/* * fs/f2fs/segment.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include "f2fs.h" #include "segment.h" #include "node.h" static int need_to_flush(struct f2fs_sb_info *sbi) { unsigned int pages_per_sec = (1 << sbi->log_blocks_per_seg) * sbi->segs_per_sec; int node_secs = ((get_pages(sbi, F2FS_DIRTY_NODES) + pages_per_sec - 1) >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; int dent_secs = ((get_pages(sbi, F2FS_DIRTY_DENTS) + pages_per_sec - 1) >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; if (sbi->por_doing) return 0; if (free_sections(sbi) <= (node_secs + 2 * dent_secs + reserved_sections(sbi))) return 1; return 0; } /* * This function balances dirty node and dentry pages. * In addition, it controls garbage collection. */ void f2fs_balance_fs(struct f2fs_sb_info *sbi) { struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .for_reclaim = 0, }; if (sbi->por_doing) return; /* * We should do checkpoint when there are so many dirty node pages * with enough free segments. After then, we should do GC. */ if (need_to_flush(sbi)) { sync_dirty_dir_inodes(sbi); sync_node_pages(sbi, 0, &wbc); } if (has_not_enough_free_secs(sbi)) { mutex_lock(&sbi->gc_mutex); f2fs_gc(sbi, 1); } } static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); /* need not be added */ if (IS_CURSEG(sbi, segno)) return; if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) dirty_i->nr_dirty[dirty_type]++; if (dirty_type == DIRTY) { struct seg_entry *sentry = get_seg_entry(sbi, segno); dirty_type = sentry->type; if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) dirty_i->nr_dirty[dirty_type]++; } } static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) dirty_i->nr_dirty[dirty_type]--; if (dirty_type == DIRTY) { struct seg_entry *sentry = get_seg_entry(sbi, segno); dirty_type = sentry->type; if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) dirty_i->nr_dirty[dirty_type]--; clear_bit(segno, dirty_i->victim_segmap[FG_GC]); clear_bit(segno, dirty_i->victim_segmap[BG_GC]); } } /* * Should not occur error such as -ENOMEM. * Adding dirty entry into seglist is not critical operation. * If a given segment is one of current working segments, it won't be added. */ void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned short valid_blocks; if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) return; mutex_lock(&dirty_i->seglist_lock); valid_blocks = get_valid_blocks(sbi, segno, 0); if (valid_blocks == 0) { __locate_dirty_segment(sbi, segno, PRE); __remove_dirty_segment(sbi, segno, DIRTY); } else if (valid_blocks < sbi->blocks_per_seg) { __locate_dirty_segment(sbi, segno, DIRTY); } else { /* Recovery routine with SSR needs this */ __remove_dirty_segment(sbi, segno, DIRTY); } mutex_unlock(&dirty_i->seglist_lock); return; } /* * Should call clear_prefree_segments after checkpoint is done. */ static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int segno, offset = 0; unsigned int total_segs = TOTAL_SEGS(sbi); mutex_lock(&dirty_i->seglist_lock); while (1) { segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, offset); if (segno >= total_segs) break; __set_test_and_free(sbi, segno); offset = segno + 1; } mutex_unlock(&dirty_i->seglist_lock); } void clear_prefree_segments(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int segno, offset = 0; unsigned int total_segs = TOTAL_SEGS(sbi); mutex_lock(&dirty_i->seglist_lock); while (1) { segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, offset); if (segno >= total_segs) break; offset = segno + 1; if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE])) dirty_i->nr_dirty[PRE]--; /* Let's use trim */ if (test_opt(sbi, DISCARD)) blkdev_issue_discard(sbi->sb->s_bdev, START_BLOCK(sbi, segno) << sbi->log_sectors_per_block, 1 << (sbi->log_sectors_per_block + sbi->log_blocks_per_seg), GFP_NOFS, 0); } mutex_unlock(&dirty_i->seglist_lock); } static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) sit_i->dirty_sentries++; } static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, unsigned int segno, int modified) { struct seg_entry *se = get_seg_entry(sbi, segno); se->type = type; if (modified) __mark_sit_entry_dirty(sbi, segno); } static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) { struct seg_entry *se; unsigned int segno, offset; long int new_vblocks; segno = GET_SEGNO(sbi, blkaddr); se = get_seg_entry(sbi, segno); new_vblocks = se->valid_blocks + del; offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1); BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) || (new_vblocks > sbi->blocks_per_seg))); se->valid_blocks = new_vblocks; se->mtime = get_mtime(sbi); SIT_I(sbi)->max_mtime = se->mtime; /* Update valid block bitmap */ if (del > 0) { if (f2fs_set_bit(offset, se->cur_valid_map)) BUG(); } else { if (!f2fs_clear_bit(offset, se->cur_valid_map)) BUG(); } if (!f2fs_test_bit(offset, se->ckpt_valid_map)) se->ckpt_valid_blocks += del; __mark_sit_entry_dirty(sbi, segno); /* update total number of valid blocks to be written in ckpt area */ SIT_I(sbi)->written_valid_blocks += del; if (sbi->segs_per_sec > 1) get_sec_entry(sbi, segno)->valid_blocks += del; } static void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old_blkaddr, block_t new_blkaddr) { update_sit_entry(sbi, new_blkaddr, 1); if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) update_sit_entry(sbi, old_blkaddr, -1); } void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) { unsigned int segno = GET_SEGNO(sbi, addr); struct sit_info *sit_i = SIT_I(sbi); BUG_ON(addr == NULL_ADDR); if (addr == NEW_ADDR) return; /* add it into sit main buffer */ mutex_lock(&sit_i->sentry_lock); update_sit_entry(sbi, addr, -1); /* add it into dirty seglist */ locate_dirty_segment(sbi, segno); mutex_unlock(&sit_i->sentry_lock); } /* * This function should be resided under the curseg_mutex lock */ static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, struct f2fs_summary *sum, unsigned short offset) { struct curseg_info *curseg = CURSEG_I(sbi, type); void *addr = curseg->sum_blk; addr += offset * sizeof(struct f2fs_summary); memcpy(addr, sum, sizeof(struct f2fs_summary)); return; } /* * Calculate the number of current summary pages for writing */ int npages_for_summary_flush(struct f2fs_sb_info *sbi) { int total_size_bytes = 0; int valid_sum_count = 0; int i, sum_space; for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { if (sbi->ckpt->alloc_type[i] == SSR) valid_sum_count += sbi->blocks_per_seg; else valid_sum_count += curseg_blkoff(sbi, i); } total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1) + sizeof(struct nat_journal) + 2 + sizeof(struct sit_journal) + 2; sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE; if (total_size_bytes < sum_space) return 1; else if (total_size_bytes < 2 * sum_space) return 2; return 3; } /* * Caller should put this summary page */ struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) { return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); } static void write_sum_page(struct f2fs_sb_info *sbi, struct f2fs_summary_block *sum_blk, block_t blk_addr) { struct page *page = grab_meta_page(sbi, blk_addr); void *kaddr = page_address(page); memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); set_page_dirty(page); f2fs_put_page(page, 1); } static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi, int ofs_unit, int type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE]; unsigned int segno, next_segno, i; int ofs = 0; /* * If there is not enough reserved sections, * we should not reuse prefree segments. */ if (has_not_enough_free_secs(sbi)) return NULL_SEGNO; /* * NODE page should not reuse prefree segment, * since those information is used for SPOR. */ if (IS_NODESEG(type)) return NULL_SEGNO; next: segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs++); ofs = ((segno / ofs_unit) * ofs_unit) + ofs_unit; if (segno < TOTAL_SEGS(sbi)) { /* skip intermediate segments in a section */ if (segno % ofs_unit) goto next; /* skip if whole section is not prefree */ next_segno = find_next_zero_bit(prefree_segmap, TOTAL_SEGS(sbi), segno + 1); if (next_segno - segno < ofs_unit) goto next; /* skip if whole section was not free at the last checkpoint */ for (i = 0; i < ofs_unit; i++) if (get_seg_entry(sbi, segno)->ckpt_valid_blocks) goto next; return segno; } return NULL_SEGNO; } /* * Find a new segment from the free segments bitmap to right order * This function should be returned with success, otherwise BUG */ static void get_new_segment(struct f2fs_sb_info *sbi, unsigned int *newseg, bool new_sec, int dir) { struct free_segmap_info *free_i = FREE_I(sbi); unsigned int total_secs = sbi->total_sections; unsigned int segno, secno, zoneno; unsigned int total_zones = sbi->total_sections / sbi->secs_per_zone; unsigned int hint = *newseg / sbi->segs_per_sec; unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); unsigned int left_start = hint; bool init = true; int go_left = 0; int i; write_lock(&free_i->segmap_lock); if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { segno = find_next_zero_bit(free_i->free_segmap, TOTAL_SEGS(sbi), *newseg + 1); if (segno < TOTAL_SEGS(sbi)) goto got_it; } find_other_zone: secno = find_next_zero_bit(free_i->free_secmap, total_secs, hint); if (secno >= total_secs) { if (dir == ALLOC_RIGHT) { secno = find_next_zero_bit(free_i->free_secmap, total_secs, 0); BUG_ON(secno >= total_secs); } else { go_left = 1; left_start = hint - 1; } } if (go_left == 0) goto skip_left; while (test_bit(left_start, free_i->free_secmap)) { if (left_start > 0) { left_start--; continue; } left_start = find_next_zero_bit(free_i->free_secmap, total_secs, 0); BUG_ON(left_start >= total_secs); break; } secno = left_start; skip_left: hint = secno; segno = secno * sbi->segs_per_sec; zoneno = secno / sbi->secs_per_zone; /* give up on finding another zone */ if (!init) goto got_it; if (sbi->secs_per_zone == 1) goto got_it; if (zoneno == old_zoneno) goto got_it; if (dir == ALLOC_LEFT) { if (!go_left && zoneno + 1 >= total_zones) goto got_it; if (go_left && zoneno == 0) goto got_it; } for (i = 0; i < NR_CURSEG_TYPE; i++) if (CURSEG_I(sbi, i)->zone == zoneno) break; if (i < NR_CURSEG_TYPE) { /* zone is in user, try another */ if (go_left) hint = zoneno * sbi->secs_per_zone - 1; else if (zoneno + 1 >= total_zones) hint = 0; else hint = (zoneno + 1) * sbi->secs_per_zone; init = false; goto find_other_zone; } got_it: /* set it as dirty segment in free segmap */ BUG_ON(test_bit(segno, free_i->free_segmap)); __set_inuse(sbi, segno); *newseg = segno; write_unlock(&free_i->segmap_lock); } static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) { struct curseg_info *curseg = CURSEG_I(sbi, type); struct summary_footer *sum_footer; curseg->segno = curseg->next_segno; curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); curseg->next_blkoff = 0; curseg->next_segno = NULL_SEGNO; sum_footer = &(curseg->sum_blk->footer); memset(sum_footer, 0, sizeof(struct summary_footer)); if (IS_DATASEG(type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); if (IS_NODESEG(type)) SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); __set_sit_entry_type(sbi, type, curseg->segno, modified); } /* * Allocate a current working segment. * This function always allocates a free segment in LFS manner. */ static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int segno = curseg->segno; int dir = ALLOC_LEFT; write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) dir = ALLOC_RIGHT; if (test_opt(sbi, NOHEAP)) dir = ALLOC_RIGHT; get_new_segment(sbi, &segno, new_sec, dir); curseg->next_segno = segno; reset_curseg(sbi, type, 1); curseg->alloc_type = LFS; } static void __next_free_blkoff(struct f2fs_sb_info *sbi, struct curseg_info *seg, block_t start) { struct seg_entry *se = get_seg_entry(sbi, seg->segno); block_t ofs; for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) { if (!f2fs_test_bit(ofs, se->ckpt_valid_map) && !f2fs_test_bit(ofs, se->cur_valid_map)) break; } seg->next_blkoff = ofs; } /* * If a segment is written by LFS manner, next block offset is just obtained * by increasing the current block offset. However, if a segment is written by * SSR manner, next block offset obtained by calling __next_free_blkoff */ static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, struct curseg_info *seg) { if (seg->alloc_type == SSR) __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); else seg->next_blkoff++; } /* * This function always allocates a used segment (from dirty seglist) by SSR * manner, so it should recover the existing segment information of valid blocks */ static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int new_segno = curseg->next_segno; struct f2fs_summary_block *sum_node; struct page *sum_page; write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); __set_test_and_inuse(sbi, new_segno); mutex_lock(&dirty_i->seglist_lock); __remove_dirty_segment(sbi, new_segno, PRE); __remove_dirty_segment(sbi, new_segno, DIRTY); mutex_unlock(&dirty_i->seglist_lock); reset_curseg(sbi, type, 1); curseg->alloc_type = SSR; __next_free_blkoff(sbi, curseg, 0); if (reuse) { sum_page = get_sum_page(sbi, new_segno); sum_node = (struct f2fs_summary_block *)page_address(sum_page); memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); f2fs_put_page(sum_page, 1); } } /* * flush out current segment and replace it with new segment * This function should be returned with success, otherwise BUG */ static void allocate_segment_by_default(struct f2fs_sb_info *sbi, int type, bool force) { struct curseg_info *curseg = CURSEG_I(sbi, type); unsigned int ofs_unit; if (force) { new_curseg(sbi, type, true); goto out; } ofs_unit = need_SSR(sbi) ? 1 : sbi->segs_per_sec; curseg->next_segno = check_prefree_segments(sbi, ofs_unit, type); if (curseg->next_segno != NULL_SEGNO) change_curseg(sbi, type, false); else if (type == CURSEG_WARM_NODE) new_curseg(sbi, type, false); else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) change_curseg(sbi, type, true); else new_curseg(sbi, type, false); out: sbi->segment_count[curseg->alloc_type]++; } void allocate_new_segments(struct f2fs_sb_info *sbi) { struct curseg_info *curseg; unsigned int old_curseg; int i; for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { curseg = CURSEG_I(sbi, i); old_curseg = curseg->segno; SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); locate_dirty_segment(sbi, old_curseg); } } static const struct segment_allocation default_salloc_ops = { .allocate_segment = allocate_segment_by_default, }; static void f2fs_end_io_write(struct bio *bio, int err) { const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; struct bio_private *p = bio->bi_private; do { struct page *page = bvec->bv_page; if (--bvec >= bio->bi_io_vec) prefetchw(&bvec->bv_page->flags); if (!uptodate) { SetPageError(page); if (page->mapping) set_bit(AS_EIO, &page->mapping->flags); set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG); set_page_dirty(page); } end_page_writeback(page); dec_page_count(p->sbi, F2FS_WRITEBACK); } while (bvec >= bio->bi_io_vec); if (p->is_sync) complete(p->wait); kfree(p); bio_put(bio); } struct bio *f2fs_bio_alloc(struct block_device *bdev, sector_t first_sector, int nr_vecs, gfp_t gfp_flags) { struct bio *bio; repeat: /* allocate new bio */ bio = bio_alloc(gfp_flags, nr_vecs); if (bio == NULL && (current->flags & PF_MEMALLOC)) { while (!bio && (nr_vecs /= 2)) bio = bio_alloc(gfp_flags, nr_vecs); } if (bio) { bio->bi_bdev = bdev; bio->bi_sector = first_sector; retry: bio->bi_private = kmalloc(sizeof(struct bio_private), GFP_NOFS | __GFP_HIGH); if (!bio->bi_private) { cond_resched(); goto retry; } } if (bio == NULL) { cond_resched(); goto repeat; } return bio; } static void do_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync) { int rw = sync ? WRITE_SYNC : WRITE; enum page_type btype = type > META ? META : type; if (type >= META_FLUSH) rw = WRITE_FLUSH_FUA; if (sbi->bio[btype]) { struct bio_private *p = sbi->bio[btype]->bi_private; p->sbi = sbi; sbi->bio[btype]->bi_end_io = f2fs_end_io_write; if (type == META_FLUSH) { DECLARE_COMPLETION_ONSTACK(wait); p->is_sync = true; p->wait = &wait; submit_bio(rw, sbi->bio[btype]); wait_for_completion(&wait); } else { p->is_sync = false; submit_bio(rw, sbi->bio[btype]); } sbi->bio[btype] = NULL; } } void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync) { down_write(&sbi->bio_sem); do_submit_bio(sbi, type, sync); up_write(&sbi->bio_sem); } static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page, block_t blk_addr, enum page_type type) { struct block_device *bdev = sbi->sb->s_bdev; verify_block_addr(sbi, blk_addr); down_write(&sbi->bio_sem); inc_page_count(sbi, F2FS_WRITEBACK); if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1) do_submit_bio(sbi, type, false); alloc_new: if (sbi->bio[type] == NULL) sbi->bio[type] = f2fs_bio_alloc(bdev, blk_addr << (sbi->log_blocksize - 9), bio_get_nr_vecs(bdev), GFP_NOFS | __GFP_HIGH); if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) { do_submit_bio(sbi, type, false); goto alloc_new; } sbi->last_block_in_bio[type] = blk_addr; up_write(&sbi->bio_sem); } static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) { struct curseg_info *curseg = CURSEG_I(sbi, type); if (curseg->next_blkoff < sbi->blocks_per_seg) return true; return false; } static int __get_segment_type_2(struct page *page, enum page_type p_type) { if (p_type == DATA) return CURSEG_HOT_DATA; else return CURSEG_HOT_NODE; } static int __get_segment_type_4(struct page *page, enum page_type p_type) { if (p_type == DATA) { struct inode *inode = page->mapping->host; if (S_ISDIR(inode->i_mode)) return CURSEG_HOT_DATA; else return CURSEG_COLD_DATA; } else { if (IS_DNODE(page) && !is_cold_node(page)) return CURSEG_HOT_NODE; else return CURSEG_COLD_NODE; } } static int __get_segment_type_6(struct page *page, enum page_type p_type) { if (p_type == DATA) { struct inode *inode = page->mapping->host; if (S_ISDIR(inode->i_mode)) return CURSEG_HOT_DATA; else if (is_cold_data(page) || is_cold_file(inode)) return CURSEG_COLD_DATA; else return CURSEG_WARM_DATA; } else { if (IS_DNODE(page)) return is_cold_node(page) ? CURSEG_WARM_NODE : CURSEG_HOT_NODE; else return CURSEG_COLD_NODE; } } static int __get_segment_type(struct page *page, enum page_type p_type) { struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); switch (sbi->active_logs) { case 2: return __get_segment_type_2(page, p_type); case 4: return __get_segment_type_4(page, p_type); case 6: return __get_segment_type_6(page, p_type); default: BUG(); } } static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, block_t old_blkaddr, block_t *new_blkaddr, struct f2fs_summary *sum, enum page_type p_type) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg; unsigned int old_cursegno; int type; type = __get_segment_type(page, p_type); curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); old_cursegno = curseg->segno; /* * __add_sum_entry should be resided under the curseg_mutex * because, this function updates a summary entry in the * current summary block. */ __add_sum_entry(sbi, type, sum, curseg->next_blkoff); mutex_lock(&sit_i->sentry_lock); __refresh_next_blkoff(sbi, curseg); sbi->block_count[curseg->alloc_type]++; /* * SIT information should be updated before segment allocation, * since SSR needs latest valid block information. */ refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); if (!__has_curseg_space(sbi, type)) sit_i->s_ops->allocate_segment(sbi, type, false); locate_dirty_segment(sbi, old_cursegno); locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); mutex_unlock(&sit_i->sentry_lock); if (p_type == NODE) fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); /* writeout dirty page into bdev */ submit_write_page(sbi, page, *new_blkaddr, p_type); mutex_unlock(&curseg->curseg_mutex); } int write_meta_page(struct f2fs_sb_info *sbi, struct page *page, struct writeback_control *wbc) { if (wbc->for_reclaim) return AOP_WRITEPAGE_ACTIVATE; set_page_writeback(page); submit_write_page(sbi, page, page->index, META); return 0; } void write_node_page(struct f2fs_sb_info *sbi, struct page *page, unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) { struct f2fs_summary sum; set_summary(&sum, nid, 0, 0); do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE); } void write_data_page(struct inode *inode, struct page *page, struct dnode_of_data *dn, block_t old_blkaddr, block_t *new_blkaddr) { struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); struct f2fs_summary sum; struct node_info ni; BUG_ON(old_blkaddr == NULL_ADDR); get_node_info(sbi, dn->nid, &ni); set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, DATA); } void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page, block_t old_blk_addr) { submit_write_page(sbi, page, old_blk_addr, DATA); } void recover_data_page(struct f2fs_sb_info *sbi, struct page *page, struct f2fs_summary *sum, block_t old_blkaddr, block_t new_blkaddr) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg; unsigned int segno, old_cursegno; struct seg_entry *se; int type; segno = GET_SEGNO(sbi, new_blkaddr); se = get_seg_entry(sbi, segno); type = se->type; if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { if (old_blkaddr == NULL_ADDR) type = CURSEG_COLD_DATA; else type = CURSEG_WARM_DATA; } curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); mutex_lock(&sit_i->sentry_lock); old_cursegno = curseg->segno; /* change the current segment */ if (segno != curseg->segno) { curseg->next_segno = segno; change_curseg(sbi, type, true); } curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & (sbi->blocks_per_seg - 1); __add_sum_entry(sbi, type, sum, curseg->next_blkoff); refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); locate_dirty_segment(sbi, old_cursegno); locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); mutex_unlock(&sit_i->sentry_lock); mutex_unlock(&curseg->curseg_mutex); } void rewrite_node_page(struct f2fs_sb_info *sbi, struct page *page, struct f2fs_summary *sum, block_t old_blkaddr, block_t new_blkaddr) { struct sit_info *sit_i = SIT_I(sbi); int type = CURSEG_WARM_NODE; struct curseg_info *curseg; unsigned int segno, old_cursegno; block_t next_blkaddr = next_blkaddr_of_node(page); unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr); curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); mutex_lock(&sit_i->sentry_lock); segno = GET_SEGNO(sbi, new_blkaddr); old_cursegno = curseg->segno; /* change the current segment */ if (segno != curseg->segno) { curseg->next_segno = segno; change_curseg(sbi, type, true); } curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & (sbi->blocks_per_seg - 1); __add_sum_entry(sbi, type, sum, curseg->next_blkoff); /* change the current log to the next block addr in advance */ if (next_segno != segno) { curseg->next_segno = next_segno; change_curseg(sbi, type, true); } curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) & (sbi->blocks_per_seg - 1); /* rewrite node page */ set_page_writeback(page); submit_write_page(sbi, page, new_blkaddr, NODE); f2fs_submit_bio(sbi, NODE, true); refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); locate_dirty_segment(sbi, old_cursegno); locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); mutex_unlock(&sit_i->sentry_lock); mutex_unlock(&curseg->curseg_mutex); } static int read_compacted_summaries(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct curseg_info *seg_i; unsigned char *kaddr; struct page *page; block_t start; int i, j, offset; start = start_sum_block(sbi); page = get_meta_page(sbi, start++); kaddr = (unsigned char *)page_address(page); /* Step 1: restore nat cache */ seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); /* Step 2: restore sit cache */ seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); offset = 2 * SUM_JOURNAL_SIZE; /* Step 3: restore summary entries */ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { unsigned short blk_off; unsigned int segno; seg_i = CURSEG_I(sbi, i); segno = le32_to_cpu(ckpt->cur_data_segno[i]); blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); seg_i->next_segno = segno; reset_curseg(sbi, i, 0); seg_i->alloc_type = ckpt->alloc_type[i]; seg_i->next_blkoff = blk_off; if (seg_i->alloc_type == SSR) blk_off = sbi->blocks_per_seg; for (j = 0; j < blk_off; j++) { struct f2fs_summary *s; s = (struct f2fs_summary *)(kaddr + offset); seg_i->sum_blk->entries[j] = *s; offset += SUMMARY_SIZE; if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) continue; f2fs_put_page(page, 1); page = NULL; page = get_meta_page(sbi, start++); kaddr = (unsigned char *)page_address(page); offset = 0; } } f2fs_put_page(page, 1); return 0; } static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_summary_block *sum; struct curseg_info *curseg; struct page *new; unsigned short blk_off; unsigned int segno = 0; block_t blk_addr = 0; /* get segment number and block addr */ if (IS_DATASEG(type)) { segno = le32_to_cpu(ckpt->cur_data_segno[type]); blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - CURSEG_HOT_DATA]); if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); else blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); } else { segno = le32_to_cpu(ckpt->cur_node_segno[type - CURSEG_HOT_NODE]); blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - CURSEG_HOT_NODE]); if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, type - CURSEG_HOT_NODE); else blk_addr = GET_SUM_BLOCK(sbi, segno); } new = get_meta_page(sbi, blk_addr); sum = (struct f2fs_summary_block *)page_address(new); if (IS_NODESEG(type)) { if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) { struct f2fs_summary *ns = &sum->entries[0]; int i; for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { ns->version = 0; ns->ofs_in_node = 0; } } else { if (restore_node_summary(sbi, segno, sum)) { f2fs_put_page(new, 1); return -EINVAL; } } } /* set uncompleted segment to curseg */ curseg = CURSEG_I(sbi, type); mutex_lock(&curseg->curseg_mutex); memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); curseg->next_segno = segno; reset_curseg(sbi, type, 0); curseg->alloc_type = ckpt->alloc_type[type]; curseg->next_blkoff = blk_off; mutex_unlock(&curseg->curseg_mutex); f2fs_put_page(new, 1); return 0; } static int restore_curseg_summaries(struct f2fs_sb_info *sbi) { int type = CURSEG_HOT_DATA; if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { /* restore for compacted data summary */ if (read_compacted_summaries(sbi)) return -EINVAL; type = CURSEG_HOT_NODE; } for (; type <= CURSEG_COLD_NODE; type++) if (read_normal_summaries(sbi, type)) return -EINVAL; return 0; } static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) { struct page *page; unsigned char *kaddr; struct f2fs_summary *summary; struct curseg_info *seg_i; int written_size = 0; int i, j; page = grab_meta_page(sbi, blkaddr++); kaddr = (unsigned char *)page_address(page); /* Step 1: write nat cache */ seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); written_size += SUM_JOURNAL_SIZE; /* Step 2: write sit cache */ seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, SUM_JOURNAL_SIZE); written_size += SUM_JOURNAL_SIZE; set_page_dirty(page); /* Step 3: write summary entries */ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { unsigned short blkoff; seg_i = CURSEG_I(sbi, i); if (sbi->ckpt->alloc_type[i] == SSR) blkoff = sbi->blocks_per_seg; else blkoff = curseg_blkoff(sbi, i); for (j = 0; j < blkoff; j++) { if (!page) { page = grab_meta_page(sbi, blkaddr++); kaddr = (unsigned char *)page_address(page); written_size = 0; } summary = (struct f2fs_summary *)(kaddr + written_size); *summary = seg_i->sum_blk->entries[j]; written_size += SUMMARY_SIZE; set_page_dirty(page); if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) continue; f2fs_put_page(page, 1); page = NULL; } } if (page) f2fs_put_page(page, 1); } static void write_normal_summaries(struct f2fs_sb_info *sbi, block_t blkaddr, int type) { int i, end; if (IS_DATASEG(type)) end = type + NR_CURSEG_DATA_TYPE; else end = type + NR_CURSEG_NODE_TYPE; for (i = type; i < end; i++) { struct curseg_info *sum = CURSEG_I(sbi, i); mutex_lock(&sum->curseg_mutex); write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); mutex_unlock(&sum->curseg_mutex); } } void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) { if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) write_compacted_summaries(sbi, start_blk); else write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); } void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) { if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); return; } int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, unsigned int val, int alloc) { int i; if (type == NAT_JOURNAL) { for (i = 0; i < nats_in_cursum(sum); i++) { if (le32_to_cpu(nid_in_journal(sum, i)) == val) return i; } if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) return update_nats_in_cursum(sum, 1); } else if (type == SIT_JOURNAL) { for (i = 0; i < sits_in_cursum(sum); i++) if (le32_to_cpu(segno_in_journal(sum, i)) == val) return i; if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) return update_sits_in_cursum(sum, 1); } return -1; } static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, unsigned int segno) { struct sit_info *sit_i = SIT_I(sbi); unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); block_t blk_addr = sit_i->sit_base_addr + offset; check_seg_range(sbi, segno); /* calculate sit block address */ if (f2fs_test_bit(offset, sit_i->sit_bitmap)) blk_addr += sit_i->sit_blocks; return get_meta_page(sbi, blk_addr); } static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, unsigned int start) { struct sit_info *sit_i = SIT_I(sbi); struct page *src_page, *dst_page; pgoff_t src_off, dst_off; void *src_addr, *dst_addr; src_off = current_sit_addr(sbi, start); dst_off = next_sit_addr(sbi, src_off); /* get current sit block page without lock */ src_page = get_meta_page(sbi, src_off); dst_page = grab_meta_page(sbi, dst_off); BUG_ON(PageDirty(src_page)); src_addr = page_address(src_page); dst_addr = page_address(dst_page); memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); set_page_dirty(dst_page); f2fs_put_page(src_page, 1); set_to_next_sit(sit_i, start); return dst_page; } static bool flush_sits_in_journal(struct f2fs_sb_info *sbi) { struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; int i; /* * If the journal area in the current summary is full of sit entries, * all the sit entries will be flushed. Otherwise the sit entries * are not able to replace with newly hot sit entries. */ if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) { for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { unsigned int segno; segno = le32_to_cpu(segno_in_journal(sum, i)); __mark_sit_entry_dirty(sbi, segno); } update_sits_in_cursum(sum, -sits_in_cursum(sum)); return 1; } return 0; } /* * CP calls this function, which flushes SIT entries including sit_journal, * and moves prefree segs to free segs. */ void flush_sit_entries(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); unsigned long *bitmap = sit_i->dirty_sentries_bitmap; struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; unsigned long nsegs = TOTAL_SEGS(sbi); struct page *page = NULL; struct f2fs_sit_block *raw_sit = NULL; unsigned int start = 0, end = 0; unsigned int segno = -1; bool flushed; mutex_lock(&curseg->curseg_mutex); mutex_lock(&sit_i->sentry_lock); /* * "flushed" indicates whether sit entries in journal are flushed * to the SIT area or not. */ flushed = flush_sits_in_journal(sbi); while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) { struct seg_entry *se = get_seg_entry(sbi, segno); int sit_offset, offset; sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); if (flushed) goto to_sit_page; offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1); if (offset >= 0) { segno_in_journal(sum, offset) = cpu_to_le32(segno); seg_info_to_raw_sit(se, &sit_in_journal(sum, offset)); goto flush_done; } to_sit_page: if (!page || (start > segno) || (segno > end)) { if (page) { f2fs_put_page(page, 1); page = NULL; } start = START_SEGNO(sit_i, segno); end = start + SIT_ENTRY_PER_BLOCK - 1; /* read sit block that will be updated */ page = get_next_sit_page(sbi, start); raw_sit = page_address(page); } /* udpate entry in SIT block */ seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]); flush_done: __clear_bit(segno, bitmap); sit_i->dirty_sentries--; } mutex_unlock(&sit_i->sentry_lock); mutex_unlock(&curseg->curseg_mutex); /* writeout last modified SIT block */ f2fs_put_page(page, 1); set_prefree_as_free_segments(sbi); } static int build_sit_info(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct sit_info *sit_i; unsigned int sit_segs, start; char *src_bitmap, *dst_bitmap; unsigned int bitmap_size; /* allocate memory for SIT information */ sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); if (!sit_i) return -ENOMEM; SM_I(sbi)->sit_info = sit_i; sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry)); if (!sit_i->sentries) return -ENOMEM; bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); if (!sit_i->dirty_sentries_bitmap) return -ENOMEM; for (start = 0; start < TOTAL_SEGS(sbi); start++) { sit_i->sentries[start].cur_valid_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); sit_i->sentries[start].ckpt_valid_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); if (!sit_i->sentries[start].cur_valid_map || !sit_i->sentries[start].ckpt_valid_map) return -ENOMEM; } if (sbi->segs_per_sec > 1) { sit_i->sec_entries = vzalloc(sbi->total_sections * sizeof(struct sec_entry)); if (!sit_i->sec_entries) return -ENOMEM; } /* get information related with SIT */ sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; /* setup SIT bitmap from ckeckpoint pack */ bitmap_size = __bitmap_size(sbi, SIT_BITMAP); src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); dst_bitmap = kzalloc(bitmap_size, GFP_KERNEL); if (!dst_bitmap) return -ENOMEM; memcpy(dst_bitmap, src_bitmap, bitmap_size); /* init SIT information */ sit_i->s_ops = &default_salloc_ops; sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); sit_i->sit_bitmap = dst_bitmap; sit_i->bitmap_size = bitmap_size; sit_i->dirty_sentries = 0; sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; mutex_init(&sit_i->sentry_lock); return 0; } static int build_free_segmap(struct f2fs_sb_info *sbi) { struct f2fs_sm_info *sm_info = SM_I(sbi); struct free_segmap_info *free_i; unsigned int bitmap_size, sec_bitmap_size; /* allocate memory for free segmap information */ free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); if (!free_i) return -ENOMEM; SM_I(sbi)->free_info = free_i; bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); if (!free_i->free_segmap) return -ENOMEM; sec_bitmap_size = f2fs_bitmap_size(sbi->total_sections); free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); if (!free_i->free_secmap) return -ENOMEM; /* set all segments as dirty temporarily */ memset(free_i->free_segmap, 0xff, bitmap_size); memset(free_i->free_secmap, 0xff, sec_bitmap_size); /* init free segmap information */ free_i->start_segno = (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr); free_i->free_segments = 0; free_i->free_sections = 0; rwlock_init(&free_i->segmap_lock); return 0; } static int build_curseg(struct f2fs_sb_info *sbi) { struct curseg_info *array = NULL; int i; array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL); if (!array) return -ENOMEM; SM_I(sbi)->curseg_array = array; for (i = 0; i < NR_CURSEG_TYPE; i++) { mutex_init(&array[i].curseg_mutex); array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); if (!array[i].sum_blk) return -ENOMEM; array[i].segno = NULL_SEGNO; array[i].next_blkoff = 0; } return restore_curseg_summaries(sbi); } static void build_sit_entries(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); struct f2fs_summary_block *sum = curseg->sum_blk; unsigned int start; for (start = 0; start < TOTAL_SEGS(sbi); start++) { struct seg_entry *se = &sit_i->sentries[start]; struct f2fs_sit_block *sit_blk; struct f2fs_sit_entry sit; struct page *page; int i; mutex_lock(&curseg->curseg_mutex); for (i = 0; i < sits_in_cursum(sum); i++) { if (le32_to_cpu(segno_in_journal(sum, i)) == start) { sit = sit_in_journal(sum, i); mutex_unlock(&curseg->curseg_mutex); goto got_it; } } mutex_unlock(&curseg->curseg_mutex); page = get_current_sit_page(sbi, start); sit_blk = (struct f2fs_sit_block *)page_address(page); sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; f2fs_put_page(page, 1); got_it: check_block_count(sbi, start, &sit); seg_info_from_raw_sit(se, &sit); if (sbi->segs_per_sec > 1) { struct sec_entry *e = get_sec_entry(sbi, start); e->valid_blocks += se->valid_blocks; } } } static void init_free_segmap(struct f2fs_sb_info *sbi) { unsigned int start; int type; for (start = 0; start < TOTAL_SEGS(sbi); start++) { struct seg_entry *sentry = get_seg_entry(sbi, start); if (!sentry->valid_blocks) __set_free(sbi, start); } /* set use the current segments */ for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { struct curseg_info *curseg_t = CURSEG_I(sbi, type); __set_test_and_inuse(sbi, curseg_t->segno); } } static void init_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); struct free_segmap_info *free_i = FREE_I(sbi); unsigned int segno = 0, offset = 0; unsigned short valid_blocks; while (segno < TOTAL_SEGS(sbi)) { /* find dirty segment based on free segmap */ segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset); if (segno >= TOTAL_SEGS(sbi)) break; offset = segno + 1; valid_blocks = get_valid_blocks(sbi, segno, 0); if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks) continue; mutex_lock(&dirty_i->seglist_lock); __locate_dirty_segment(sbi, segno, DIRTY); mutex_unlock(&dirty_i->seglist_lock); } } static int init_victim_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); dirty_i->victim_segmap[FG_GC] = kzalloc(bitmap_size, GFP_KERNEL); dirty_i->victim_segmap[BG_GC] = kzalloc(bitmap_size, GFP_KERNEL); if (!dirty_i->victim_segmap[FG_GC] || !dirty_i->victim_segmap[BG_GC]) return -ENOMEM; return 0; } static int build_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i; unsigned int bitmap_size, i; /* allocate memory for dirty segments list information */ dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); if (!dirty_i) return -ENOMEM; SM_I(sbi)->dirty_info = dirty_i; mutex_init(&dirty_i->seglist_lock); bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); for (i = 0; i < NR_DIRTY_TYPE; i++) { dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); dirty_i->nr_dirty[i] = 0; if (!dirty_i->dirty_segmap[i]) return -ENOMEM; } init_dirty_segmap(sbi); return init_victim_segmap(sbi); } /* * Update min, max modified time for cost-benefit GC algorithm */ static void init_min_max_mtime(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); unsigned int segno; mutex_lock(&sit_i->sentry_lock); sit_i->min_mtime = LLONG_MAX; for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) { unsigned int i; unsigned long long mtime = 0; for (i = 0; i < sbi->segs_per_sec; i++) mtime += get_seg_entry(sbi, segno + i)->mtime; mtime = div_u64(mtime, sbi->segs_per_sec); if (sit_i->min_mtime > mtime) sit_i->min_mtime = mtime; } sit_i->max_mtime = get_mtime(sbi); mutex_unlock(&sit_i->sentry_lock); } int build_segment_manager(struct f2fs_sb_info *sbi) { struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); struct f2fs_sm_info *sm_info = NULL; int err; sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); if (!sm_info) return -ENOMEM; /* init sm info */ sbi->sm_info = sm_info; INIT_LIST_HEAD(&sm_info->wblist_head); spin_lock_init(&sm_info->wblist_lock); sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); sm_info->segment_count = le32_to_cpu(raw_super->segment_count); sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); err = build_sit_info(sbi); if (err) return err; err = build_free_segmap(sbi); if (err) return err; err = build_curseg(sbi); if (err) return err; /* reinit free segmap based on SIT */ build_sit_entries(sbi); init_free_segmap(sbi); err = build_dirty_segmap(sbi); if (err) return err; init_min_max_mtime(sbi); return 0; } static void discard_dirty_segmap(struct f2fs_sb_info *sbi, enum dirty_type dirty_type) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); mutex_lock(&dirty_i->seglist_lock); kfree(dirty_i->dirty_segmap[dirty_type]); dirty_i->nr_dirty[dirty_type] = 0; mutex_unlock(&dirty_i->seglist_lock); } void reset_victim_segmap(struct f2fs_sb_info *sbi) { unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); memset(DIRTY_I(sbi)->victim_segmap[FG_GC], 0, bitmap_size); } static void destroy_victim_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); kfree(dirty_i->victim_segmap[FG_GC]); kfree(dirty_i->victim_segmap[BG_GC]); } static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) { struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); int i; if (!dirty_i) return; /* discard pre-free/dirty segments list */ for (i = 0; i < NR_DIRTY_TYPE; i++) discard_dirty_segmap(sbi, i); destroy_victim_segmap(sbi); SM_I(sbi)->dirty_info = NULL; kfree(dirty_i); } static void destroy_curseg(struct f2fs_sb_info *sbi) { struct curseg_info *array = SM_I(sbi)->curseg_array; int i; if (!array) return; SM_I(sbi)->curseg_array = NULL; for (i = 0; i < NR_CURSEG_TYPE; i++) kfree(array[i].sum_blk); kfree(array); } static void destroy_free_segmap(struct f2fs_sb_info *sbi) { struct free_segmap_info *free_i = SM_I(sbi)->free_info; if (!free_i) return; SM_I(sbi)->free_info = NULL; kfree(free_i->free_segmap); kfree(free_i->free_secmap); kfree(free_i); } static void destroy_sit_info(struct f2fs_sb_info *sbi) { struct sit_info *sit_i = SIT_I(sbi); unsigned int start; if (!sit_i) return; if (sit_i->sentries) { for (start = 0; start < TOTAL_SEGS(sbi); start++) { kfree(sit_i->sentries[start].cur_valid_map); kfree(sit_i->sentries[start].ckpt_valid_map); } } vfree(sit_i->sentries); vfree(sit_i->sec_entries); kfree(sit_i->dirty_sentries_bitmap); SM_I(sbi)->sit_info = NULL; kfree(sit_i->sit_bitmap); kfree(sit_i); } void destroy_segment_manager(struct f2fs_sb_info *sbi) { struct f2fs_sm_info *sm_info = SM_I(sbi); destroy_dirty_segmap(sbi); destroy_curseg(sbi); destroy_free_segmap(sbi); destroy_sit_info(sbi); sbi->sm_info = NULL; kfree(sm_info); }