERROR) goto out_unmap; sg_dma_len(sg) = sg->length; } return nents; out_unmap: dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); return 0; } EXPORT_SYMBOL(dma_direct_map_sg); dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir, unsigned long attrs) { dma_addr_t dma_addr = paddr; if (unlikely(!dma_capable(dev, dma_addr, size, false))) { dev_err_once(dev, "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); WARN_ON_ONCE(1); return DMA_MAPPING_ERROR; } return dma_addr; } EXPORT_SYMBOL(dma_direct_map_resource); int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { struct page *page = dma_direct_to_page(dev, dma_addr); int ret; ret = sg_alloc_table(sgt, 1, GFP_KERNEL); if (!ret) sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); return ret; } bool dma_direct_can_mmap(struct device *dev) { return dev_is_dma_coherent(dev) || IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); } int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { unsigned long user_count = vma_pages(vma); unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); int ret = -ENXIO; vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) return ret; if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) return -ENXIO; return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, user_count << PAGE_SHIFT, vma->vm_page_prot); } int dma_direct_supported(struct device *dev, u64 mask) { u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; /* * Because 32-bit DMA masks are so common we expect every architecture * to be able to satisfy them - either by not supporting more physical * memory, or by providing a ZONE_DMA32. If neither is the case, the * architecture needs to use an IOMMU instead of the direct mapping. */ if (mask >= DMA_BIT_MASK(32)) return 1; /* * This check needs to be against the actual bit mask value, so * use __phys_to_dma() here so that the SME encryption mask isn't * part of the check. */ if (IS_ENABLED(CONFIG_ZONE_DMA)) min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); return mask >= __phys_to_dma(dev, min_mask); } size_t dma_direct_max_mapping_size(struct device *dev) { /* If SWIOTLB is active, use its maximum mapping size */ if (is_swiotlb_active() && (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE)) return swiotlb_max_mapping_size(dev); return SIZE_MAX; }