/* * HP i8042 SDC + MSM-58321 BBRTC driver. * * Copyright (c) 2001 Brian S. Julin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL"). * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * * References: * System Device Controller Microprocessor Firmware Theory of Operation * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2 * efirtc.c by Stephane Eranian/Hewlett Packard * */ #include <linux/hp_sdc.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/init.h> #include <linux/module.h> #include <linux/time.h> #include <linux/miscdevice.h> #include <linux/proc_fs.h> #include <linux/poll.h> #include <linux/rtc.h> MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>"); MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver"); MODULE_LICENSE("Dual BSD/GPL"); #define RTC_VERSION "1.10d" static unsigned long epoch = 2000; static struct semaphore i8042tregs; static hp_sdc_irqhook hp_sdc_rtc_isr; static struct fasync_struct *hp_sdc_rtc_async_queue; static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait); static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf, size_t count, loff_t *ppos); static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg); static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait); static int hp_sdc_rtc_open(struct inode *inode, struct file *file); static int hp_sdc_rtc_release(struct inode *inode, struct file *file); static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on); static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data); static void hp_sdc_rtc_isr (int irq, void *dev_id, uint8_t status, uint8_t data) { return; } static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm) { struct semaphore tsem; hp_sdc_transaction t; uint8_t tseq[91]; int i; i = 0; while (i < 91) { tseq[i++] = HP_SDC_ACT_DATAREG | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN; tseq[i++] = 0x01; /* write i8042[0x70] */ tseq[i] = i / 7; /* BBRTC reg address */ i++; tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */ tseq[i++] = 2; /* expect 1 stat/dat pair back. */ i++; i++; /* buffer for stat/dat pair */ } tseq[84] |= HP_SDC_ACT_SEMAPHORE; t.endidx = 91; t.seq = tseq; t.act.semaphore = &tsem; init_MUTEX_LOCKED(&tsem); if (hp_sdc_enqueue_transaction(&t)) return -1; down_interruptible(&tsem); /* Put ourselves to sleep for results. */ /* Check for nonpresence of BBRTC */ if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] | tseq[55] | tseq[62] | tseq[34] | tseq[41] | tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f)) return -1; memset(rtctm, 0, sizeof(struct rtc_time)); rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10; rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10; rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10; rtctm->tm_wday = (tseq[48] & 0x0f); rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10; rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10; rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10; return 0; } static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm) { struct rtc_time tm, tm_last; int i = 0; /* MSM-58321 has no read latch, so must read twice and compare. */ if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1; if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1; while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) { if (i++ > 4) return -1; memcpy(&tm_last, &tm, sizeof(struct rtc_time)); if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1; } memcpy(rtctm, &tm, sizeof(struct rtc_time)); return 0; } static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg) { hp_sdc_transaction t; uint8_t tseq[26] = { HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 0, HP_SDC_CMD_READ_T1, 2, 0, 0, HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, HP_SDC_CMD_READ_T2, 2, 0, 0, HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, HP_SDC_CMD_READ_T3, 2, 0, 0, HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, HP_SDC_CMD_READ_T4, 2, 0, 0, HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, HP_SDC_CMD_READ_T5, 2, 0, 0 }; t.endidx = numreg * 5; tseq[1] = loadcmd; tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */ t.seq = tseq; t.act.semaphore = &i8042tregs; down_interruptible(&i8042tregs); /* Sleep if output regs in use. */ if (hp_sdc_enqueue_transaction(&t)) return -1; down_interruptible(&i8042tregs); /* Sleep until results come back. */ up(&i8042tregs); return (tseq[5] | ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) | ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32)); } /* Read the i8042 real-time clock */ static inline int hp_sdc_rtc_read_rt(struct timeval *res) { int64_t raw; uint32_t tenms; unsigned int days; raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5); if (raw < 0) return -1; tenms = (uint32_t)raw & 0xffffff; days = (unsigned int)(raw >> 24) & 0xffff; res->tv_usec = (suseconds_t)(tenms % 100) * 10000; res->tv_sec = (time_t)(tenms / 100) + days * 86400; return 0; } /* Read the i8042 fast handshake timer */ static inline int hp_sdc_rtc_read_fhs(struct timeval *res) { uint64_t raw; unsigned int tenms; raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2); if (raw < 0) return -1; tenms = (unsigned int)raw & 0xffff; res->tv_usec = (suseconds_t)(tenms % 100) * 10000; res->tv_sec = (time_t)(tenms / 100); return 0; } /* Read the i8042 match timer (a.k.a. alarm) */ static inline int hp_sdc_rtc_read_mt(struct timeval *res) { int64_t raw; uint32_t tenms; raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3); if (raw < 0) return -1; tenms = (uint32_t)raw & 0xffffff; res->tv_usec = (suseconds_t)(tenms % 100) * 10000; res->tv_sec = (time_t)(tenms / 100); return 0; } /* Read the i8042 delay timer */ static inline int hp_sdc_rtc_read_dt(struct timeval *res) { int64_t raw; uint32_t tenms; raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3); if (raw < 0) return -1; tenms = (uint32_t)raw & 0xffffff; res->tv_usec = (suseconds_t)(tenms % 100) * 10000; res->tv_sec = (time_t)(tenms / 100); return 0; } /* Read the i8042 cycle timer (a.k.a. periodic) */ static inline int hp_sdc_rtc_read_ct(struct timeval *res) { int64_t raw; uint32_t tenms; raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3); if (raw < 0) return -1; tenms = (uint32_t)raw & 0xffffff; res->tv_usec = (suseconds_t)(tenms % 100) * 10000; res->tv_sec = (time_t)(tenms / 100); return 0; } /* Set the i8042 real-time clock */ static int hp_sdc_rtc_set_rt (struct timeval *setto) { uint32_t tenms; unsigned int days; hp_sdc_transaction t; uint8_t tseq[11] = { HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0, HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, HP_SDC_CMD_SET_RTD, 2, 0, 0 }; t.endidx = 10; if (0xffff < setto->tv_sec / 86400) return -1; days = setto->tv_sec / 86400; if (0xffff < setto->tv_usec / 1000000 / 86400) return -1; days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400; if (days > 0xffff) return -1; if (0xffffff < setto->tv_sec) return -1; tenms = setto->tv_sec * 100; if (0xffffff < setto->tv_usec / 10000) return -1; tenms += setto->tv_usec / 10000; if (tenms > 0xffffff) return -1; tseq[3] = (uint8_t)(tenms & 0xff); tseq[4] = (uint8_t)((tenms >> 8) & 0xff); tseq[5] = (uint8_t)((tenms >> 16) & 0xff); tseq[9] = (uint8_t)(days & 0xff); tseq[10] = (uint8_t)((days >> 8) & 0xff); t.seq = tseq; if (hp_sdc_enqueue_transaction(&t)) return -1; return 0; } /* Set the i8042 fast handshake timer */ static int hp_sdc_rtc_set_fhs (struct timeval *setto) { uint32_t tenms; hp_sdc_transaction t; uint8_t tseq[5] = { HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, HP_SDC_CMD_SET_FHS, 2, 0, 0 }; t.endidx = 4; if (0xffff < setto->tv_sec) return -1; tenms = setto->tv_sec * 100; if (0xffff < setto->tv_usec / 10000) return -1; tenms += setto->tv_usec / 10000; if (tenms > 0xffff) return -1; tseq[3] = (uint8_t)(tenms & 0xff); tseq[4] = (uint8_t)((tenms >> 8) & 0xff); t.seq = tseq; if (hp_sdc_enqueue_transaction(&t)) return -1; return 0; } /* Set the i8042 match timer (a.k.a. alarm) */ #define hp_sdc_rtc_set_mt (setto) \ hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT) /* Set the i8042 delay timer */ #define hp_sdc_rtc_set_dt (setto) \ hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT) /* Set the i8042 cycle timer (a.k.a. periodic) */ #define hp_sdc_rtc_set_ct (setto) \ hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT) /* Set one of the i8042 3-byte wide timers */ static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd) { uint32_t tenms; hp_sdc_transaction t; uint8_t tseq[6] = { HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, 0, 3, 0, 0, 0 }; t.endidx = 6; if (0xffffff < setto->tv_sec) return -1; tenms = setto->tv_sec * 100; if (0xffffff < setto->tv_usec / 10000) return -1; tenms += setto->tv_usec / 10000; if (tenms > 0xffffff) return -1; tseq[1] = setcmd; tseq[3] = (uint8_t)(tenms & 0xff); tseq[4] = (uint8_t)((tenms >> 8) & 0xff); tseq[5] = (uint8_t)((tenms >> 16) & 0xff); t.seq = tseq; if (hp_sdc_enqueue_transaction(&t)) { return -1; } return 0; } static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { ssize_t retval; if (count < sizeof(unsigned long)) return -EINVAL; retval = put_user(68, (unsigned long __user *)buf); return retval; } static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait) { unsigned long l; l = 0; if (l != 0) return POLLIN | POLLRDNORM; return 0; } static int hp_sdc_rtc_open(struct inode *inode, struct file *file) { return 0; } static int hp_sdc_rtc_release(struct inode *inode, struct file *file) { /* Turn off interrupts? */ if (file->f_flags & FASYNC) { hp_sdc_rtc_fasync (-1, file, 0); } return 0; } static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on) { return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue); } static int hp_sdc_rtc_proc_output (char *buf) { #define YN(bit) ("no") #define NY(bit) ("yes") char *p; struct rtc_time tm; struct timeval tv; memset(&tm, 0, sizeof(struct rtc_time)); p = buf; if (hp_sdc_rtc_read_bbrtc(&tm)) { p += sprintf(p, "BBRTC\t\t: READ FAILED!\n"); } else { p += sprintf(p, "rtc_time\t: %02d:%02d:%02d\n" "rtc_date\t: %04d-%02d-%02d\n" "rtc_epoch\t: %04lu\n", tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch); } if (hp_sdc_rtc_read_rt(&tv)) { p += sprintf(p, "i8042 rtc\t: READ FAILED!\n"); } else { p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n", tv.tv_sec, tv.tv_usec/1000); } if (hp_sdc_rtc_read_fhs(&tv)) { p += sprintf(p, "handshake\t: READ FAILED!\n"); } else { p += sprintf(p, "handshake\t: %ld.%02d seconds\n", tv.tv_sec, tv.tv_usec/1000); } if (hp_sdc_rtc_read_mt(&tv)) { p += sprintf(p, "alarm\t\t: READ FAILED!\n"); } else { p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n", tv.tv_sec, tv.tv_usec/1000); } if (hp_sdc_rtc_read_dt(&tv)) { p += sprintf(p, "delay\t\t: READ FAILED!\n"); } else { p += sprintf(p, "delay\t\t: %ld.%02d seconds\n", tv.tv_sec, tv.tv_usec/1000); } if (hp_sdc_rtc_read_ct(&tv)) { p += sprintf(p, "periodic\t: READ FAILED!\n"); } else { p += sprintf(p, "periodic\t: %ld.%02d seconds\n", tv.tv_sec, tv.tv_usec/1000); } p += sprintf(p, "DST_enable\t: %s\n" "BCD\t\t: %s\n" "24hr\t\t: %s\n" "square_wave\t: %s\n" "alarm_IRQ\t: %s\n" "update_IRQ\t: %s\n" "periodic_IRQ\t: %s\n" "periodic_freq\t: %ld\n" "batt_status\t: %s\n", YN(RTC_DST_EN), NY(RTC_DM_BINARY), YN(RTC_24H), YN(RTC_SQWE), YN(RTC_AIE), YN(RTC_UIE), YN(RTC_PIE), 1UL, 1 ? "okay" : "dead"); return p - buf; #undef YN #undef NY } static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int len = hp_sdc_rtc_proc_output (page); if (len <= off+count) *eof = 1; *start = page + off; len -= off; if (len>count) len = count; if (len<0) len = 0; return len; } static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { #if 1 return -EINVAL; #else struct rtc_time wtime; struct timeval ttime; int use_wtime = 0; /* This needs major work. */ switch (cmd) { case RTC_AIE_OFF: /* Mask alarm int. enab. bit */ case RTC_AIE_ON: /* Allow alarm interrupts. */ case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ case RTC_PIE_ON: /* Allow periodic ints */ case RTC_UIE_ON: /* Allow ints for RTC updates. */ case RTC_UIE_OFF: /* Allow ints for RTC updates. */ { /* We cannot mask individual user timers and we cannot tell them apart when they occur, so it would be disingenuous to succeed these IOCTLs */ return -EINVAL; } case RTC_ALM_READ: /* Read the present alarm time */ { if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT; if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT; wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600; wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60; wtime.tm_sec = ttime.tv_sec; break; } case RTC_IRQP_READ: /* Read the periodic IRQ rate. */ { return put_user(hp_sdc_rtc_freq, (unsigned long *)arg); } case RTC_IRQP_SET: /* Set periodic IRQ rate. */ { /* * The max we can do is 100Hz. */ if ((arg < 1) || (arg > 100)) return -EINVAL; ttime.tv_sec = 0; ttime.tv_usec = 1000000 / arg; if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT; hp_sdc_rtc_freq = arg; return 0; } case RTC_ALM_SET: /* Store a time into the alarm */ { /* * This expects a struct hp_sdc_rtc_time. Writing 0xff means * "don't care" or "match all" for PC timers. The HP SDC * does not support that perk, but it could be emulated fairly * easily. Only the tm_hour, tm_min and tm_sec are used. * We could do it with 10ms accuracy with the HP SDC, if the * rtc interface left us a way to do that. */ struct hp_sdc_rtc_time alm_tm; if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg, sizeof(struct hp_sdc_rtc_time))) return -EFAULT; if (alm_tm.tm_hour > 23) return -EINVAL; if (alm_tm.tm_min > 59) return -EINVAL; if (alm_tm.tm_sec > 59) return -EINVAL; ttime.sec = alm_tm.tm_hour * 3600 + alm_tm.tm_min * 60 + alm_tm.tm_sec; ttime.usec = 0; if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT; return 0; } case RTC_RD_TIME: /* Read the time/date from RTC */ { if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT; break; } case RTC_SET_TIME: /* Set the RTC */ { struct rtc_time hp_sdc_rtc_tm; unsigned char mon, day, hrs, min, sec, leap_yr; unsigned int yrs; if (!capable(CAP_SYS_TIME)) return -EACCES; if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg, sizeof(struct rtc_time))) return -EFAULT; yrs = hp_sdc_rtc_tm.tm_year + 1900; mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ day = hp_sdc_rtc_tm.tm_mday; hrs = hp_sdc_rtc_tm.tm_hour; min = hp_sdc_rtc_tm.tm_min; sec = hp_sdc_rtc_tm.tm_sec; if (yrs < 1970) return -EINVAL; leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); if ((mon > 12) || (day == 0)) return -EINVAL; if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) return -EINVAL; if ((hrs >= 24) || (min >= 60) || (sec >= 60)) return -EINVAL; if ((yrs -= eH) > 255) /* They are unsigned */ return -EINVAL; return 0; } case RTC_EPOCH_READ: /* Read the epoch. */ { return put_user (epoch, (unsigned long *)arg); } case RTC_EPOCH_SET: /* Set the epoch. */ { /* * There were no RTC clocks before 1900. */ if (arg < 1900) return -EINVAL; if (!capable(CAP_SYS_TIME)) return -EACCES; epoch = arg; return 0; } default: return -EINVAL; } return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; #endif } static const struct file_operations hp_sdc_rtc_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = hp_sdc_rtc_read, .poll = hp_sdc_rtc_poll, .ioctl = hp_sdc_rtc_ioctl, .open = hp_sdc_rtc_open, .release = hp_sdc_rtc_release, .fasync = hp_sdc_rtc_fasync, }; static struct miscdevice hp_sdc_rtc_dev = { .minor = RTC_MINOR, .name = "rtc_HIL", .fops = &hp_sdc_rtc_fops }; static int __init hp_sdc_rtc_init(void) { int ret; init_MUTEX(&i8042tregs); if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr))) return ret; if (misc_register(&hp_sdc_rtc_dev) != 0) printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n"); create_proc_read_entry ("driver/rtc", 0, NULL, hp_sdc_rtc_read_proc, NULL); printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded " "(RTC v " RTC_VERSION ")\n"); return 0; } static void __exit hp_sdc_rtc_exit(void) { remove_proc_entry ("driver/rtc", NULL); misc_deregister(&hp_sdc_rtc_dev); hp_sdc_release_timer_irq(hp_sdc_rtc_isr); printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n"); } module_init(hp_sdc_rtc_init); module_exit(hp_sdc_rtc_exit);