/******************************************************************************* * * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver * Copyright(c) 2013 - 2016 Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Contact Information: * e1000-devel Mailing List * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * ******************************************************************************/ #ifndef _I40E_TXRX_H_ #define _I40E_TXRX_H_ /* Interrupt Throttling and Rate Limiting Goodies */ #define I40E_MAX_ITR 0x0FF0 /* reg uses 2 usec resolution */ #define I40E_MIN_ITR 0x0001 /* reg uses 2 usec resolution */ #define I40E_ITR_100K 0x0005 #define I40E_ITR_50K 0x000A #define I40E_ITR_20K 0x0019 #define I40E_ITR_18K 0x001B #define I40E_ITR_8K 0x003E #define I40E_ITR_4K 0x007A #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ #define I40E_ITR_RX_DEF I40E_ITR_20K #define I40E_ITR_TX_DEF I40E_ITR_20K #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ #define I40E_MIN_INT_RATE 250 /* ~= 1000000 / (I40E_MAX_ITR * 2) */ #define I40E_MAX_INT_RATE 500000 /* == 1000000 / (I40E_MIN_ITR * 2) */ #define I40E_DEFAULT_IRQ_WORK 256 #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1) #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC)) #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1) /* 0x40 is the enable bit for interrupt rate limiting, and must be set if * the value of the rate limit is non-zero */ #define INTRL_ENA BIT(6) #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0) #define I40E_INTRL_8K 125 /* 8000 ints/sec */ #define I40E_INTRL_62K 16 /* 62500 ints/sec */ #define I40E_INTRL_83K 12 /* 83333 ints/sec */ #define I40E_QUEUE_END_OF_LIST 0x7FF /* this enum matches hardware bits and is meant to be used by DYN_CTLN * registers and QINT registers or more generally anywhere in the manual * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any * register but instead is a special value meaning "don't update" ITR0/1/2. */ enum i40e_dyn_idx_t { I40E_IDX_ITR0 = 0, I40E_IDX_ITR1 = 1, I40E_IDX_ITR2 = 2, I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ }; /* these are indexes into ITRN registers */ #define I40E_RX_ITR I40E_IDX_ITR0 #define I40E_TX_ITR I40E_IDX_ITR1 #define I40E_PE_ITR I40E_IDX_ITR2 /* Supported RSS offloads */ #define I40E_DEFAULT_RSS_HENA ( \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \ BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD)) #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) #define i40e_pf_get_default_rss_hena(pf) \ (((pf)->flags & I40E_FLAG_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \ I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA) /* Supported Rx Buffer Sizes */ #define I40E_RXBUFFER_512 512 /* Used for packet split */ #define I40E_RXBUFFER_2048 2048 #define I40E_RXBUFFER_3072 3072 /* For FCoE MTU of 2158 */ #define I40E_RXBUFFER_4096 4096 #define I40E_RXBUFFER_8192 8192 #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */ /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, * this adds up to 512 bytes of extra data meaning the smallest allocation * we could have is 1K. * i.e. RXBUFFER_512 --> size-1024 slab */ #define I40E_RX_HDR_SIZE I40E_RXBUFFER_512 /* How many Rx Buffers do we bundle into one write to the hardware ? */ #define I40E_RX_BUFFER_WRITE 16 /* Must be power of 2 */ #define I40E_RX_INCREMENT(r, i) \ do { \ (i)++; \ if ((i) == (r)->count) \ i = 0; \ r->next_to_clean = i; \ } while (0) #define I40E_RX_NEXT_DESC(r, i, n) \ do { \ (i)++; \ if ((i) == (r)->count) \ i = 0; \ (n) = I40E_RX_DESC((r), (i)); \ } while (0) #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \ do { \ I40E_RX_NEXT_DESC((r), (i), (n)); \ prefetch((n)); \ } while (0) #define i40e_rx_desc i40e_32byte_rx_desc #define I40E_MAX_BUFFER_TXD 8 #define I40E_MIN_TX_LEN 17 /* The size limit for a transmit buffer in a descriptor is (16K - 1). * In order to align with the read requests we will align the value to * the nearest 4K which represents our maximum read request size. */ #define I40E_MAX_READ_REQ_SIZE 4096 #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1) #define I40E_MAX_DATA_PER_TXD_ALIGNED \ (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1)) /* This ugly bit of math is equivalent to DIV_ROUNDUP(size, X) where X is * the value I40E_MAX_DATA_PER_TXD_ALIGNED. It is needed due to the fact * that 12K is not a power of 2 and division is expensive. It is used to * approximate the number of descriptors used per linear buffer. Note * that this will overestimate in some cases as it doesn't account for the * fact that we will add up to 4K - 1 in aligning the 12K buffer, however * the error should not impact things much as large buffers usually mean * we will use fewer descriptors then there are frags in an skb. */ static inline unsigned int i40e_txd_use_count(unsigned int size) { const unsigned int max = I40E_MAX_DATA_PER_TXD_ALIGNED; const unsigned int reciprocal = ((1ull << 32) - 1 + (max / 2)) / max; unsigned int adjust = ~(u32)0; /* if we rounded up on the reciprocal pull down the adjustment */ if ((max * reciprocal) > adjust) adjust = ~(u32)(reciprocal - 1); return (u32)((((u64)size * reciprocal) + adjust) >> 32); } /* Tx Descriptors needed, worst case */ #define DESC_NEEDED (MAX_SKB_FRAGS + 4) #define I40E_MIN_DESC_PENDING 4 #define I40E_TX_FLAGS_HW_VLAN BIT(1) #define I40E_TX_FLAGS_SW_VLAN BIT(2) #define I40E_TX_FLAGS_TSO BIT(3) #define I40E_TX_FLAGS_IPV4 BIT(4) #define I40E_TX_FLAGS_IPV6 BIT(5) #define I40E_TX_FLAGS_FCCRC BIT(6) #define I40E_TX_FLAGS_FSO BIT(7) #define I40E_TX_FLAGS_FD_SB BIT(9) #define I40E_TX_FLAGS_VXLAN_TUNNEL BIT(10) #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000 #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29 #define I40E_TX_FLAGS_VLAN_SHIFT 16 struct i40e_tx_buffer { struct i40e_tx_desc *next_to_watch; union { struct sk_buff *skb; void *raw_buf; }; unsigned int bytecount; unsigned short gso_segs; DEFINE_DMA_UNMAP_ADDR(dma); DEFINE_DMA_UNMAP_LEN(len); u32 tx_flags; }; struct i40e_rx_buffer { struct sk_buff *skb; void *hdr_buf; dma_addr_t dma; struct page *page; dma_addr_t page_dma; unsigned int page_offset; }; struct i40e_queue_stats { u64 packets; u64 bytes; }; struct i40e_tx_queue_stats { u64 restart_queue; u64 tx_busy; u64 tx_done_old; u64 tx_linearize; u64 tx_force_wb; u64 tx_lost_interrupt; }; struct i40e_rx_queue_stats { u64 non_eop_descs; u64 alloc_page_failed; u64 alloc_buff_failed; u64 page_reuse_count; u64 realloc_count; }; enum i40e_ring_state_t { __I40E_TX_FDIR_INIT_DONE, __I40E_TX_XPS_INIT_DONE, __I40E_RX_PS_ENABLED, __I40E_RX_16BYTE_DESC_ENABLED, }; #define ring_is_ps_enabled(ring) \ test_bit(__I40E_RX_PS_ENABLED, &(ring)->state) #define set_ring_ps_enabled(ring) \ set_bit(__I40E_RX_PS_ENABLED, &(ring)->state) #define clear_ring_ps_enabled(ring) \ clear_bit(__I40E_RX_PS_ENABLED, &(ring)->state) #define ring_is_16byte_desc_enabled(ring) \ test_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state) #define set_ring_16byte_desc_enabled(ring) \ set_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state) #define clear_ring_16byte_desc_enabled(ring) \ clear_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state) /* struct that defines a descriptor ring, associated with a VSI */ struct i40e_ring { struct i40e_ring *next; /* pointer to next ring in q_vector */ void *desc; /* Descriptor ring memory */ struct device *dev; /* Used for DMA mapping */ struct net_device *netdev; /* netdev ring maps to */ union { struct i40e_tx_buffer *tx_bi; struct i40e_rx_buffer *rx_bi; }; unsigned long state; u16 queue_index; /* Queue number of ring */ u8 dcb_tc; /* Traffic class of ring */ u8 __iomem *tail; u16 count; /* Number of descriptors */ u16 reg_idx; /* HW register index of the ring */ u16 rx_hdr_len; u16 rx_buf_len; u8 dtype; #define I40E_RX_DTYPE_NO_SPLIT 0 #define I40E_RX_DTYPE_HEADER_SPLIT 1 #define I40E_RX_DTYPE_SPLIT_ALWAYS 2 #define I40E_RX_SPLIT_L2 0x1 #define I40E_RX_SPLIT_IP 0x2 #define I40E_RX_SPLIT_TCP_UDP 0x4 #define I40E_RX_SPLIT_SCTP 0x8 /* used in interrupt processing */ u16 next_to_use; u16 next_to_clean; u8 atr_sample_rate; u8 atr_count; bool ring_active; /* is ring online or not */ bool arm_wb; /* do something to arm write back */ u8 packet_stride; #define I40E_TXR_FLAGS_LAST_XMIT_MORE_SET BIT(2) u16 flags; #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0) /* stats structs */ struct i40e_queue_stats stats; struct u64_stats_sync syncp; union { struct i40e_tx_queue_stats tx_stats; struct i40e_rx_queue_stats rx_stats; }; unsigned int size; /* length of descriptor ring in bytes */ dma_addr_t dma; /* physical address of ring */ struct i40e_vsi *vsi; /* Backreference to associated VSI */ struct i40e_q_vector *q_vector; /* Backreference to associated vector */ struct rcu_head rcu; /* to avoid race on free */ } ____cacheline_internodealigned_in_smp; enum i40e_latency_range { I40E_LOWEST_LATENCY = 0, I40E_LOW_LATENCY = 1, I40E_BULK_LATENCY = 2, I40E_ULTRA_LATENCY = 3, }; struct i40e_ring_container { /* array of pointers to rings */ struct i40e_ring *ring; unsigned int total_bytes; /* total bytes processed this int */ unsigned int total_packets; /* total packets processed this int */ u16 count; enum i40e_latency_range latency_range; u16 itr; }; /* iterator for handling rings in ring container */ #define i40e_for_each_ring(pos, head) \ for (pos = (head).ring; pos != NULL; pos = pos->next) bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rxr, u16 cleaned_count); bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rxr, u16 cleaned_count); void i40evf_alloc_rx_headers(struct i40e_ring *rxr); netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev); void i40evf_clean_tx_ring(struct i40e_ring *tx_ring); void i40evf_clean_rx_ring(struct i40e_ring *rx_ring); int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring); int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring); void i40evf_free_tx_resources(struct i40e_ring *tx_ring); void i40evf_free_rx_resources(struct i40e_ring *rx_ring); int i40evf_napi_poll(struct napi_struct *napi, int budget); void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector); u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw); int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size); bool __i40evf_chk_linearize(struct sk_buff *skb); /** * i40e_get_head - Retrieve head from head writeback * @tx_ring: Tx ring to fetch head of * * Returns value of Tx ring head based on value stored * in head write-back location **/ static inline u32 i40e_get_head(struct i40e_ring *tx_ring) { void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count; return le32_to_cpu(*(volatile __le32 *)head); } /** * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed * @skb: send buffer * @tx_ring: ring to send buffer on * * Returns number of data descriptors needed for this skb. Returns 0 to indicate * there is not enough descriptors available in this ring since we need at least * one descriptor. **/ static inline int i40e_xmit_descriptor_count(struct sk_buff *skb) { const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; unsigned int nr_frags = skb_shinfo(skb)->nr_frags; int count = 0, size = skb_headlen(skb); for (;;) { count += i40e_txd_use_count(size); if (!nr_frags--) break; size = skb_frag_size(frag++); } return count; } /** * i40e_maybe_stop_tx - 1st level check for Tx stop conditions * @tx_ring: the ring to be checked * @size: the size buffer we want to assure is available * * Returns 0 if stop is not needed **/ static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) { if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) return 0; return __i40evf_maybe_stop_tx(tx_ring, size); } /** * i40e_chk_linearize - Check if there are more than 8 fragments per packet * @skb: send buffer * @count: number of buffers used * * Note: Our HW can't scatter-gather more than 8 fragments to build * a packet on the wire and so we need to figure out the cases where we * need to linearize the skb. **/ static inline bool i40e_chk_linearize(struct sk_buff *skb, int count) { /* we can only support up to 8 data buffers for a single send */ if (likely(count <= I40E_MAX_BUFFER_TXD)) return false; return __i40evf_chk_linearize(skb); } #endif /* _I40E_TXRX_H_ */