/* * Generic hugetlb support. * (C) William Irwin, April 2004 */ #include <linux/gfp.h> #include <linux/list.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/seq_file.h> #include <linux/sysctl.h> #include <linux/highmem.h> #include <linux/mmu_notifier.h> #include <linux/nodemask.h> #include <linux/pagemap.h> #include <linux/mempolicy.h> #include <linux/cpuset.h> #include <linux/mutex.h> #include <linux/bootmem.h> #include <linux/sysfs.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/io.h> #include <linux/hugetlb.h> #include "internal.h" const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; static gfp_t htlb_alloc_mask = GFP_HIGHUSER; unsigned long hugepages_treat_as_movable; static int max_hstate; unsigned int default_hstate_idx; struct hstate hstates[HUGE_MAX_HSTATE]; __initdata LIST_HEAD(huge_boot_pages); /* for command line parsing */ static struct hstate * __initdata parsed_hstate; static unsigned long __initdata default_hstate_max_huge_pages; static unsigned long __initdata default_hstate_size; #define for_each_hstate(h) \ for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) /* * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages */ static DEFINE_SPINLOCK(hugetlb_lock); /* * Region tracking -- allows tracking of reservations and instantiated pages * across the pages in a mapping. * * The region data structures are protected by a combination of the mmap_sem * and the hugetlb_instantion_mutex. To access or modify a region the caller * must either hold the mmap_sem for write, or the mmap_sem for read and * the hugetlb_instantiation mutex: * * down_write(&mm->mmap_sem); * or * down_read(&mm->mmap_sem); * mutex_lock(&hugetlb_instantiation_mutex); */ struct file_region { struct list_head link; long from; long to; }; static long region_add(struct list_head *head, long f, long t) { struct file_region *rg, *nrg, *trg; /* Locate the region we are either in or before. */ list_for_each_entry(rg, head, link) if (f <= rg->to) break; /* Round our left edge to the current segment if it encloses us. */ if (f > rg->from) f = rg->from; /* Check for and consume any regions we now overlap with. */ nrg = rg; list_for_each_entry_safe(rg, trg, rg->link.prev, link) { if (&rg->link == head) break; if (rg->from > t) break; /* If this area reaches higher then extend our area to * include it completely. If this is not the first area * which we intend to reuse, free it. */ if (rg->to > t) t = rg->to; if (rg != nrg) { list_del(&rg->link); kfree(rg); } } nrg->from = f; nrg->to = t; return 0; } static long region_chg(struct list_head *head, long f, long t) { struct file_region *rg, *nrg; long chg = 0; /* Locate the region we are before or in. */ list_for_each_entry(rg, head, link) if (f <= rg->to) break; /* If we are below the current region then a new region is required. * Subtle, allocate a new region at the position but make it zero * size such that we can guarantee to record the reservation. */ if (&rg->link == head || t < rg->from) { nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); if (!nrg) return -ENOMEM; nrg->from = f; nrg->to = f; INIT_LIST_HEAD(&nrg->link); list_add(&nrg->link, rg->link.prev); return t - f; } /* Round our left edge to the current segment if it encloses us. */ if (f > rg->from) f = rg->from; chg = t - f; /* Check for and consume any regions we now overlap with. */ list_for_each_entry(rg, rg->link.prev, link) { if (&rg->link == head) break; if (rg->from > t) return chg; /* We overlap with this area, if it extends futher than * us then we must extend ourselves. Account for its * existing reservation. */ if (rg->to > t) { chg += rg->to - t; t = rg->to; } chg -= rg->to - rg->from; } return chg; } static long region_truncate(struct list_head *head, long end) { struct file_region *rg, *trg; long chg = 0; /* Locate the region we are either in or before. */ list_for_each_entry(rg, head, link) if (end <= rg->to) break; if (&rg->link == head) return 0; /* If we are in the middle of a region then adjust it. */ if (end > rg->from) { chg = rg->to - end; rg->to = end; rg = list_entry(rg->link.next, typeof(*rg), link); } /* Drop any remaining regions. */ list_for_each_entry_safe(rg, trg, rg->link.prev, link) { if (&rg->link == head) break; chg += rg->to - rg->from; list_del(&rg->link); kfree(rg); } return chg; } static long region_count(struct list_head *head, long f, long t) { struct file_region *rg; long chg = 0; /* Locate each segment we overlap with, and count that overlap. */ list_for_each_entry(rg, head, link) { int seg_from; int seg_to; if (rg->to <= f) continue; if (rg->from >= t) break; seg_from = max(rg->from, f); seg_to = min(rg->to, t); chg += seg_to - seg_from; } return chg; } /* * Convert the address within this vma to the page offset within * the mapping, in pagecache page units; huge pages here. */ static pgoff_t vma_hugecache_offset(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { return ((address - vma->vm_start) >> huge_page_shift(h)) + (vma->vm_pgoff >> huge_page_order(h)); } /* * Return the size of the pages allocated when backing a VMA. In the majority * cases this will be same size as used by the page table entries. */ unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) { struct hstate *hstate; if (!is_vm_hugetlb_page(vma)) return PAGE_SIZE; hstate = hstate_vma(vma); return 1UL << (hstate->order + PAGE_SHIFT); } /* * Return the page size being used by the MMU to back a VMA. In the majority * of cases, the page size used by the kernel matches the MMU size. On * architectures where it differs, an architecture-specific version of this * function is required. */ #ifndef vma_mmu_pagesize unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) { return vma_kernel_pagesize(vma); } #endif /* * Flags for MAP_PRIVATE reservations. These are stored in the bottom * bits of the reservation map pointer, which are always clear due to * alignment. */ #define HPAGE_RESV_OWNER (1UL << 0) #define HPAGE_RESV_UNMAPPED (1UL << 1) #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) /* * These helpers are used to track how many pages are reserved for * faults in a MAP_PRIVATE mapping. Only the process that called mmap() * is guaranteed to have their future faults succeed. * * With the exception of reset_vma_resv_huge_pages() which is called at fork(), * the reserve counters are updated with the hugetlb_lock held. It is safe * to reset the VMA at fork() time as it is not in use yet and there is no * chance of the global counters getting corrupted as a result of the values. * * The private mapping reservation is represented in a subtly different * manner to a shared mapping. A shared mapping has a region map associated * with the underlying file, this region map represents the backing file * pages which have ever had a reservation assigned which this persists even * after the page is instantiated. A private mapping has a region map * associated with the original mmap which is attached to all VMAs which * reference it, this region map represents those offsets which have consumed * reservation ie. where pages have been instantiated. */ static unsigned long get_vma_private_data(struct vm_area_struct *vma) { return (unsigned long)vma->vm_private_data; } static void set_vma_private_data(struct vm_area_struct *vma, unsigned long value) { vma->vm_private_data = (void *)value; } struct resv_map { struct kref refs; struct list_head regions; }; static struct resv_map *resv_map_alloc(void) { struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); if (!resv_map) return NULL; kref_init(&resv_map->refs); INIT_LIST_HEAD(&resv_map->regions); return resv_map; } static void resv_map_release(struct kref *ref) { struct resv_map *resv_map = container_of(ref, struct resv_map, refs); /* Clear out any active regions before we release the map. */ region_truncate(&resv_map->regions, 0); kfree(resv_map); } static struct resv_map *vma_resv_map(struct vm_area_struct *vma) { VM_BUG_ON(!is_vm_hugetlb_page(vma)); if (!(vma->vm_flags & VM_MAYSHARE)) return (struct resv_map *)(get_vma_private_data(vma) & ~HPAGE_RESV_MASK); return NULL; } static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) { VM_BUG_ON(!is_vm_hugetlb_page(vma)); VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); set_vma_private_data(vma, (get_vma_private_data(vma) & HPAGE_RESV_MASK) | (unsigned long)map); } static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) { VM_BUG_ON(!is_vm_hugetlb_page(vma)); VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); set_vma_private_data(vma, get_vma_private_data(vma) | flags); } static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) { VM_BUG_ON(!is_vm_hugetlb_page(vma)); return (get_vma_private_data(vma) & flag) != 0; } /* Decrement the reserved pages in the hugepage pool by one */ static void decrement_hugepage_resv_vma(struct hstate *h, struct vm_area_struct *vma) { if (vma->vm_flags & VM_NORESERVE) return; if (vma->vm_flags & VM_MAYSHARE) { /* Shared mappings always use reserves */ h->resv_huge_pages--; } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { /* * Only the process that called mmap() has reserves for * private mappings. */ h->resv_huge_pages--; } } /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ void reset_vma_resv_huge_pages(struct vm_area_struct *vma) { VM_BUG_ON(!is_vm_hugetlb_page(vma)); if (!(vma->vm_flags & VM_MAYSHARE)) vma->vm_private_data = (void *)0; } /* Returns true if the VMA has associated reserve pages */ static int vma_has_reserves(struct vm_area_struct *vma) { if (vma->vm_flags & VM_MAYSHARE) return 1; if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) return 1; return 0; } static void clear_gigantic_page(struct page *page, unsigned long addr, unsigned long sz) { int i; struct page *p = page; might_sleep(); for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) { cond_resched(); clear_user_highpage(p, addr + i * PAGE_SIZE); } } static void clear_huge_page(struct page *page, unsigned long addr, unsigned long sz) { int i; if (unlikely(sz > MAX_ORDER_NR_PAGES)) { clear_gigantic_page(page, addr, sz); return; } might_sleep(); for (i = 0; i < sz/PAGE_SIZE; i++) { cond_resched(); clear_user_highpage(page + i, addr + i * PAGE_SIZE); } } static void copy_gigantic_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma) { int i; struct hstate *h = hstate_vma(vma); struct page *dst_base = dst; struct page *src_base = src; might_sleep(); for (i = 0; i < pages_per_huge_page(h); ) { cond_resched(); copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); i++; dst = mem_map_next(dst, dst_base, i); src = mem_map_next(src, src_base, i); } } static void copy_huge_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma) { int i; struct hstate *h = hstate_vma(vma); if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { copy_gigantic_page(dst, src, addr, vma); return; } might_sleep(); for (i = 0; i < pages_per_huge_page(h); i++) { cond_resched(); copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); } } static void enqueue_huge_page(struct hstate *h, struct page *page) { int nid = page_to_nid(page); list_add(&page->lru, &h->hugepage_freelists[nid]); h->free_huge_pages++; h->free_huge_pages_node[nid]++; } static struct page *dequeue_huge_page(struct hstate *h) { int nid; struct page *page = NULL; for (nid = 0; nid < MAX_NUMNODES; ++nid) { if (!list_empty(&h->hugepage_freelists[nid])) { page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); list_del(&page->lru); h->free_huge_pages--; h->free_huge_pages_node[nid]--; break; } } return page; } static struct page *dequeue_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, unsigned long address, int avoid_reserve) { int nid; struct page *page = NULL; struct mempolicy *mpol; nodemask_t *nodemask; struct zonelist *zonelist = huge_zonelist(vma, address, htlb_alloc_mask, &mpol, &nodemask); struct zone *zone; struct zoneref *z; /* * A child process with MAP_PRIVATE mappings created by their parent * have no page reserves. This check ensures that reservations are * not "stolen". The child may still get SIGKILLed */ if (!vma_has_reserves(vma) && h->free_huge_pages - h->resv_huge_pages == 0) return NULL; /* If reserves cannot be used, ensure enough pages are in the pool */ if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) return NULL; for_each_zone_zonelist_nodemask(zone, z, zonelist, MAX_NR_ZONES - 1, nodemask) { nid = zone_to_nid(zone); if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && !list_empty(&h->hugepage_freelists[nid])) { page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); list_del(&page->lru); h->free_huge_pages--; h->free_huge_pages_node[nid]--; if (!avoid_reserve) decrement_hugepage_resv_vma(h, vma); break; } } mpol_cond_put(mpol); return page; } static void update_and_free_page(struct hstate *h, struct page *page) { int i; VM_BUG_ON(h->order >= MAX_ORDER); h->nr_huge_pages--; h->nr_huge_pages_node[page_to_nid(page)]--; for (i = 0; i < pages_per_huge_page(h); i++) { page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | 1 << PG_private | 1<< PG_writeback); } set_compound_page_dtor(page, NULL); set_page_refcounted(page); arch_release_hugepage(page); __free_pages(page, huge_page_order(h)); } struct hstate *size_to_hstate(unsigned long size) { struct hstate *h; for_each_hstate(h) { if (huge_page_size(h) == size) return h; } return NULL; } static void free_huge_page(struct page *page) { /* * Can't pass hstate in here because it is called from the * compound page destructor. */ struct hstate *h = page_hstate(page); int nid = page_to_nid(page); struct address_space *mapping; mapping = (struct address_space *) page_private(page); set_page_private(page, 0); BUG_ON(page_count(page)); INIT_LIST_HEAD(&page->lru); spin_lock(&hugetlb_lock); if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { update_and_free_page(h, page); h->surplus_huge_pages--; h->surplus_huge_pages_node[nid]--; } else { enqueue_huge_page(h, page); } spin_unlock(&hugetlb_lock); if (mapping) hugetlb_put_quota(mapping, 1); } /* * Increment or decrement surplus_huge_pages. Keep node-specific counters * balanced by operating on them in a round-robin fashion. * Returns 1 if an adjustment was made. */ static int adjust_pool_surplus(struct hstate *h, int delta) { static int prev_nid; int nid = prev_nid; int ret = 0; VM_BUG_ON(delta != -1 && delta != 1); do { nid = next_node(nid, node_online_map); if (nid == MAX_NUMNODES) nid = first_node(node_online_map); /* To shrink on this node, there must be a surplus page */ if (delta < 0 && !h->surplus_huge_pages_node[nid]) continue; /* Surplus cannot exceed the total number of pages */ if (delta > 0 && h->surplus_huge_pages_node[nid] >= h->nr_huge_pages_node[nid]) continue; h->surplus_huge_pages += delta; h->surplus_huge_pages_node[nid] += delta; ret = 1; break; } while (nid != prev_nid); prev_nid = nid; return ret; } static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) { set_compound_page_dtor(page, free_huge_page); spin_lock(&hugetlb_lock); h->nr_huge_pages++; h->nr_huge_pages_node[nid]++; spin_unlock(&hugetlb_lock); put_page(page); /* free it into the hugepage allocator */ } static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) { struct page *page; if (h->order >= MAX_ORDER) return NULL; page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); if (page) { if (arch_prepare_hugepage(page)) { __free_pages(page, huge_page_order(h)); return NULL; } prep_new_huge_page(h, page, nid); } return page; } /* * Use a helper variable to find the next node and then * copy it back to hugetlb_next_nid afterwards: * otherwise there's a window in which a racer might * pass invalid nid MAX_NUMNODES to alloc_pages_node. * But we don't need to use a spin_lock here: it really * doesn't matter if occasionally a racer chooses the * same nid as we do. Move nid forward in the mask even * if we just successfully allocated a hugepage so that * the next caller gets hugepages on the next node. */ static int hstate_next_node(struct hstate *h) { int next_nid; next_nid = next_node(h->hugetlb_next_nid, node_online_map); if (next_nid == MAX_NUMNODES) next_nid = first_node(node_online_map); h->hugetlb_next_nid = next_nid; return next_nid; } static int alloc_fresh_huge_page(struct hstate *h) { struct page *page; int start_nid; int next_nid; int ret = 0; start_nid = h->hugetlb_next_nid; do { page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); if (page) ret = 1; next_nid = hstate_next_node(h); } while (!page && h->hugetlb_next_nid != start_nid); if (ret) count_vm_event(HTLB_BUDDY_PGALLOC); else count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); return ret; } static struct page *alloc_buddy_huge_page(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { struct page *page; unsigned int nid; if (h->order >= MAX_ORDER) return NULL; /* * Assume we will successfully allocate the surplus page to * prevent racing processes from causing the surplus to exceed * overcommit * * This however introduces a different race, where a process B * tries to grow the static hugepage pool while alloc_pages() is * called by process A. B will only examine the per-node * counters in determining if surplus huge pages can be * converted to normal huge pages in adjust_pool_surplus(). A * won't be able to increment the per-node counter, until the * lock is dropped by B, but B doesn't drop hugetlb_lock until * no more huge pages can be converted from surplus to normal * state (and doesn't try to convert again). Thus, we have a * case where a surplus huge page exists, the pool is grown, and * the surplus huge page still exists after, even though it * should just have been converted to a normal huge page. This * does not leak memory, though, as the hugepage will be freed * once it is out of use. It also does not allow the counters to * go out of whack in adjust_pool_surplus() as we don't modify * the node values until we've gotten the hugepage and only the * per-node value is checked there. */ spin_lock(&hugetlb_lock); if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { spin_unlock(&hugetlb_lock); return NULL; } else { h->nr_huge_pages++; h->surplus_huge_pages++; } spin_unlock(&hugetlb_lock); page = alloc_pages(htlb_alloc_mask|__GFP_COMP| __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); if (page && arch_prepare_hugepage(page)) { __free_pages(page, huge_page_order(h)); return NULL; } spin_lock(&hugetlb_lock); if (page) { /* * This page is now managed by the hugetlb allocator and has * no users -- drop the buddy allocator's reference. */ put_page_testzero(page); VM_BUG_ON(page_count(page)); nid = page_to_nid(page); set_compound_page_dtor(page, free_huge_page); /* * We incremented the global counters already */ h->nr_huge_pages_node[nid]++; h->surplus_huge_pages_node[nid]++; __count_vm_event(HTLB_BUDDY_PGALLOC); } else { h->nr_huge_pages--; h->surplus_huge_pages--; __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); } spin_unlock(&hugetlb_lock); return page; } /* * Increase the hugetlb pool such that it can accomodate a reservation * of size 'delta'. */ static int gather_surplus_pages(struct hstate *h, int delta) { struct list_head surplus_list; struct page *page, *tmp; int ret, i; int needed, allocated; needed = (h->resv_huge_pages + delta) - h->free_huge_pages; if (needed <= 0) { h->resv_huge_pages += delta; return 0; } allocated = 0; INIT_LIST_HEAD(&surplus_list); ret = -ENOMEM; retry: spin_unlock(&hugetlb_lock); for (i = 0; i < needed; i++) { page = alloc_buddy_huge_page(h, NULL, 0); if (!page) { /* * We were not able to allocate enough pages to * satisfy the entire reservation so we free what * we've allocated so far. */ spin_lock(&hugetlb_lock); needed = 0; goto free; } list_add(&page->lru, &surplus_list); } allocated += needed; /* * After retaking hugetlb_lock, we need to recalculate 'needed' * because either resv_huge_pages or free_huge_pages may have changed. */ spin_lock(&hugetlb_lock); needed = (h->resv_huge_pages + delta) - (h->free_huge_pages + allocated); if (needed > 0) goto retry; /* * The surplus_list now contains _at_least_ the number of extra pages * needed to accomodate the reservation. Add the appropriate number * of pages to the hugetlb pool and free the extras back to the buddy * allocator. Commit the entire reservation here to prevent another * process from stealing the pages as they are added to the pool but * before they are reserved. */ needed += allocated; h->resv_huge_pages += delta; ret = 0; free: /* Free the needed pages to the hugetlb pool */ list_for_each_entry_safe(page, tmp, &surplus_list, lru) { if ((--needed) < 0) break; list_del(&page->lru); enqueue_huge_page(h, page); } /* Free unnecessary surplus pages to the buddy allocator */ if (!list_empty(&surplus_list)) { spin_unlock(&hugetlb_lock); list_for_each_entry_safe(page, tmp, &surplus_list, lru) { list_del(&page->lru); /* * The page has a reference count of zero already, so * call free_huge_page directly instead of using * put_page. This must be done with hugetlb_lock * unlocked which is safe because free_huge_page takes * hugetlb_lock before deciding how to free the page. */ free_huge_page(page); } spin_lock(&hugetlb_lock); } return ret; } /* * When releasing a hugetlb pool reservation, any surplus pages that were * allocated to satisfy the reservation must be explicitly freed if they were * never used. */ static void return_unused_surplus_pages(struct hstate *h, unsigned long unused_resv_pages) { static int nid = -1; struct page *page; unsigned long nr_pages; /* * We want to release as many surplus pages as possible, spread * evenly across all nodes. Iterate across all nodes until we * can no longer free unreserved surplus pages. This occurs when * the nodes with surplus pages have no free pages. */ unsigned long remaining_iterations = num_online_nodes(); /* Uncommit the reservation */ h->resv_huge_pages -= unused_resv_pages; /* Cannot return gigantic pages currently */ if (h->order >= MAX_ORDER) return; nr_pages = min(unused_resv_pages, h->surplus_huge_pages); while (remaining_iterations-- && nr_pages) { nid = next_node(nid, node_online_map); if (nid == MAX_NUMNODES) nid = first_node(node_online_map); if (!h->surplus_huge_pages_node[nid]) continue; if (!list_empty(&h->hugepage_freelists[nid])) { page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); list_del(&page->lru); update_and_free_page(h, page); h->free_huge_pages--; h->free_huge_pages_node[nid]--; h->surplus_huge_pages--; h->surplus_huge_pages_node[nid]--; nr_pages--; remaining_iterations = num_online_nodes(); } } } /* * Determine if the huge page at addr within the vma has an associated * reservation. Where it does not we will need to logically increase * reservation and actually increase quota before an allocation can occur. * Where any new reservation would be required the reservation change is * prepared, but not committed. Once the page has been quota'd allocated * an instantiated the change should be committed via vma_commit_reservation. * No action is required on failure. */ static long vma_needs_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { struct address_space *mapping = vma->vm_file->f_mapping; struct inode *inode = mapping->host; if (vma->vm_flags & VM_MAYSHARE) { pgoff_t idx = vma_hugecache_offset(h, vma, addr); return region_chg(&inode->i_mapping->private_list, idx, idx + 1); } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { return 1; } else { long err; pgoff_t idx = vma_hugecache_offset(h, vma, addr); struct resv_map *reservations = vma_resv_map(vma); err = region_chg(&reservations->regions, idx, idx + 1); if (err < 0) return err; return 0; } } static void vma_commit_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { struct address_space *mapping = vma->vm_file->f_mapping; struct inode *inode = mapping->host; if (vma->vm_flags & VM_MAYSHARE) { pgoff_t idx = vma_hugecache_offset(h, vma, addr); region_add(&inode->i_mapping->private_list, idx, idx + 1); } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { pgoff_t idx = vma_hugecache_offset(h, vma, addr); struct resv_map *reservations = vma_resv_map(vma); /* Mark this page used in the map. */ region_add(&reservations->regions, idx, idx + 1); } } static struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr, int avoid_reserve) { struct hstate *h = hstate_vma(vma); struct page *page; struct address_space *mapping = vma->vm_file->f_mapping; struct inode *inode = mapping->host; long chg; /* * Processes that did not create the mapping will have no reserves and * will not have accounted against quota. Check that the quota can be * made before satisfying the allocation * MAP_NORESERVE mappings may also need pages and quota allocated * if no reserve mapping overlaps. */ chg = vma_needs_reservation(h, vma, addr); if (chg < 0) return ERR_PTR(chg); if (chg) if (hugetlb_get_quota(inode->i_mapping, chg)) return ERR_PTR(-ENOSPC); spin_lock(&hugetlb_lock); page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); spin_unlock(&hugetlb_lock); if (!page) { page = alloc_buddy_huge_page(h, vma, addr); if (!page) { hugetlb_put_quota(inode->i_mapping, chg); return ERR_PTR(-VM_FAULT_OOM); } } set_page_refcounted(page); set_page_private(page, (unsigned long) mapping); vma_commit_reservation(h, vma, addr); return page; } int __weak alloc_bootmem_huge_page(struct hstate *h) { struct huge_bootmem_page *m; int nr_nodes = nodes_weight(node_online_map); while (nr_nodes) { void *addr; addr = __alloc_bootmem_node_nopanic( NODE_DATA(h->hugetlb_next_nid), huge_page_size(h), huge_page_size(h), 0); if (addr) { /* * Use the beginning of the huge page to store the * huge_bootmem_page struct (until gather_bootmem * puts them into the mem_map). */ m = addr; goto found; } hstate_next_node(h); nr_nodes--; } return 0; found: BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); /* Put them into a private list first because mem_map is not up yet */ list_add(&m->list, &huge_boot_pages); m->hstate = h; return 1; } static void prep_compound_huge_page(struct page *page, int order) { if (unlikely(order > (MAX_ORDER - 1))) prep_compound_gigantic_page(page, order); else prep_compound_page(page, order); } /* Put bootmem huge pages into the standard lists after mem_map is up */ static void __init gather_bootmem_prealloc(void) { struct huge_bootmem_page *m; list_for_each_entry(m, &huge_boot_pages, list) { struct page *page = virt_to_page(m); struct hstate *h = m->hstate; __ClearPageReserved(page); WARN_ON(page_count(page) != 1); prep_compound_huge_page(page, h->order); prep_new_huge_page(h, page, page_to_nid(page)); } } static void __init hugetlb_hstate_alloc_pages(struct hstate *h) { unsigned long i; for (i = 0; i < h->max_huge_pages; ++i) { if (h->order >= MAX_ORDER) { if (!alloc_bootmem_huge_page(h)) break; } else if (!alloc_fresh_huge_page(h)) break; } h->max_huge_pages = i; } static void __init hugetlb_init_hstates(void) { struct hstate *h; for_each_hstate(h) { /* oversize hugepages were init'ed in early boot */ if (h->order < MAX_ORDER) hugetlb_hstate_alloc_pages(h); } } static char * __init memfmt(char *buf, unsigned long n) { if (n >= (1UL << 30)) sprintf(buf, "%lu GB", n >> 30); else if (n >= (1UL << 20)) sprintf(buf, "%lu MB", n >> 20); else sprintf(buf, "%lu KB", n >> 10); return buf; } static void __init report_hugepages(void) { struct hstate *h; for_each_hstate(h) { char buf[32]; printk(KERN_INFO "HugeTLB registered %s page size, " "pre-allocated %ld pages\n", memfmt(buf, huge_page_size(h)), h->free_huge_pages); } } #ifdef CONFIG_HIGHMEM static void try_to_free_low(struct hstate *h, unsigned long count) { int i; if (h->order >= MAX_ORDER) return; for (i = 0; i < MAX_NUMNODES; ++i) { struct page *page, *next; struct list_head *freel = &h->hugepage_freelists[i]; list_for_each_entry_safe(page, next, freel, lru) { if (count >= h->nr_huge_pages) return; if (PageHighMem(page)) continue; list_del(&page->lru); update_and_free_page(h, page); h->free_huge_pages--; h->free_huge_pages_node[page_to_nid(page)]--; } } } #else static inline void try_to_free_low(struct hstate *h, unsigned long count) { } #endif #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) { unsigned long min_count, ret; if (h->order >= MAX_ORDER) return h->max_huge_pages; /* * Increase the pool size * First take pages out of surplus state. Then make up the * remaining difference by allocating fresh huge pages. * * We might race with alloc_buddy_huge_page() here and be unable * to convert a surplus huge page to a normal huge page. That is * not critical, though, it just means the overall size of the * pool might be one hugepage larger than it needs to be, but * within all the constraints specified by the sysctls. */ spin_lock(&hugetlb_lock); while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { if (!adjust_pool_surplus(h, -1)) break; } while (count > persistent_huge_pages(h)) { /* * If this allocation races such that we no longer need the * page, free_huge_page will handle it by freeing the page * and reducing the surplus. */ spin_unlock(&hugetlb_lock); ret = alloc_fresh_huge_page(h); spin_lock(&hugetlb_lock); if (!ret) goto out; } /* * Decrease the pool size * First return free pages to the buddy allocator (being careful * to keep enough around to satisfy reservations). Then place * pages into surplus state as needed so the pool will shrink * to the desired size as pages become free. * * By placing pages into the surplus state independent of the * overcommit value, we are allowing the surplus pool size to * exceed overcommit. There are few sane options here. Since * alloc_buddy_huge_page() is checking the global counter, * though, we'll note that we're not allowed to exceed surplus * and won't grow the pool anywhere else. Not until one of the * sysctls are changed, or the surplus pages go out of use. */ min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; min_count = max(count, min_count); try_to_free_low(h, min_count); while (min_count < persistent_huge_pages(h)) { struct page *page = dequeue_huge_page(h); if (!page) break; update_and_free_page(h, page); } while (count < persistent_huge_pages(h)) { if (!adjust_pool_surplus(h, 1)) break; } out: ret = persistent_huge_pages(h); spin_unlock(&hugetlb_lock); return ret; } #define HSTATE_ATTR_RO(_name) \ static struct kobj_attribute _name##_attr = __ATTR_RO(_name) #define HSTATE_ATTR(_name) \ static struct kobj_attribute _name##_attr = \ __ATTR(_name, 0644, _name##_show, _name##_store) static struct kobject *hugepages_kobj; static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; static struct hstate *kobj_to_hstate(struct kobject *kobj) { int i; for (i = 0; i < HUGE_MAX_HSTATE; i++) if (hstate_kobjs[i] == kobj) return &hstates[i]; BUG(); return NULL; } static ssize_t nr_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj); return sprintf(buf, "%lu\n", h->nr_huge_pages); } static ssize_t nr_hugepages_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long input; struct hstate *h = kobj_to_hstate(kobj); err = strict_strtoul(buf, 10, &input); if (err) return 0; h->max_huge_pages = set_max_huge_pages(h, input); return count; } HSTATE_ATTR(nr_hugepages); static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj); return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); } static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long input; struct hstate *h = kobj_to_hstate(kobj); err = strict_strtoul(buf, 10, &input); if (err) return 0; spin_lock(&hugetlb_lock); h->nr_overcommit_huge_pages = input; spin_unlock(&hugetlb_lock); return count; } HSTATE_ATTR(nr_overcommit_hugepages); static ssize_t free_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj); return sprintf(buf, "%lu\n", h->free_huge_pages); } HSTATE_ATTR_RO(free_hugepages); static ssize_t resv_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj); return sprintf(buf, "%lu\n", h->resv_huge_pages); } HSTATE_ATTR_RO(resv_hugepages); static ssize_t surplus_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj); return sprintf(buf, "%lu\n", h->surplus_huge_pages); } HSTATE_ATTR_RO(surplus_hugepages); static struct attribute *hstate_attrs[] = { &nr_hugepages_attr.attr, &nr_overcommit_hugepages_attr.attr, &free_hugepages_attr.attr, &resv_hugepages_attr.attr, &surplus_hugepages_attr.attr, NULL, }; static struct attribute_group hstate_attr_group = { .attrs = hstate_attrs, }; static int __init hugetlb_sysfs_add_hstate(struct hstate *h) { int retval; hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, hugepages_kobj); if (!hstate_kobjs[h - hstates]) return -ENOMEM; retval = sysfs_create_group(hstate_kobjs[h - hstates], &hstate_attr_group); if (retval) kobject_put(hstate_kobjs[h - hstates]); return retval; } static void __init hugetlb_sysfs_init(void) { struct hstate *h; int err; hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); if (!hugepages_kobj) return; for_each_hstate(h) { err = hugetlb_sysfs_add_hstate(h); if (err) printk(KERN_ERR "Hugetlb: Unable to add hstate %s", h->name); } } static void __exit hugetlb_exit(void) { struct hstate *h; for_each_hstate(h) { kobject_put(hstate_kobjs[h - hstates]); } kobject_put(hugepages_kobj); } module_exit(hugetlb_exit); static int __init hugetlb_init(void) { /* Some platform decide whether they support huge pages at boot * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when * there is no such support */ if (HPAGE_SHIFT == 0) return 0; if (!size_to_hstate(default_hstate_size)) { default_hstate_size = HPAGE_SIZE; if (!size_to_hstate(default_hstate_size)) hugetlb_add_hstate(HUGETLB_PAGE_ORDER); } default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; if (default_hstate_max_huge_pages) default_hstate.max_huge_pages = default_hstate_max_huge_pages; hugetlb_init_hstates(); gather_bootmem_prealloc(); report_hugepages(); hugetlb_sysfs_init(); return 0; } module_init(hugetlb_init); /* Should be called on processing a hugepagesz=... option */ void __init hugetlb_add_hstate(unsigned order) { struct hstate *h; unsigned long i; if (size_to_hstate(PAGE_SIZE << order)) { printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); return; } BUG_ON(max_hstate >= HUGE_MAX_HSTATE); BUG_ON(order == 0); h = &hstates[max_hstate++]; h->order = order; h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); h->nr_huge_pages = 0; h->free_huge_pages = 0; for (i = 0; i < MAX_NUMNODES; ++i) INIT_LIST_HEAD(&h->hugepage_freelists[i]); h->hugetlb_next_nid = first_node(node_online_map); snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", huge_page_size(h)/1024); parsed_hstate = h; } static int __init hugetlb_nrpages_setup(char *s) { unsigned long *mhp; static unsigned long *last_mhp; /* * !max_hstate means we haven't parsed a hugepagesz= parameter yet, * so this hugepages= parameter goes to the "default hstate". */ if (!max_hstate) mhp = &default_hstate_max_huge_pages; else mhp = &parsed_hstate->max_huge_pages; if (mhp == last_mhp) { printk(KERN_WARNING "hugepages= specified twice without " "interleaving hugepagesz=, ignoring\n"); return 1; } if (sscanf(s, "%lu", mhp) <= 0) *mhp = 0; /* * Global state is always initialized later in hugetlb_init. * But we need to allocate >= MAX_ORDER hstates here early to still * use the bootmem allocator. */ if (max_hstate && parsed_hstate->order >= MAX_ORDER) hugetlb_hstate_alloc_pages(parsed_hstate); last_mhp = mhp; return 1; } __setup("hugepages=", hugetlb_nrpages_setup); static int __init hugetlb_default_setup(char *s) { default_hstate_size = memparse(s, &s); return 1; } __setup("default_hugepagesz=", hugetlb_default_setup); static unsigned int cpuset_mems_nr(unsigned int *array) { int node; unsigned int nr = 0; for_each_node_mask(node, cpuset_current_mems_allowed) nr += array[node]; return nr; } #ifdef CONFIG_SYSCTL int hugetlb_sysctl_handler(struct ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { struct hstate *h = &default_hstate; unsigned long tmp; if (!write) tmp = h->max_huge_pages; table->data = &tmp; table->maxlen = sizeof(unsigned long); proc_doulongvec_minmax(table, write, file, buffer, length, ppos); if (write) h->max_huge_pages = set_max_huge_pages(h, tmp); return 0; } int hugetlb_treat_movable_handler(struct ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { proc_dointvec(table, write, file, buffer, length, ppos); if (hugepages_treat_as_movable) htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; else htlb_alloc_mask = GFP_HIGHUSER; return 0; } int hugetlb_overcommit_handler(struct ctl_table *table, int write, struct file *file, void __user *buffer, size_t *length, loff_t *ppos) { struct hstate *h = &default_hstate; unsigned long tmp; if (!write) tmp = h->nr_overcommit_huge_pages; table->data = &tmp; table->maxlen = sizeof(unsigned long); proc_doulongvec_minmax(table, write, file, buffer, length, ppos); if (write) { spin_lock(&hugetlb_lock); h->nr_overcommit_huge_pages = tmp; spin_unlock(&hugetlb_lock); } return 0; } #endif /* CONFIG_SYSCTL */ void hugetlb_report_meminfo(struct seq_file *m) { struct hstate *h = &default_hstate; seq_printf(m, "HugePages_Total: %5lu\n" "HugePages_Free: %5lu\n" "HugePages_Rsvd: %5lu\n" "HugePages_Surp: %5lu\n" "Hugepagesize: %8lu kB\n", h->nr_huge_pages, h->free_huge_pages, h->resv_huge_pages, h->surplus_huge_pages, 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); } int hugetlb_report_node_meminfo(int nid, char *buf) { struct hstate *h = &default_hstate; return sprintf(buf, "Node %d HugePages_Total: %5u\n" "Node %d HugePages_Free: %5u\n" "Node %d HugePages_Surp: %5u\n", nid, h->nr_huge_pages_node[nid], nid, h->free_huge_pages_node[nid], nid, h->surplus_huge_pages_node[nid]); } /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ unsigned long hugetlb_total_pages(void) { struct hstate *h = &default_hstate; return h->nr_huge_pages * pages_per_huge_page(h); } static int hugetlb_acct_memory(struct hstate *h, long delta) { int ret = -ENOMEM; spin_lock(&hugetlb_lock); /* * When cpuset is configured, it breaks the strict hugetlb page * reservation as the accounting is done on a global variable. Such * reservation is completely rubbish in the presence of cpuset because * the reservation is not checked against page availability for the * current cpuset. Application can still potentially OOM'ed by kernel * with lack of free htlb page in cpuset that the task is in. * Attempt to enforce strict accounting with cpuset is almost * impossible (or too ugly) because cpuset is too fluid that * task or memory node can be dynamically moved between cpusets. * * The change of semantics for shared hugetlb mapping with cpuset is * undesirable. However, in order to preserve some of the semantics, * we fall back to check against current free page availability as * a best attempt and hopefully to minimize the impact of changing * semantics that cpuset has. */ if (delta > 0) { if (gather_surplus_pages(h, delta) < 0) goto out; if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { return_unused_surplus_pages(h, delta); goto out; } } ret = 0; if (delta < 0) return_unused_surplus_pages(h, (unsigned long) -delta); out: spin_unlock(&hugetlb_lock); return ret; } static void hugetlb_vm_op_open(struct vm_area_struct *vma) { struct resv_map *reservations = vma_resv_map(vma); /* * This new VMA should share its siblings reservation map if present. * The VMA will only ever have a valid reservation map pointer where * it is being copied for another still existing VMA. As that VMA * has a reference to the reservation map it cannot dissappear until * after this open call completes. It is therefore safe to take a * new reference here without additional locking. */ if (reservations) kref_get(&reservations->refs); } static void hugetlb_vm_op_close(struct vm_area_struct *vma) { struct hstate *h = hstate_vma(vma); struct resv_map *reservations = vma_resv_map(vma); unsigned long reserve; unsigned long start; unsigned long end; if (reservations) { start = vma_hugecache_offset(h, vma, vma->vm_start); end = vma_hugecache_offset(h, vma, vma->vm_end); reserve = (end - start) - region_count(&reservations->regions, start, end); kref_put(&reservations->refs, resv_map_release); if (reserve) { hugetlb_acct_memory(h, -reserve); hugetlb_put_quota(vma->vm_file->f_mapping, reserve); } } } /* * We cannot handle pagefaults against hugetlb pages at all. They cause * handle_mm_fault() to try to instantiate regular-sized pages in the * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get * this far. */ static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { BUG(); return 0; } struct vm_operations_struct hugetlb_vm_ops = { .fault = hugetlb_vm_op_fault, .open = hugetlb_vm_op_open, .close = hugetlb_vm_op_close, }; static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, int writable) { pte_t entry; if (writable) { entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); } else { entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); } entry = pte_mkyoung(entry); entry = pte_mkhuge(entry); return entry; } static void set_huge_ptep_writable(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t entry; entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { update_mmu_cache(vma, address, entry); } } int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma) { pte_t *src_pte, *dst_pte, entry; struct page *ptepage; unsigned long addr; int cow; struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { src_pte = huge_pte_offset(src, addr); if (!src_pte) continue; dst_pte = huge_pte_alloc(dst, addr, sz); if (!dst_pte) goto nomem; /* If the pagetables are shared don't copy or take references */ if (dst_pte == src_pte) continue; spin_lock(&dst->page_table_lock); spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); if (!huge_pte_none(huge_ptep_get(src_pte))) { if (cow) huge_ptep_set_wrprotect(src, addr, src_pte); entry = huge_ptep_get(src_pte); ptepage = pte_page(entry); get_page(ptepage); set_huge_pte_at(dst, addr, dst_pte, entry); } spin_unlock(&src->page_table_lock); spin_unlock(&dst->page_table_lock); } return 0; nomem: return -ENOMEM; } void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page) { struct mm_struct *mm = vma->vm_mm; unsigned long address; pte_t *ptep; pte_t pte; struct page *page; struct page *tmp; struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); /* * A page gathering list, protected by per file i_mmap_lock. The * lock is used to avoid list corruption from multiple unmapping * of the same page since we are using page->lru. */ LIST_HEAD(page_list); WARN_ON(!is_vm_hugetlb_page(vma)); BUG_ON(start & ~huge_page_mask(h)); BUG_ON(end & ~huge_page_mask(h)); mmu_notifier_invalidate_range_start(mm, start, end); spin_lock(&mm->page_table_lock); for (address = start; address < end; address += sz) { ptep = huge_pte_offset(mm, address); if (!ptep) continue; if (huge_pmd_unshare(mm, &address, ptep)) continue; /* * If a reference page is supplied, it is because a specific * page is being unmapped, not a range. Ensure the page we * are about to unmap is the actual page of interest. */ if (ref_page) { pte = huge_ptep_get(ptep); if (huge_pte_none(pte)) continue; page = pte_page(pte); if (page != ref_page) continue; /* * Mark the VMA as having unmapped its page so that * future faults in this VMA will fail rather than * looking like data was lost */ set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); } pte = huge_ptep_get_and_clear(mm, address, ptep); if (huge_pte_none(pte)) continue; page = pte_page(pte); if (pte_dirty(pte)) set_page_dirty(page); list_add(&page->lru, &page_list); } spin_unlock(&mm->page_table_lock); flush_tlb_range(vma, start, end); mmu_notifier_invalidate_range_end(mm, start, end); list_for_each_entry_safe(page, tmp, &page_list, lru) { list_del(&page->lru); put_page(page); } } void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page) { spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); __unmap_hugepage_range(vma, start, end, ref_page); spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); } /* * This is called when the original mapper is failing to COW a MAP_PRIVATE * mappping it owns the reserve page for. The intention is to unmap the page * from other VMAs and let the children be SIGKILLed if they are faulting the * same region. */ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, struct page *page, unsigned long address) { struct hstate *h = hstate_vma(vma); struct vm_area_struct *iter_vma; struct address_space *mapping; struct prio_tree_iter iter; pgoff_t pgoff; /* * vm_pgoff is in PAGE_SIZE units, hence the different calculation * from page cache lookup which is in HPAGE_SIZE units. */ address = address & huge_page_mask(h); pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + (vma->vm_pgoff >> PAGE_SHIFT); mapping = (struct address_space *)page_private(page); vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { /* Do not unmap the current VMA */ if (iter_vma == vma) continue; /* * Unmap the page from other VMAs without their own reserves. * They get marked to be SIGKILLed if they fault in these * areas. This is because a future no-page fault on this VMA * could insert a zeroed page instead of the data existing * from the time of fork. This would look like data corruption */ if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) unmap_hugepage_range(iter_vma, address, address + huge_page_size(h), page); } return 1; } static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t pte, struct page *pagecache_page) { struct hstate *h = hstate_vma(vma); struct page *old_page, *new_page; int avoidcopy; int outside_reserve = 0; old_page = pte_page(pte); retry_avoidcopy: /* If no-one else is actually using this page, avoid the copy * and just make the page writable */ avoidcopy = (page_count(old_page) == 1); if (avoidcopy) { set_huge_ptep_writable(vma, address, ptep); return 0; } /* * If the process that created a MAP_PRIVATE mapping is about to * perform a COW due to a shared page count, attempt to satisfy * the allocation without using the existing reserves. The pagecache * page is used to determine if the reserve at this address was * consumed or not. If reserves were used, a partial faulted mapping * at the time of fork() could consume its reserves on COW instead * of the full address range. */ if (!(vma->vm_flags & VM_MAYSHARE) && is_vma_resv_set(vma, HPAGE_RESV_OWNER) && old_page != pagecache_page) outside_reserve = 1; page_cache_get(old_page); new_page = alloc_huge_page(vma, address, outside_reserve); if (IS_ERR(new_page)) { page_cache_release(old_page); /* * If a process owning a MAP_PRIVATE mapping fails to COW, * it is due to references held by a child and an insufficient * huge page pool. To guarantee the original mappers * reliability, unmap the page from child processes. The child * may get SIGKILLed if it later faults. */ if (outside_reserve) { BUG_ON(huge_pte_none(pte)); if (unmap_ref_private(mm, vma, old_page, address)) { BUG_ON(page_count(old_page) != 1); BUG_ON(huge_pte_none(pte)); goto retry_avoidcopy; } WARN_ON_ONCE(1); } return -PTR_ERR(new_page); } spin_unlock(&mm->page_table_lock); copy_huge_page(new_page, old_page, address, vma); __SetPageUptodate(new_page); spin_lock(&mm->page_table_lock); ptep = huge_pte_offset(mm, address & huge_page_mask(h)); if (likely(pte_same(huge_ptep_get(ptep), pte))) { /* Break COW */ huge_ptep_clear_flush(vma, address, ptep); set_huge_pte_at(mm, address, ptep, make_huge_pte(vma, new_page, 1)); /* Make the old page be freed below */ new_page = old_page; } page_cache_release(new_page); page_cache_release(old_page); return 0; } /* Return the pagecache page at a given address within a VMA */ static struct page *hugetlbfs_pagecache_page(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { struct address_space *mapping; pgoff_t idx; mapping = vma->vm_file->f_mapping; idx = vma_hugecache_offset(h, vma, address); return find_lock_page(mapping, idx); } static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, int write_access) { struct hstate *h = hstate_vma(vma); int ret = VM_FAULT_SIGBUS; pgoff_t idx; unsigned long size; struct page *page; struct address_space *mapping; pte_t new_pte; /* * Currently, we are forced to kill the process in the event the * original mapper has unmapped pages from the child due to a failed * COW. Warn that such a situation has occured as it may not be obvious */ if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { printk(KERN_WARNING "PID %d killed due to inadequate hugepage pool\n", current->pid); return ret; } mapping = vma->vm_file->f_mapping; idx = vma_hugecache_offset(h, vma, address); /* * Use page lock to guard against racing truncation * before we get page_table_lock. */ retry: page = find_lock_page(mapping, idx); if (!page) { size = i_size_read(mapping->host) >> huge_page_shift(h); if (idx >= size) goto out; page = alloc_huge_page(vma, address, 0); if (IS_ERR(page)) { ret = -PTR_ERR(page); goto out; } clear_huge_page(page, address, huge_page_size(h)); __SetPageUptodate(page); if (vma->vm_flags & VM_MAYSHARE) { int err; struct inode *inode = mapping->host; err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); if (err) { put_page(page); if (err == -EEXIST) goto retry; goto out; } spin_lock(&inode->i_lock); inode->i_blocks += blocks_per_huge_page(h); spin_unlock(&inode->i_lock); } else lock_page(page); } /* * If we are going to COW a private mapping later, we examine the * pending reservations for this page now. This will ensure that * any allocations necessary to record that reservation occur outside * the spinlock. */ if (write_access && !(vma->vm_flags & VM_SHARED)) if (vma_needs_reservation(h, vma, address) < 0) { ret = VM_FAULT_OOM; goto backout_unlocked; } spin_lock(&mm->page_table_lock); size = i_size_read(mapping->host) >> huge_page_shift(h); if (idx >= size) goto backout; ret = 0; if (!huge_pte_none(huge_ptep_get(ptep))) goto backout; new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) && (vma->vm_flags & VM_SHARED))); set_huge_pte_at(mm, address, ptep, new_pte); if (write_access && !(vma->vm_flags & VM_SHARED)) { /* Optimization, do the COW without a second fault */ ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); } spin_unlock(&mm->page_table_lock); unlock_page(page); out: return ret; backout: spin_unlock(&mm->page_table_lock); backout_unlocked: unlock_page(page); put_page(page); goto out; } int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access) { pte_t *ptep; pte_t entry; int ret; struct page *pagecache_page = NULL; static DEFINE_MUTEX(hugetlb_instantiation_mutex); struct hstate *h = hstate_vma(vma); ptep = huge_pte_alloc(mm, address, huge_page_size(h)); if (!ptep) return VM_FAULT_OOM; /* * Serialize hugepage allocation and instantiation, so that we don't * get spurious allocation failures if two CPUs race to instantiate * the same page in the page cache. */ mutex_lock(&hugetlb_instantiation_mutex); entry = huge_ptep_get(ptep); if (huge_pte_none(entry)) { ret = hugetlb_no_page(mm, vma, address, ptep, write_access); goto out_mutex; } ret = 0; /* * If we are going to COW the mapping later, we examine the pending * reservations for this page now. This will ensure that any * allocations necessary to record that reservation occur outside the * spinlock. For private mappings, we also lookup the pagecache * page now as it is used to determine if a reservation has been * consumed. */ if (write_access && !pte_write(entry)) { if (vma_needs_reservation(h, vma, address) < 0) { ret = VM_FAULT_OOM; goto out_mutex; } if (!(vma->vm_flags & VM_MAYSHARE)) pagecache_page = hugetlbfs_pagecache_page(h, vma, address); } spin_lock(&mm->page_table_lock); /* Check for a racing update before calling hugetlb_cow */ if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) goto out_page_table_lock; if (write_access) { if (!pte_write(entry)) { ret = hugetlb_cow(mm, vma, address, ptep, entry, pagecache_page); goto out_page_table_lock; } entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access)) update_mmu_cache(vma, address, entry); out_page_table_lock: spin_unlock(&mm->page_table_lock); if (pagecache_page) { unlock_page(pagecache_page); put_page(pagecache_page); } out_mutex: mutex_unlock(&hugetlb_instantiation_mutex); return ret; } /* Can be overriden by architectures */ __attribute__((weak)) struct page * follow_huge_pud(struct mm_struct *mm, unsigned long address, pud_t *pud, int write) { BUG(); return NULL; } static int huge_zeropage_ok(pte_t *ptep, int write, int shared) { if (!ptep || write || shared) return 0; else return huge_pte_none(huge_ptep_get(ptep)); } int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, struct page **pages, struct vm_area_struct **vmas, unsigned long *position, int *length, int i, int write) { unsigned long pfn_offset; unsigned long vaddr = *position; int remainder = *length; struct hstate *h = hstate_vma(vma); int zeropage_ok = 0; int shared = vma->vm_flags & VM_SHARED; spin_lock(&mm->page_table_lock); while (vaddr < vma->vm_end && remainder) { pte_t *pte; struct page *page; /* * Some archs (sparc64, sh*) have multiple pte_ts to * each hugepage. We have to make * sure we get the * first, for the page indexing below to work. */ pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); if (huge_zeropage_ok(pte, write, shared)) zeropage_ok = 1; if (!pte || (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) || (write && !pte_write(huge_ptep_get(pte)))) { int ret; spin_unlock(&mm->page_table_lock); ret = hugetlb_fault(mm, vma, vaddr, write); spin_lock(&mm->page_table_lock); if (!(ret & VM_FAULT_ERROR)) continue; remainder = 0; if (!i) i = -EFAULT; break; } pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; page = pte_page(huge_ptep_get(pte)); same_page: if (pages) { if (zeropage_ok) pages[i] = ZERO_PAGE(0); else pages[i] = mem_map_offset(page, pfn_offset); get_page(pages[i]); } if (vmas) vmas[i] = vma; vaddr += PAGE_SIZE; ++pfn_offset; --remainder; ++i; if (vaddr < vma->vm_end && remainder && pfn_offset < pages_per_huge_page(h)) { /* * We use pfn_offset to avoid touching the pageframes * of this compound page. */ goto same_page; } } spin_unlock(&mm->page_table_lock); *length = remainder; *position = vaddr; return i; } void hugetlb_change_protection(struct vm_area_struct *vma, unsigned long address, unsigned long end, pgprot_t newprot) { struct mm_struct *mm = vma->vm_mm; unsigned long start = address; pte_t *ptep; pte_t pte; struct hstate *h = hstate_vma(vma); BUG_ON(address >= end); flush_cache_range(vma, address, end); spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); spin_lock(&mm->page_table_lock); for (; address < end; address += huge_page_size(h)) { ptep = huge_pte_offset(mm, address); if (!ptep) continue; if (huge_pmd_unshare(mm, &address, ptep)) continue; if (!huge_pte_none(huge_ptep_get(ptep))) { pte = huge_ptep_get_and_clear(mm, address, ptep); pte = pte_mkhuge(pte_modify(pte, newprot)); set_huge_pte_at(mm, address, ptep, pte); } } spin_unlock(&mm->page_table_lock); spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); flush_tlb_range(vma, start, end); } int hugetlb_reserve_pages(struct inode *inode, long from, long to, struct vm_area_struct *vma, int acctflag) { long ret, chg; struct hstate *h = hstate_inode(inode); /* * Only apply hugepage reservation if asked. At fault time, an * attempt will be made for VM_NORESERVE to allocate a page * and filesystem quota without using reserves */ if (acctflag & VM_NORESERVE) return 0; /* * Shared mappings base their reservation on the number of pages that * are already allocated on behalf of the file. Private mappings need * to reserve the full area even if read-only as mprotect() may be * called to make the mapping read-write. Assume !vma is a shm mapping */ if (!vma || vma->vm_flags & VM_MAYSHARE) chg = region_chg(&inode->i_mapping->private_list, from, to); else { struct resv_map *resv_map = resv_map_alloc(); if (!resv_map) return -ENOMEM; chg = to - from; set_vma_resv_map(vma, resv_map); set_vma_resv_flags(vma, HPAGE_RESV_OWNER); } if (chg < 0) return chg; /* There must be enough filesystem quota for the mapping */ if (hugetlb_get_quota(inode->i_mapping, chg)) return -ENOSPC; /* * Check enough hugepages are available for the reservation. * Hand back the quota if there are not */ ret = hugetlb_acct_memory(h, chg); if (ret < 0) { hugetlb_put_quota(inode->i_mapping, chg); return ret; } /* * Account for the reservations made. Shared mappings record regions * that have reservations as they are shared by multiple VMAs. * When the last VMA disappears, the region map says how much * the reservation was and the page cache tells how much of * the reservation was consumed. Private mappings are per-VMA and * only the consumed reservations are tracked. When the VMA * disappears, the original reservation is the VMA size and the * consumed reservations are stored in the map. Hence, nothing * else has to be done for private mappings here */ if (!vma || vma->vm_flags & VM_MAYSHARE) region_add(&inode->i_mapping->private_list, from, to); return 0; } void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) { struct hstate *h = hstate_inode(inode); long chg = region_truncate(&inode->i_mapping->private_list, offset); spin_lock(&inode->i_lock); inode->i_blocks -= blocks_per_huge_page(h); spin_unlock(&inode->i_lock); hugetlb_put_quota(inode->i_mapping, (chg - freed)); hugetlb_acct_memory(h, -(chg - freed)); }