/* * This file is part of the Chelsio T6 Crypto driver for Linux. * * Copyright (c) 2003-2017 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Written and Maintained by: * Atul Gupta (atul.gupta@chelsio.com) */ #define pr_fmt(fmt) "chcr:" fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "chcr_core.h" #include "chcr_algo.h" #include "chcr_crypto.h" /* * Max Tx descriptor space we allow for an Ethernet packet to be inlined * into a WR. */ #define MAX_IMM_TX_PKT_LEN 256 #define GCM_ESP_IV_SIZE 8 static int chcr_xfrm_add_state(struct xfrm_state *x); static void chcr_xfrm_del_state(struct xfrm_state *x); static void chcr_xfrm_free_state(struct xfrm_state *x); static bool chcr_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x); static const struct xfrmdev_ops chcr_xfrmdev_ops = { .xdo_dev_state_add = chcr_xfrm_add_state, .xdo_dev_state_delete = chcr_xfrm_del_state, .xdo_dev_state_free = chcr_xfrm_free_state, .xdo_dev_offload_ok = chcr_ipsec_offload_ok, }; /* Add offload xfrms to Chelsio Interface */ void chcr_add_xfrmops(const struct cxgb4_lld_info *lld) { struct net_device *netdev = NULL; int i; for (i = 0; i < lld->nports; i++) { netdev = lld->ports[i]; if (!netdev) continue; netdev->xfrmdev_ops = &chcr_xfrmdev_ops; netdev->hw_enc_features |= NETIF_F_HW_ESP; netdev->features |= NETIF_F_HW_ESP; rtnl_lock(); netdev_change_features(netdev); rtnl_unlock(); } } static inline int chcr_ipsec_setauthsize(struct xfrm_state *x, struct ipsec_sa_entry *sa_entry) { int hmac_ctrl; int authsize = x->aead->alg_icv_len / 8; sa_entry->authsize = authsize; switch (authsize) { case ICV_8: hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2; break; case ICV_12: hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT; break; case ICV_16: hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC; break; default: return -EINVAL; } return hmac_ctrl; } static inline int chcr_ipsec_setkey(struct xfrm_state *x, struct ipsec_sa_entry *sa_entry) { struct crypto_cipher *cipher; int keylen = (x->aead->alg_key_len + 7) / 8; unsigned char *key = x->aead->alg_key; int ck_size, key_ctx_size = 0; unsigned char ghash_h[AEAD_H_SIZE]; int ret = 0; if (keylen > 3) { keylen -= 4; /* nonce/salt is present in the last 4 bytes */ memcpy(sa_entry->salt, key + keylen, 4); } if (keylen == AES_KEYSIZE_128) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; } else if (keylen == AES_KEYSIZE_192) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192; } else if (keylen == AES_KEYSIZE_256) { ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; } else { pr_err("GCM: Invalid key length %d\n", keylen); ret = -EINVAL; goto out; } memcpy(sa_entry->key, key, keylen); sa_entry->enckey_len = keylen; key_ctx_size = sizeof(struct _key_ctx) + ((DIV_ROUND_UP(keylen, 16)) << 4) + AEAD_H_SIZE; sa_entry->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_MAC_KEY_SIZE_128, 0, 0, key_ctx_size >> 4); /* Calculate the H = CIPH(K, 0 repeated 16 times). * It will go in key context */ cipher = crypto_alloc_cipher("aes-generic", 0, 0); if (IS_ERR(cipher)) { sa_entry->enckey_len = 0; ret = -ENOMEM; goto out; } ret = crypto_cipher_setkey(cipher, key, keylen); if (ret) { sa_entry->enckey_len = 0; goto out1; } memset(ghash_h, 0, AEAD_H_SIZE); crypto_cipher_encrypt_one(cipher, ghash_h, ghash_h); memcpy(sa_entry->key + (DIV_ROUND_UP(sa_entry->enckey_len, 16) * 16), ghash_h, AEAD_H_SIZE); sa_entry->kctx_len = ((DIV_ROUND_UP(sa_entry->enckey_len, 16)) << 4) + AEAD_H_SIZE; out1: crypto_free_cipher(cipher); out: return ret; } /* * chcr_xfrm_add_state * returns 0 on success, negative error if failed to send message to FPGA * positive error if FPGA returned a bad response */ static int chcr_xfrm_add_state(struct xfrm_state *x) { struct ipsec_sa_entry *sa_entry; int res = 0; if (x->props.aalgo != SADB_AALG_NONE) { pr_debug("CHCR: Cannot offload authenticated xfrm states\n"); return -EINVAL; } if (x->props.calgo != SADB_X_CALG_NONE) { pr_debug("CHCR: Cannot offload compressed xfrm states\n"); return -EINVAL; } if (x->props.flags & XFRM_STATE_ESN) { pr_debug("CHCR: Cannot offload ESN xfrm states\n"); return -EINVAL; } if (x->props.family != AF_INET && x->props.family != AF_INET6) { pr_debug("CHCR: Only IPv4/6 xfrm state offloaded\n"); return -EINVAL; } if (x->props.mode != XFRM_MODE_TRANSPORT && x->props.mode != XFRM_MODE_TUNNEL) { pr_debug("CHCR: Only transport and tunnel xfrm offload\n"); return -EINVAL; } if (x->id.proto != IPPROTO_ESP) { pr_debug("CHCR: Only ESP xfrm state offloaded\n"); return -EINVAL; } if (x->encap) { pr_debug("CHCR: Encapsulated xfrm state not offloaded\n"); return -EINVAL; } if (!x->aead) { pr_debug("CHCR: Cannot offload xfrm states without aead\n"); return -EINVAL; } if (x->aead->alg_icv_len != 128 && x->aead->alg_icv_len != 96) { pr_debug("CHCR: Cannot offload xfrm states with AEAD ICV length other than 96b & 128b\n"); return -EINVAL; } if ((x->aead->alg_key_len != 128 + 32) && (x->aead->alg_key_len != 256 + 32)) { pr_debug("CHCR: Cannot offload xfrm states with AEAD key length other than 128/256 bit\n"); return -EINVAL; } if (x->tfcpad) { pr_debug("CHCR: Cannot offload xfrm states with tfc padding\n"); return -EINVAL; } if (!x->geniv) { pr_debug("CHCR: Cannot offload xfrm states without geniv\n"); return -EINVAL; } if (strcmp(x->geniv, "seqiv")) { pr_debug("CHCR: Cannot offload xfrm states with geniv other than seqiv\n"); return -EINVAL; } sa_entry = kzalloc(sizeof(*sa_entry), GFP_KERNEL); if (!sa_entry) { res = -ENOMEM; goto out; } sa_entry->hmac_ctrl = chcr_ipsec_setauthsize(x, sa_entry); chcr_ipsec_setkey(x, sa_entry); x->xso.offload_handle = (unsigned long)sa_entry; try_module_get(THIS_MODULE); out: return res; } static void chcr_xfrm_del_state(struct xfrm_state *x) { /* do nothing */ if (!x->xso.offload_handle) return; } static void chcr_xfrm_free_state(struct xfrm_state *x) { struct ipsec_sa_entry *sa_entry; if (!x->xso.offload_handle) return; sa_entry = (struct ipsec_sa_entry *)x->xso.offload_handle; kfree(sa_entry); module_put(THIS_MODULE); } static bool chcr_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x) { /* Offload with IP options is not supported yet */ if (ip_hdr(skb)->ihl > 5) return false; return true; } static inline int is_eth_imm(const struct sk_buff *skb, unsigned int kctx_len) { int hdrlen = sizeof(struct chcr_ipsec_req) + kctx_len; hdrlen += sizeof(struct cpl_tx_pkt); if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) return hdrlen; return 0; } static inline unsigned int calc_tx_sec_flits(const struct sk_buff *skb, unsigned int kctx_len) { unsigned int flits; int hdrlen = is_eth_imm(skb, kctx_len); /* If the skb is small enough, we can pump it out as a work request * with only immediate data. In that case we just have to have the * TX Packet header plus the skb data in the Work Request. */ if (hdrlen) return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); /* Otherwise, we're going to have to construct a Scatter gather list * of the skb body and fragments. We also include the flits necessary * for the TX Packet Work Request and CPL. We always have a firmware * Write Header (incorporated as part of the cpl_tx_pkt_lso and * cpl_tx_pkt structures), followed by either a TX Packet Write CPL * message or, if we're doing a Large Send Offload, an LSO CPL message * with an embedded TX Packet Write CPL message. */ flits += (sizeof(struct fw_ulptx_wr) + sizeof(struct chcr_ipsec_req) + kctx_len + sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); return flits; } inline void *copy_cpltx_pktxt(struct sk_buff *skb, struct net_device *dev, void *pos) { struct adapter *adap; struct port_info *pi; struct sge_eth_txq *q; struct cpl_tx_pkt_core *cpl; u64 cntrl; u32 ctrl0, qidx; pi = netdev_priv(dev); adap = pi->adapter; qidx = skb->queue_mapping; q = &adap->sge.ethtxq[qidx + pi->first_qset]; cpl = (struct cpl_tx_pkt_core *)pos; if (skb->ip_summed == CHECKSUM_PARTIAL) cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | TXPKT_PF_V(adap->pf); if (skb_vlan_tag_present(skb)) { q->vlan_ins++; cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); } cpl->ctrl0 = htonl(ctrl0); cpl->pack = htons(0); cpl->len = htons(skb->len); cpl->ctrl1 = cpu_to_be64(cntrl); pos += sizeof(struct cpl_tx_pkt_core); return pos; } inline void *copy_key_cpltx_pktxt(struct sk_buff *skb, struct net_device *dev, void *pos, struct ipsec_sa_entry *sa_entry) { struct adapter *adap; struct port_info *pi; struct sge_eth_txq *q; unsigned int len, qidx; struct _key_ctx *key_ctx; int left, eoq, key_len; pi = netdev_priv(dev); adap = pi->adapter; qidx = skb->queue_mapping; q = &adap->sge.ethtxq[qidx + pi->first_qset]; len = sa_entry->enckey_len + sizeof(struct cpl_tx_pkt_core); key_len = sa_entry->kctx_len; /* end of queue, reset pos to start of queue */ eoq = (void *)q->q.stat - pos; left = eoq; if (!eoq) { pos = q->q.desc; left = 64 * q->q.size; } /* Copy the Key context header */ key_ctx = (struct _key_ctx *)pos; key_ctx->ctx_hdr = sa_entry->key_ctx_hdr; memcpy(key_ctx->salt, sa_entry->salt, MAX_SALT); pos += sizeof(struct _key_ctx); left -= sizeof(struct _key_ctx); if (likely(len <= left)) { memcpy(key_ctx->key, sa_entry->key, key_len); pos += key_len; } else { if (key_len <= left) { memcpy(pos, sa_entry->key, key_len); pos += key_len; } else { memcpy(pos, sa_entry->key, left); memcpy(q->q.desc, sa_entry->key + left, key_len - left); pos = q->q.desc + (key_len - left); } } /* Copy CPL TX PKT XT */ pos = copy_cpltx_pktxt(skb, dev, pos); return pos; } inline void *chcr_crypto_wreq(struct sk_buff *skb, struct net_device *dev, void *pos, int credits, struct ipsec_sa_entry *sa_entry) { struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; unsigned int immdatalen = 0; unsigned int ivsize = GCM_ESP_IV_SIZE; struct chcr_ipsec_wr *wr; unsigned int flits; u32 wr_mid; int qidx = skb_get_queue_mapping(skb); struct sge_eth_txq *q = &adap->sge.ethtxq[qidx + pi->first_qset]; unsigned int kctx_len = sa_entry->kctx_len; int qid = q->q.cntxt_id; atomic_inc(&adap->chcr_stats.ipsec_cnt); flits = calc_tx_sec_flits(skb, kctx_len); if (is_eth_imm(skb, kctx_len)) immdatalen = skb->len; /* WR Header */ wr = (struct chcr_ipsec_wr *)pos; wr->wreq.op_to_compl = htonl(FW_WR_OP_V(FW_ULPTX_WR)); wr_mid = FW_CRYPTO_LOOKASIDE_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); if (unlikely(credits < ETHTXQ_STOP_THRES)) { netif_tx_stop_queue(q->txq); q->q.stops++; wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; } wr_mid |= FW_ULPTX_WR_DATA_F; wr->wreq.flowid_len16 = htonl(wr_mid); /* ULPTX */ wr->req.ulptx.cmd_dest = FILL_ULPTX_CMD_DEST(pi->port_id, qid); wr->req.ulptx.len = htonl(DIV_ROUND_UP(flits, 2) - 1); /* Sub-command */ wr->req.sc_imm.cmd_more = FILL_CMD_MORE(immdatalen); wr->req.sc_imm.len = cpu_to_be32(sizeof(struct cpl_tx_sec_pdu) + sizeof(wr->req.key_ctx) + kctx_len + sizeof(struct cpl_tx_pkt_core) + immdatalen); /* CPL_SEC_PDU */ wr->req.sec_cpl.op_ivinsrtofst = htonl( CPL_TX_SEC_PDU_OPCODE_V(CPL_TX_SEC_PDU) | CPL_TX_SEC_PDU_CPLLEN_V(2) | CPL_TX_SEC_PDU_PLACEHOLDER_V(1) | CPL_TX_SEC_PDU_IVINSRTOFST_V( (skb_transport_offset(skb) + sizeof(struct ip_esp_hdr) + 1))); wr->req.sec_cpl.pldlen = htonl(skb->len); wr->req.sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI( (skb_transport_offset(skb) + 1), (skb_transport_offset(skb) + sizeof(struct ip_esp_hdr)), (skb_transport_offset(skb) + sizeof(struct ip_esp_hdr) + GCM_ESP_IV_SIZE + 1), 0); wr->req.sec_cpl.cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(0, skb_transport_offset(skb) + sizeof(struct ip_esp_hdr) + GCM_ESP_IV_SIZE + 1, sa_entry->authsize, sa_entry->authsize); wr->req.sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(CHCR_ENCRYPT_OP, 1, CHCR_SCMD_CIPHER_MODE_AES_GCM, CHCR_SCMD_AUTH_MODE_GHASH, sa_entry->hmac_ctrl, ivsize >> 1); wr->req.sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 1, 0, 0, 0); pos += sizeof(struct fw_ulptx_wr) + sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + sizeof(struct cpl_tx_sec_pdu); pos = copy_key_cpltx_pktxt(skb, dev, pos, sa_entry); return pos; } /** * flits_to_desc - returns the num of Tx descriptors for the given flits * @n: the number of flits * * Returns the number of Tx descriptors needed for the supplied number * of flits. */ static inline unsigned int flits_to_desc(unsigned int n) { WARN_ON(n > SGE_MAX_WR_LEN / 8); return DIV_ROUND_UP(n, 8); } static inline unsigned int txq_avail(const struct sge_txq *q) { return q->size - 1 - q->in_use; } static void eth_txq_stop(struct sge_eth_txq *q) { netif_tx_stop_queue(q->txq); q->q.stops++; } static inline void txq_advance(struct sge_txq *q, unsigned int n) { q->in_use += n; q->pidx += n; if (q->pidx >= q->size) q->pidx -= q->size; } /* * chcr_ipsec_xmit called from ULD Tx handler */ int chcr_ipsec_xmit(struct sk_buff *skb, struct net_device *dev) { struct xfrm_state *x = xfrm_input_state(skb); struct ipsec_sa_entry *sa_entry; u64 *pos, *end, *before, *sgl; int qidx, left, credits; unsigned int flits = 0, ndesc, kctx_len; struct adapter *adap; struct sge_eth_txq *q; struct port_info *pi; dma_addr_t addr[MAX_SKB_FRAGS + 1]; bool immediate = false; if (!x->xso.offload_handle) return NETDEV_TX_BUSY; sa_entry = (struct ipsec_sa_entry *)x->xso.offload_handle; kctx_len = sa_entry->kctx_len; if (skb->sp->len != 1) { out_free: dev_kfree_skb_any(skb); return NETDEV_TX_OK; } pi = netdev_priv(dev); adap = pi->adapter; qidx = skb->queue_mapping; q = &adap->sge.ethtxq[qidx + pi->first_qset]; cxgb4_reclaim_completed_tx(adap, &q->q, true); flits = calc_tx_sec_flits(skb, sa_entry->kctx_len); ndesc = flits_to_desc(flits); credits = txq_avail(&q->q) - ndesc; if (unlikely(credits < 0)) { eth_txq_stop(q); dev_err(adap->pdev_dev, "%s: Tx ring %u full while queue awake! cred:%d %d %d flits:%d\n", dev->name, qidx, credits, ndesc, txq_avail(&q->q), flits); return NETDEV_TX_BUSY; } if (is_eth_imm(skb, kctx_len)) immediate = true; if (!immediate && unlikely(cxgb4_map_skb(adap->pdev_dev, skb, addr) < 0)) { q->mapping_err++; goto out_free; } pos = (u64 *)&q->q.desc[q->q.pidx]; before = (u64 *)pos; end = (u64 *)pos + flits; /* Setup IPSec CPL */ pos = (void *)chcr_crypto_wreq(skb, dev, (void *)pos, credits, sa_entry); if (before > (u64 *)pos) { left = (u8 *)end - (u8 *)q->q.stat; end = (void *)q->q.desc + left; } if (pos == (u64 *)q->q.stat) { left = (u8 *)end - (u8 *)q->q.stat; end = (void *)q->q.desc + left; pos = (void *)q->q.desc; } sgl = (void *)pos; if (immediate) { cxgb4_inline_tx_skb(skb, &q->q, sgl); dev_consume_skb_any(skb); } else { int last_desc; cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, 0, addr); skb_orphan(skb); last_desc = q->q.pidx + ndesc - 1; if (last_desc >= q->q.size) last_desc -= q->q.size; q->q.sdesc[last_desc].skb = skb; q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)sgl; } txq_advance(&q->q, ndesc); cxgb4_ring_tx_db(adap, &q->q, ndesc); return NETDEV_TX_OK; }