/* * The file intends to implement the functions needed by EEH, which is * built on IODA compliant chip. Actually, lots of functions related * to EEH would be built based on the OPAL APIs. * * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "powernv.h" #include "pci.h" static int ioda_eeh_nb_init = 0; static int ioda_eeh_event(struct notifier_block *nb, unsigned long events, void *change) { uint64_t changed_evts = (uint64_t)change; /* * We simply send special EEH event if EEH has * been enabled, or clear pending events in * case that we enable EEH soon */ if (!(changed_evts & OPAL_EVENT_PCI_ERROR) || !(events & OPAL_EVENT_PCI_ERROR)) return 0; if (eeh_enabled()) eeh_send_failure_event(NULL); else opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul); return 0; } static struct notifier_block ioda_eeh_nb = { .notifier_call = ioda_eeh_event, .next = NULL, .priority = 0 }; #ifdef CONFIG_DEBUG_FS static int ioda_eeh_dbgfs_set(void *data, int offset, u64 val) { struct pci_controller *hose = data; struct pnv_phb *phb = hose->private_data; out_be64(phb->regs + offset, val); return 0; } static int ioda_eeh_dbgfs_get(void *data, int offset, u64 *val) { struct pci_controller *hose = data; struct pnv_phb *phb = hose->private_data; *val = in_be64(phb->regs + offset); return 0; } static int ioda_eeh_outb_dbgfs_set(void *data, u64 val) { return ioda_eeh_dbgfs_set(data, 0xD10, val); } static int ioda_eeh_outb_dbgfs_get(void *data, u64 *val) { return ioda_eeh_dbgfs_get(data, 0xD10, val); } static int ioda_eeh_inbA_dbgfs_set(void *data, u64 val) { return ioda_eeh_dbgfs_set(data, 0xD90, val); } static int ioda_eeh_inbA_dbgfs_get(void *data, u64 *val) { return ioda_eeh_dbgfs_get(data, 0xD90, val); } static int ioda_eeh_inbB_dbgfs_set(void *data, u64 val) { return ioda_eeh_dbgfs_set(data, 0xE10, val); } static int ioda_eeh_inbB_dbgfs_get(void *data, u64 *val) { return ioda_eeh_dbgfs_get(data, 0xE10, val); } DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_outb_dbgfs_ops, ioda_eeh_outb_dbgfs_get, ioda_eeh_outb_dbgfs_set, "0x%llx\n"); DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbA_dbgfs_ops, ioda_eeh_inbA_dbgfs_get, ioda_eeh_inbA_dbgfs_set, "0x%llx\n"); DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbB_dbgfs_ops, ioda_eeh_inbB_dbgfs_get, ioda_eeh_inbB_dbgfs_set, "0x%llx\n"); #endif /* CONFIG_DEBUG_FS */ /** * ioda_eeh_post_init - Chip dependent post initialization * @hose: PCI controller * * The function will be called after eeh PEs and devices * have been built. That means the EEH is ready to supply * service with I/O cache. */ static int ioda_eeh_post_init(struct pci_controller *hose) { struct pnv_phb *phb = hose->private_data; int ret; /* Register OPAL event notifier */ if (!ioda_eeh_nb_init) { ret = opal_notifier_register(&ioda_eeh_nb); if (ret) { pr_err("%s: Can't register OPAL event notifier (%d)\n", __func__, ret); return ret; } ioda_eeh_nb_init = 1; } #ifdef CONFIG_DEBUG_FS if (!phb->has_dbgfs && phb->dbgfs) { phb->has_dbgfs = 1; debugfs_create_file("err_injct_outbound", 0600, phb->dbgfs, hose, &ioda_eeh_outb_dbgfs_ops); debugfs_create_file("err_injct_inboundA", 0600, phb->dbgfs, hose, &ioda_eeh_inbA_dbgfs_ops); debugfs_create_file("err_injct_inboundB", 0600, phb->dbgfs, hose, &ioda_eeh_inbB_dbgfs_ops); } #endif /* If EEH is enabled, we're going to rely on that. * Otherwise, we restore to conventional mechanism * to clear frozen PE during PCI config access. */ if (eeh_enabled()) phb->flags |= PNV_PHB_FLAG_EEH; else phb->flags &= ~PNV_PHB_FLAG_EEH; return 0; } /** * ioda_eeh_set_option - Set EEH operation or I/O setting * @pe: EEH PE * @option: options * * Enable or disable EEH option for the indicated PE. The * function also can be used to enable I/O or DMA for the * PE. */ static int ioda_eeh_set_option(struct eeh_pe *pe, int option) { struct pci_controller *hose = pe->phb; struct pnv_phb *phb = hose->private_data; bool freeze_pe = false; int enable, ret = 0; s64 rc; /* Check on PE number */ if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) { pr_err("%s: PE address %x out of range [0, %x] " "on PHB#%x\n", __func__, pe->addr, phb->ioda.total_pe, hose->global_number); return -EINVAL; } switch (option) { case EEH_OPT_DISABLE: return -EPERM; case EEH_OPT_ENABLE: return 0; case EEH_OPT_THAW_MMIO: enable = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO; break; case EEH_OPT_THAW_DMA: enable = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA; break; case EEH_OPT_FREEZE_PE: freeze_pe = true; enable = OPAL_EEH_ACTION_SET_FREEZE_ALL; break; default: pr_warn("%s: Invalid option %d\n", __func__, option); return -EINVAL; } /* If PHB supports compound PE, to handle it */ if (freeze_pe) { if (phb->freeze_pe) { phb->freeze_pe(phb, pe->addr); } else { rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, enable); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld freezing " "PHB#%x-PE#%x\n", __func__, rc, phb->hose->global_number, pe->addr); ret = -EIO; } } } else { if (phb->unfreeze_pe) { ret = phb->unfreeze_pe(phb, pe->addr, enable); } else { rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, enable); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld enable %d " "for PHB#%x-PE#%x\n", __func__, rc, option, phb->hose->global_number, pe->addr); ret = -EIO; } } } return ret; } static void ioda_eeh_phb_diag(struct eeh_pe *pe) { struct pnv_phb *phb = pe->phb->private_data; long rc; rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data, PNV_PCI_DIAG_BUF_SIZE); if (rc != OPAL_SUCCESS) pr_warn("%s: Failed to get diag-data for PHB#%x (%ld)\n", __func__, pe->phb->global_number, rc); } static int ioda_eeh_get_phb_state(struct eeh_pe *pe) { struct pnv_phb *phb = pe->phb->private_data; u8 fstate; __be16 pcierr; s64 rc; int result = 0; rc = opal_pci_eeh_freeze_status(phb->opal_id, pe->addr, &fstate, &pcierr, NULL); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld getting PHB#%x state\n", __func__, rc, phb->hose->global_number); return EEH_STATE_NOT_SUPPORT; } /* * Check PHB state. If the PHB is frozen for the * first time, to dump the PHB diag-data. */ if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) { result = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE | EEH_STATE_MMIO_ENABLED | EEH_STATE_DMA_ENABLED); } else if (!(pe->state & EEH_PE_ISOLATED)) { eeh_pe_state_mark(pe, EEH_PE_ISOLATED); ioda_eeh_phb_diag(pe); } return result; } static int ioda_eeh_get_pe_state(struct eeh_pe *pe) { struct pnv_phb *phb = pe->phb->private_data; u8 fstate; __be16 pcierr; s64 rc; int result; /* * We don't clobber hardware frozen state until PE * reset is completed. In order to keep EEH core * moving forward, we have to return operational * state during PE reset. */ if (pe->state & EEH_PE_RESET) { result = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE | EEH_STATE_MMIO_ENABLED | EEH_STATE_DMA_ENABLED); return result; } /* * Fetch PE state from hardware. If the PHB * supports compound PE, let it handle that. */ if (phb->get_pe_state) { fstate = phb->get_pe_state(phb, pe->addr); } else { rc = opal_pci_eeh_freeze_status(phb->opal_id, pe->addr, &fstate, &pcierr, NULL); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n", __func__, rc, phb->hose->global_number, pe->addr); return EEH_STATE_NOT_SUPPORT; } } /* Figure out state */ switch (fstate) { case OPAL_EEH_STOPPED_NOT_FROZEN: result = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE | EEH_STATE_MMIO_ENABLED | EEH_STATE_DMA_ENABLED); break; case OPAL_EEH_STOPPED_MMIO_FREEZE: result = (EEH_STATE_DMA_ACTIVE | EEH_STATE_DMA_ENABLED); break; case OPAL_EEH_STOPPED_DMA_FREEZE: result = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED); break; case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE: result = 0; break; case OPAL_EEH_STOPPED_RESET: result = EEH_STATE_RESET_ACTIVE; break; case OPAL_EEH_STOPPED_TEMP_UNAVAIL: result = EEH_STATE_UNAVAILABLE; break; case OPAL_EEH_STOPPED_PERM_UNAVAIL: result = EEH_STATE_NOT_SUPPORT; break; default: result = EEH_STATE_NOT_SUPPORT; pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n", __func__, phb->hose->global_number, pe->addr, fstate); } /* * If PHB supports compound PE, to freeze all * slave PEs for consistency. * * If the PE is switching to frozen state for the * first time, to dump the PHB diag-data. */ if (!(result & EEH_STATE_NOT_SUPPORT) && !(result & EEH_STATE_UNAVAILABLE) && !(result & EEH_STATE_MMIO_ACTIVE) && !(result & EEH_STATE_DMA_ACTIVE) && !(pe->state & EEH_PE_ISOLATED)) { if (phb->freeze_pe) phb->freeze_pe(phb, pe->addr); eeh_pe_state_mark(pe, EEH_PE_ISOLATED); ioda_eeh_phb_diag(pe); } return result; } /** * ioda_eeh_get_state - Retrieve the state of PE * @pe: EEH PE * * The PE's state should be retrieved from the PEEV, PEST * IODA tables. Since the OPAL has exported the function * to do it, it'd better to use that. */ static int ioda_eeh_get_state(struct eeh_pe *pe) { struct pnv_phb *phb = pe->phb->private_data; /* Sanity check on PE number. PHB PE should have 0 */ if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) { pr_warn("%s: PHB#%x-PE#%x out of range [0, %x]\n", __func__, phb->hose->global_number, pe->addr, phb->ioda.total_pe); return EEH_STATE_NOT_SUPPORT; } if (pe->type & EEH_PE_PHB) return ioda_eeh_get_phb_state(pe); return ioda_eeh_get_pe_state(pe); } static s64 ioda_eeh_phb_poll(struct pnv_phb *phb) { s64 rc = OPAL_HARDWARE; while (1) { rc = opal_pci_poll(phb->opal_id); if (rc <= 0) break; if (system_state < SYSTEM_RUNNING) udelay(1000 * rc); else msleep(rc); } return rc; } int ioda_eeh_phb_reset(struct pci_controller *hose, int option) { struct pnv_phb *phb = hose->private_data; s64 rc = OPAL_HARDWARE; pr_debug("%s: Reset PHB#%x, option=%d\n", __func__, hose->global_number, option); /* Issue PHB complete reset request */ if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT) rc = opal_pci_reset(phb->opal_id, OPAL_PHB_COMPLETE, OPAL_ASSERT_RESET); else if (option == EEH_RESET_DEACTIVATE) rc = opal_pci_reset(phb->opal_id, OPAL_PHB_COMPLETE, OPAL_DEASSERT_RESET); if (rc < 0) goto out; /* * Poll state of the PHB until the request is done * successfully. The PHB reset is usually PHB complete * reset followed by hot reset on root bus. So we also * need the PCI bus settlement delay. */ rc = ioda_eeh_phb_poll(phb); if (option == EEH_RESET_DEACTIVATE) { if (system_state < SYSTEM_RUNNING) udelay(1000 * EEH_PE_RST_SETTLE_TIME); else msleep(EEH_PE_RST_SETTLE_TIME); } out: if (rc != OPAL_SUCCESS) return -EIO; return 0; } static int ioda_eeh_root_reset(struct pci_controller *hose, int option) { struct pnv_phb *phb = hose->private_data; s64 rc = OPAL_SUCCESS; pr_debug("%s: Reset PHB#%x, option=%d\n", __func__, hose->global_number, option); /* * During the reset deassert time, we needn't care * the reset scope because the firmware does nothing * for fundamental or hot reset during deassert phase. */ if (option == EEH_RESET_FUNDAMENTAL) rc = opal_pci_reset(phb->opal_id, OPAL_PCI_FUNDAMENTAL_RESET, OPAL_ASSERT_RESET); else if (option == EEH_RESET_HOT) rc = opal_pci_reset(phb->opal_id, OPAL_PCI_HOT_RESET, OPAL_ASSERT_RESET); else if (option == EEH_RESET_DEACTIVATE) rc = opal_pci_reset(phb->opal_id, OPAL_PCI_HOT_RESET, OPAL_DEASSERT_RESET); if (rc < 0) goto out; /* Poll state of the PHB until the request is done */ rc = ioda_eeh_phb_poll(phb); if (option == EEH_RESET_DEACTIVATE) msleep(EEH_PE_RST_SETTLE_TIME); out: if (rc != OPAL_SUCCESS) return -EIO; return 0; } static int ioda_eeh_bridge_reset(struct pci_dev *dev, int option) { struct device_node *dn = pci_device_to_OF_node(dev); struct eeh_dev *edev = of_node_to_eeh_dev(dn); int aer = edev ? edev->aer_cap : 0; u32 ctrl; pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n", __func__, pci_domain_nr(dev->bus), dev->bus->number, option); switch (option) { case EEH_RESET_FUNDAMENTAL: case EEH_RESET_HOT: /* Don't report linkDown event */ if (aer) { eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK, 4, &ctrl); ctrl |= PCI_ERR_UNC_SURPDN; eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK, 4, ctrl); } eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl); ctrl |= PCI_BRIDGE_CTL_BUS_RESET; eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl); msleep(EEH_PE_RST_HOLD_TIME); break; case EEH_RESET_DEACTIVATE: eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl); ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl); msleep(EEH_PE_RST_SETTLE_TIME); /* Continue reporting linkDown event */ if (aer) { eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK, 4, &ctrl); ctrl &= ~PCI_ERR_UNC_SURPDN; eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK, 4, ctrl); } break; } return 0; } void pnv_pci_reset_secondary_bus(struct pci_dev *dev) { struct pci_controller *hose; if (pci_is_root_bus(dev->bus)) { hose = pci_bus_to_host(dev->bus); ioda_eeh_root_reset(hose, EEH_RESET_HOT); ioda_eeh_root_reset(hose, EEH_RESET_DEACTIVATE); } else { ioda_eeh_bridge_reset(dev, EEH_RESET_HOT); ioda_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE); } } /** * ioda_eeh_reset - Reset the indicated PE * @pe: EEH PE * @option: reset option * * Do reset on the indicated PE. For PCI bus sensitive PE, * we need to reset the parent p2p bridge. The PHB has to * be reinitialized if the p2p bridge is root bridge. For * PCI device sensitive PE, we will try to reset the device * through FLR. For now, we don't have OPAL APIs to do HARD * reset yet, so all reset would be SOFT (HOT) reset. */ static int ioda_eeh_reset(struct eeh_pe *pe, int option) { struct pci_controller *hose = pe->phb; struct pci_bus *bus; int ret; /* * For PHB reset, we always have complete reset. For those PEs whose * primary bus derived from root complex (root bus) or root port * (usually bus#1), we apply hot or fundamental reset on the root port. * For other PEs, we always have hot reset on the PE primary bus. * * Here, we have different design to pHyp, which always clear the * frozen state during PE reset. However, the good idea here from * benh is to keep frozen state before we get PE reset done completely * (until BAR restore). With the frozen state, HW drops illegal IO * or MMIO access, which can incur recrusive frozen PE during PE * reset. The side effect is that EEH core has to clear the frozen * state explicitly after BAR restore. */ if (pe->type & EEH_PE_PHB) { ret = ioda_eeh_phb_reset(hose, option); } else { bus = eeh_pe_bus_get(pe); if (pci_is_root_bus(bus) || pci_is_root_bus(bus->parent)) ret = ioda_eeh_root_reset(hose, option); else ret = ioda_eeh_bridge_reset(bus->self, option); } return ret; } /** * ioda_eeh_get_log - Retrieve error log * @pe: frozen PE * @severity: permanent or temporary error * @drv_log: device driver log * @len: length of device driver log * * Retrieve error log, which contains log from device driver * and firmware. */ static int ioda_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len) { pnv_pci_dump_phb_diag_data(pe->phb, pe->data); return 0; } /** * ioda_eeh_configure_bridge - Configure the PCI bridges for the indicated PE * @pe: EEH PE * * For particular PE, it might have included PCI bridges. In order * to make the PE work properly, those PCI bridges should be configured * correctly. However, we need do nothing on P7IOC since the reset * function will do everything that should be covered by the function. */ static int ioda_eeh_configure_bridge(struct eeh_pe *pe) { return 0; } static void ioda_eeh_hub_diag_common(struct OpalIoP7IOCErrorData *data) { /* GEM */ if (data->gemXfir || data->gemRfir || data->gemRirqfir || data->gemMask || data->gemRwof) pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->gemXfir), be64_to_cpu(data->gemRfir), be64_to_cpu(data->gemRirqfir), be64_to_cpu(data->gemMask), be64_to_cpu(data->gemRwof)); /* LEM */ if (data->lemFir || data->lemErrMask || data->lemAction0 || data->lemAction1 || data->lemWof) pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->lemFir), be64_to_cpu(data->lemErrMask), be64_to_cpu(data->lemAction0), be64_to_cpu(data->lemAction1), be64_to_cpu(data->lemWof)); } static void ioda_eeh_hub_diag(struct pci_controller *hose) { struct pnv_phb *phb = hose->private_data; struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag; long rc; rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data)); if (rc != OPAL_SUCCESS) { pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n", __func__, phb->hub_id, rc); return; } switch (data->type) { case OPAL_P7IOC_DIAG_TYPE_RGC: pr_info("P7IOC diag-data for RGC\n\n"); ioda_eeh_hub_diag_common(data); if (data->rgc.rgcStatus || data->rgc.rgcLdcp) pr_info(" RGC: %016llx %016llx\n", be64_to_cpu(data->rgc.rgcStatus), be64_to_cpu(data->rgc.rgcLdcp)); break; case OPAL_P7IOC_DIAG_TYPE_BI: pr_info("P7IOC diag-data for BI %s\n\n", data->bi.biDownbound ? "Downbound" : "Upbound"); ioda_eeh_hub_diag_common(data); if (data->bi.biLdcp0 || data->bi.biLdcp1 || data->bi.biLdcp2 || data->bi.biFenceStatus) pr_info(" BI: %016llx %016llx %016llx %016llx\n", be64_to_cpu(data->bi.biLdcp0), be64_to_cpu(data->bi.biLdcp1), be64_to_cpu(data->bi.biLdcp2), be64_to_cpu(data->bi.biFenceStatus)); break; case OPAL_P7IOC_DIAG_TYPE_CI: pr_info("P7IOC diag-data for CI Port %d\n\n", data->ci.ciPort); ioda_eeh_hub_diag_common(data); if (data->ci.ciPortStatus || data->ci.ciPortLdcp) pr_info(" CI: %016llx %016llx\n", be64_to_cpu(data->ci.ciPortStatus), be64_to_cpu(data->ci.ciPortLdcp)); break; case OPAL_P7IOC_DIAG_TYPE_MISC: pr_info("P7IOC diag-data for MISC\n\n"); ioda_eeh_hub_diag_common(data); break; case OPAL_P7IOC_DIAG_TYPE_I2C: pr_info("P7IOC diag-data for I2C\n\n"); ioda_eeh_hub_diag_common(data); break; default: pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n", __func__, phb->hub_id, data->type); } } static int ioda_eeh_get_pe(struct pci_controller *hose, u16 pe_no, struct eeh_pe **pe) { struct pnv_phb *phb = hose->private_data; struct pnv_ioda_pe *pnv_pe; struct eeh_pe *dev_pe; struct eeh_dev edev; /* * If PHB supports compound PE, to fetch * the master PE because slave PE is invisible * to EEH core. */ if (phb->get_pe_state) { pnv_pe = &phb->ioda.pe_array[pe_no]; if (pnv_pe->flags & PNV_IODA_PE_SLAVE) { pnv_pe = pnv_pe->master; WARN_ON(!pnv_pe || !(pnv_pe->flags & PNV_IODA_PE_MASTER)); pe_no = pnv_pe->pe_number; } } /* Find the PE according to PE# */ memset(&edev, 0, sizeof(struct eeh_dev)); edev.phb = hose; edev.pe_config_addr = pe_no; dev_pe = eeh_pe_get(&edev); if (!dev_pe) return -EEXIST; /* * At this point, we're sure the compound PE should * be put into frozen state. */ *pe = dev_pe; if (phb->freeze_pe && !(dev_pe->state & EEH_PE_ISOLATED)) phb->freeze_pe(phb, pe_no); return 0; } /** * ioda_eeh_next_error - Retrieve next error for EEH core to handle * @pe: The affected PE * * The function is expected to be called by EEH core while it gets * special EEH event (without binding PE). The function calls to * OPAL APIs for next error to handle. The informational error is * handled internally by platform. However, the dead IOC, dead PHB, * fenced PHB and frozen PE should be handled by EEH core eventually. */ static int ioda_eeh_next_error(struct eeh_pe **pe) { struct pci_controller *hose; struct pnv_phb *phb; struct eeh_pe *phb_pe, *parent_pe; __be64 frozen_pe_no; __be16 err_type, severity; int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE); long rc; int state, ret = EEH_NEXT_ERR_NONE; /* * While running here, it's safe to purge the event queue. * And we should keep the cached OPAL notifier event sychronized * between the kernel and firmware. */ eeh_remove_event(NULL, false); opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul); list_for_each_entry(hose, &hose_list, list_node) { /* * If the subordinate PCI buses of the PHB has been * removed or is exactly under error recovery, we * needn't take care of it any more. */ phb = hose->private_data; phb_pe = eeh_phb_pe_get(hose); if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED)) continue; rc = opal_pci_next_error(phb->opal_id, &frozen_pe_no, &err_type, &severity); /* If OPAL API returns error, we needn't proceed */ if (rc != OPAL_SUCCESS) { pr_devel("%s: Invalid return value on " "PHB#%x (0x%lx) from opal_pci_next_error", __func__, hose->global_number, rc); continue; } /* If the PHB doesn't have error, stop processing */ if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR || be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) { pr_devel("%s: No error found on PHB#%x\n", __func__, hose->global_number); continue; } /* * Processing the error. We're expecting the error with * highest priority reported upon multiple errors on the * specific PHB. */ pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n", __func__, be16_to_cpu(err_type), be16_to_cpu(severity), be64_to_cpu(frozen_pe_no), hose->global_number); switch (be16_to_cpu(err_type)) { case OPAL_EEH_IOC_ERROR: if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) { pr_err("EEH: dead IOC detected\n"); ret = EEH_NEXT_ERR_DEAD_IOC; } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { pr_info("EEH: IOC informative error " "detected\n"); ioda_eeh_hub_diag(hose); ret = EEH_NEXT_ERR_NONE; } break; case OPAL_EEH_PHB_ERROR: if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) { *pe = phb_pe; pr_err("EEH: dead PHB#%x detected, " "location: %s\n", hose->global_number, eeh_pe_loc_get(phb_pe)); ret = EEH_NEXT_ERR_DEAD_PHB; } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_FENCED) { *pe = phb_pe; pr_err("EEH: Fenced PHB#%x detected, " "location: %s\n", hose->global_number, eeh_pe_loc_get(phb_pe)); ret = EEH_NEXT_ERR_FENCED_PHB; } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { pr_info("EEH: PHB#%x informative error " "detected, location: %s\n", hose->global_number, eeh_pe_loc_get(phb_pe)); ioda_eeh_phb_diag(phb_pe); pnv_pci_dump_phb_diag_data(hose, phb_pe->data); ret = EEH_NEXT_ERR_NONE; } break; case OPAL_EEH_PE_ERROR: /* * If we can't find the corresponding PE, we * just try to unfreeze. */ if (ioda_eeh_get_pe(hose, be64_to_cpu(frozen_pe_no), pe)) { /* Try best to clear it */ pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n", hose->global_number, frozen_pe_no); pr_info("EEH: PHB location: %s\n", eeh_pe_loc_get(phb_pe)); opal_pci_eeh_freeze_clear(phb->opal_id, frozen_pe_no, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); ret = EEH_NEXT_ERR_NONE; } else if ((*pe)->state & EEH_PE_ISOLATED || eeh_pe_passed(*pe)) { ret = EEH_NEXT_ERR_NONE; } else { pr_err("EEH: Frozen PE#%x on PHB#%x detected\n", (*pe)->addr, (*pe)->phb->global_number); pr_err("EEH: PE location: %s, PHB location: %s\n", eeh_pe_loc_get(*pe), eeh_pe_loc_get(phb_pe)); ret = EEH_NEXT_ERR_FROZEN_PE; } break; default: pr_warn("%s: Unexpected error type %d\n", __func__, be16_to_cpu(err_type)); } /* * EEH core will try recover from fenced PHB or * frozen PE. In the time for frozen PE, EEH core * enable IO path for that before collecting logs, * but it ruins the site. So we have to dump the * log in advance here. */ if ((ret == EEH_NEXT_ERR_FROZEN_PE || ret == EEH_NEXT_ERR_FENCED_PHB) && !((*pe)->state & EEH_PE_ISOLATED)) { eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); ioda_eeh_phb_diag(*pe); } /* * We probably have the frozen parent PE out there and * we need have to handle frozen parent PE firstly. */ if (ret == EEH_NEXT_ERR_FROZEN_PE) { parent_pe = (*pe)->parent; while (parent_pe) { /* Hit the ceiling ? */ if (parent_pe->type & EEH_PE_PHB) break; /* Frozen parent PE ? */ state = ioda_eeh_get_state(parent_pe); if (state > 0 && (state & active_flags) != active_flags) *pe = parent_pe; /* Next parent level */ parent_pe = parent_pe->parent; } /* We possibly migrate to another PE */ eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); } /* * If we have no errors on the specific PHB or only * informative error there, we continue poking it. * Otherwise, we need actions to be taken by upper * layer. */ if (ret > EEH_NEXT_ERR_INF) break; } return ret; } struct pnv_eeh_ops ioda_eeh_ops = { .post_init = ioda_eeh_post_init, .set_option = ioda_eeh_set_option, .get_state = ioda_eeh_get_state, .reset = ioda_eeh_reset, .get_log = ioda_eeh_get_log, .configure_bridge = ioda_eeh_configure_bridge, .next_error = ioda_eeh_next_error };