/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Please try to maintain the following order within this file unless it makes * sense to do otherwise. From top to bottom: * 1. typedefs * 2. #defines, and macros * 3. structure definitions * 4. function prototypes * * Within each section, please try to order by generation in ascending order, * from top to bottom (ie. gen6 on the top, gen8 on the bottom). */ #ifndef __I915_GEM_GTT_H__ #define __I915_GEM_GTT_H__ #include #include #include #include "i915_gem_timeline.h" #include "i915_gem_request.h" #include "i915_selftest.h" #define I915_GTT_PAGE_SIZE_4K BIT(12) #define I915_GTT_PAGE_SIZE_64K BIT(16) #define I915_GTT_PAGE_SIZE_2M BIT(21) #define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K #define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M #define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE #define I915_FENCE_REG_NONE -1 #define I915_MAX_NUM_FENCES 32 /* 32 fences + sign bit for FENCE_REG_NONE */ #define I915_MAX_NUM_FENCE_BITS 6 struct drm_i915_file_private; struct drm_i915_fence_reg; typedef u32 gen6_pte_t; typedef u64 gen8_pte_t; typedef u64 gen8_pde_t; typedef u64 gen8_ppgtt_pdpe_t; typedef u64 gen8_ppgtt_pml4e_t; #define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT) /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */ #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0)) #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) #define GEN6_PTE_CACHE_LLC (2 << 1) #define GEN6_PTE_UNCACHED (1 << 1) #define GEN6_PTE_VALID (1 << 0) #define I915_PTES(pte_len) ((unsigned int)(PAGE_SIZE / (pte_len))) #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1) #define I915_PDES 512 #define I915_PDE_MASK (I915_PDES - 1) #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT)) #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t)) #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE) #define GEN6_PD_ALIGN (PAGE_SIZE * 16) #define GEN6_PDE_SHIFT 22 #define GEN6_PDE_VALID (1 << 0) #define GEN7_PTE_CACHE_L3_LLC (3 << 1) #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2) #define BYT_PTE_WRITEABLE (1 << 1) /* Cacheability Control is a 4-bit value. The low three bits are stored in bits * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE. */ #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \ (((bits) & 0x8) << (11 - 3))) #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2) #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3) #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8) #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb) #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7) #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6) #define HSW_PTE_UNCACHED (0) #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0)) #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr) /* GEN8 32b style address is defined as a 3 level page table: * 31:30 | 29:21 | 20:12 | 11:0 * PDPE | PDE | PTE | offset * The difference as compared to normal x86 3 level page table is the PDPEs are * programmed via register. */ #define GEN8_3LVL_PDPES 4 #define GEN8_PDE_SHIFT 21 #define GEN8_PDE_MASK 0x1ff #define GEN8_PTE_SHIFT 12 #define GEN8_PTE_MASK 0x1ff #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t)) /* GEN8 48b style address is defined as a 4 level page table: * 47:39 | 38:30 | 29:21 | 20:12 | 11:0 * PML4E | PDPE | PDE | PTE | offset */ #define GEN8_PML4ES_PER_PML4 512 #define GEN8_PML4E_SHIFT 39 #define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1) #define GEN8_PDPE_SHIFT 30 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page * tables */ #define GEN8_PDPE_MASK 0x1ff #define PPAT_UNCACHED (_PAGE_PWT | _PAGE_PCD) #define PPAT_CACHED_PDE 0 /* WB LLC */ #define PPAT_CACHED _PAGE_PAT /* WB LLCeLLC */ #define PPAT_DISPLAY_ELLC _PAGE_PCD /* WT eLLC */ #define CHV_PPAT_SNOOP (1<<6) #define GEN8_PPAT_AGE(x) ((x)<<4) #define GEN8_PPAT_LLCeLLC (3<<2) #define GEN8_PPAT_LLCELLC (2<<2) #define GEN8_PPAT_LLC (1<<2) #define GEN8_PPAT_WB (3<<0) #define GEN8_PPAT_WT (2<<0) #define GEN8_PPAT_WC (1<<0) #define GEN8_PPAT_UC (0<<0) #define GEN8_PPAT_ELLC_OVERRIDE (0<<2) #define GEN8_PPAT(i, x) ((u64)(x) << ((i) * 8)) #define GEN8_PPAT_GET_CA(x) ((x) & 3) #define GEN8_PPAT_GET_TC(x) ((x) & (3 << 2)) #define GEN8_PPAT_GET_AGE(x) ((x) & (3 << 4)) #define CHV_PPAT_GET_SNOOP(x) ((x) & (1 << 6)) #define GEN8_PDE_PS_2M BIT(7) struct sg_table; struct intel_rotation_info { struct intel_rotation_plane_info { /* tiles */ unsigned int width, height, stride, offset; } plane[2]; } __packed; static inline void assert_intel_rotation_info_is_packed(void) { BUILD_BUG_ON(sizeof(struct intel_rotation_info) != 8*sizeof(unsigned int)); } struct intel_partial_info { u64 offset; unsigned int size; } __packed; static inline void assert_intel_partial_info_is_packed(void) { BUILD_BUG_ON(sizeof(struct intel_partial_info) != sizeof(u64) + sizeof(unsigned int)); } enum i915_ggtt_view_type { I915_GGTT_VIEW_NORMAL = 0, I915_GGTT_VIEW_ROTATED = sizeof(struct intel_rotation_info), I915_GGTT_VIEW_PARTIAL = sizeof(struct intel_partial_info), }; static inline void assert_i915_ggtt_view_type_is_unique(void) { /* As we encode the size of each branch inside the union into its type, * we have to be careful that each branch has a unique size. */ switch ((enum i915_ggtt_view_type)0) { case I915_GGTT_VIEW_NORMAL: case I915_GGTT_VIEW_PARTIAL: case I915_GGTT_VIEW_ROTATED: /* gcc complains if these are identical cases */ break; } } struct i915_ggtt_view { enum i915_ggtt_view_type type; union { /* Members need to contain no holes/padding */ struct intel_partial_info partial; struct intel_rotation_info rotated; }; }; enum i915_cache_level; struct i915_vma; struct i915_page_dma { struct page *page; union { dma_addr_t daddr; /* For gen6/gen7 only. This is the offset in the GGTT * where the page directory entries for PPGTT begin */ u32 ggtt_offset; }; }; #define px_base(px) (&(px)->base) #define px_page(px) (px_base(px)->page) #define px_dma(px) (px_base(px)->daddr) struct i915_page_table { struct i915_page_dma base; unsigned int used_ptes; }; struct i915_page_directory { struct i915_page_dma base; struct i915_page_table *page_table[I915_PDES]; /* PDEs */ unsigned int used_pdes; }; struct i915_page_directory_pointer { struct i915_page_dma base; struct i915_page_directory **page_directory; unsigned int used_pdpes; }; struct i915_pml4 { struct i915_page_dma base; struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4]; }; struct i915_address_space { struct drm_mm mm; struct i915_gem_timeline timeline; struct drm_i915_private *i915; struct device *dma; /* Every address space belongs to a struct file - except for the global * GTT that is owned by the driver (and so @file is set to NULL). In * principle, no information should leak from one context to another * (or between files/processes etc) unless explicitly shared by the * owner. Tracking the owner is important in order to free up per-file * objects along with the file, to aide resource tracking, and to * assign blame. */ struct drm_i915_file_private *file; struct list_head global_link; u64 total; /* size addr space maps (ex. 2GB for ggtt) */ u64 reserved; /* size addr space reserved */ bool closed; struct i915_page_dma scratch_page; struct i915_page_table *scratch_pt; struct i915_page_directory *scratch_pd; struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */ /** * List of objects currently involved in rendering. * * Includes buffers having the contents of their GPU caches * flushed, not necessarily primitives. last_read_req * represents when the rendering involved will be completed. * * A reference is held on the buffer while on this list. */ struct list_head active_list; /** * LRU list of objects which are not in the ringbuffer and * are ready to unbind, but are still in the GTT. * * last_read_req is NULL while an object is in this list. * * A reference is not held on the buffer while on this list, * as merely being GTT-bound shouldn't prevent its being * freed, and we'll pull it off the list in the free path. */ struct list_head inactive_list; /** * List of vma that have been unbound. * * A reference is not held on the buffer while on this list. */ struct list_head unbound_list; struct pagevec free_pages; bool pt_kmap_wc; /* FIXME: Need a more generic return type */ gen6_pte_t (*pte_encode)(dma_addr_t addr, enum i915_cache_level level, u32 flags); /* Create a valid PTE */ /* flags for pte_encode */ #define PTE_READ_ONLY (1<<0) int (*allocate_va_range)(struct i915_address_space *vm, u64 start, u64 length); void (*clear_range)(struct i915_address_space *vm, u64 start, u64 length); void (*insert_page)(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level cache_level, u32 flags); void (*insert_entries)(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags); void (*cleanup)(struct i915_address_space *vm); /** Unmap an object from an address space. This usually consists of * setting the valid PTE entries to a reserved scratch page. */ void (*unbind_vma)(struct i915_vma *vma); /* Map an object into an address space with the given cache flags. */ int (*bind_vma)(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags); int (*set_pages)(struct i915_vma *vma); void (*clear_pages)(struct i915_vma *vma); I915_SELFTEST_DECLARE(struct fault_attr fault_attr); }; #define i915_is_ggtt(V) (!(V)->file) static inline bool i915_vm_is_48bit(const struct i915_address_space *vm) { return (vm->total - 1) >> 32; } /* The Graphics Translation Table is the way in which GEN hardware translates a * Graphics Virtual Address into a Physical Address. In addition to the normal * collateral associated with any va->pa translations GEN hardware also has a * portion of the GTT which can be mapped by the CPU and remain both coherent * and correct (in cases like swizzling). That region is referred to as GMADR in * the spec. */ struct i915_ggtt { struct i915_address_space base; struct io_mapping mappable; /* Mapping to our CPU mappable region */ phys_addr_t mappable_base; /* PA of our GMADR */ u64 mappable_end; /* End offset that we can CPU map */ /* Stolen memory is segmented in hardware with different portions * offlimits to certain functions. * * The drm_mm is initialised to the total accessible range, as found * from the PCI config. On Broadwell+, this is further restricted to * avoid the first page! The upper end of stolen memory is reserved for * hardware functions and similarly removed from the accessible range. */ u32 stolen_size; /* Total size of stolen memory */ u32 stolen_usable_size; /* Total size minus reserved ranges */ u32 stolen_reserved_base; u32 stolen_reserved_size; /** "Graphics Stolen Memory" holds the global PTEs */ void __iomem *gsm; void (*invalidate)(struct drm_i915_private *dev_priv); bool do_idle_maps; int mtrr; struct drm_mm_node error_capture; }; struct i915_hw_ppgtt { struct i915_address_space base; struct kref ref; struct drm_mm_node node; unsigned long pd_dirty_rings; union { struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */ struct i915_page_directory_pointer pdp; /* GEN8+ */ struct i915_page_directory pd; /* GEN6-7 */ }; gen6_pte_t __iomem *pd_addr; int (*switch_mm)(struct i915_hw_ppgtt *ppgtt, struct drm_i915_gem_request *req); void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m); }; /* * gen6_for_each_pde() iterates over every pde from start until start+length. * If start and start+length are not perfectly divisible, the macro will round * down and up as needed. Start=0 and length=2G effectively iterates over * every PDE in the system. The macro modifies ALL its parameters except 'pd', * so each of the other parameters should preferably be a simple variable, or * at most an lvalue with no side-effects! */ #define gen6_for_each_pde(pt, pd, start, length, iter) \ for (iter = gen6_pde_index(start); \ length > 0 && iter < I915_PDES && \ (pt = (pd)->page_table[iter], true); \ ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT); \ temp = min(temp - start, length); \ start += temp, length -= temp; }), ++iter) #define gen6_for_all_pdes(pt, pd, iter) \ for (iter = 0; \ iter < I915_PDES && \ (pt = (pd)->page_table[iter], true); \ ++iter) static inline u32 i915_pte_index(u64 address, unsigned int pde_shift) { const u32 mask = NUM_PTE(pde_shift) - 1; return (address >> PAGE_SHIFT) & mask; } /* Helper to counts the number of PTEs within the given length. This count * does not cross a page table boundary, so the max value would be * GEN6_PTES for GEN6, and GEN8_PTES for GEN8. */ static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift) { const u64 mask = ~((1ULL << pde_shift) - 1); u64 end; WARN_ON(length == 0); WARN_ON(offset_in_page(addr|length)); end = addr + length; if ((addr & mask) != (end & mask)) return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift); return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift); } static inline u32 i915_pde_index(u64 addr, u32 shift) { return (addr >> shift) & I915_PDE_MASK; } static inline u32 gen6_pte_index(u32 addr) { return i915_pte_index(addr, GEN6_PDE_SHIFT); } static inline u32 gen6_pte_count(u32 addr, u32 length) { return i915_pte_count(addr, length, GEN6_PDE_SHIFT); } static inline u32 gen6_pde_index(u32 addr) { return i915_pde_index(addr, GEN6_PDE_SHIFT); } static inline unsigned int i915_pdpes_per_pdp(const struct i915_address_space *vm) { if (i915_vm_is_48bit(vm)) return GEN8_PML4ES_PER_PML4; return GEN8_3LVL_PDPES; } /* Equivalent to the gen6 version, For each pde iterates over every pde * between from start until start + length. On gen8+ it simply iterates * over every page directory entry in a page directory. */ #define gen8_for_each_pde(pt, pd, start, length, iter) \ for (iter = gen8_pde_index(start); \ length > 0 && iter < I915_PDES && \ (pt = (pd)->page_table[iter], true); \ ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT); \ temp = min(temp - start, length); \ start += temp, length -= temp; }), ++iter) #define gen8_for_each_pdpe(pd, pdp, start, length, iter) \ for (iter = gen8_pdpe_index(start); \ length > 0 && iter < i915_pdpes_per_pdp(vm) && \ (pd = (pdp)->page_directory[iter], true); \ ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT); \ temp = min(temp - start, length); \ start += temp, length -= temp; }), ++iter) #define gen8_for_each_pml4e(pdp, pml4, start, length, iter) \ for (iter = gen8_pml4e_index(start); \ length > 0 && iter < GEN8_PML4ES_PER_PML4 && \ (pdp = (pml4)->pdps[iter], true); \ ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT); \ temp = min(temp - start, length); \ start += temp, length -= temp; }), ++iter) static inline u32 gen8_pte_index(u64 address) { return i915_pte_index(address, GEN8_PDE_SHIFT); } static inline u32 gen8_pde_index(u64 address) { return i915_pde_index(address, GEN8_PDE_SHIFT); } static inline u32 gen8_pdpe_index(u64 address) { return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK; } static inline u32 gen8_pml4e_index(u64 address) { return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK; } static inline u64 gen8_pte_count(u64 address, u64 length) { return i915_pte_count(address, length, GEN8_PDE_SHIFT); } static inline dma_addr_t i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n) { return px_dma(ppgtt->pdp.page_directory[n]); } static inline struct i915_ggtt * i915_vm_to_ggtt(struct i915_address_space *vm) { GEM_BUG_ON(!i915_is_ggtt(vm)); return container_of(vm, struct i915_ggtt, base); } #define INTEL_MAX_PPAT_ENTRIES 8 #define INTEL_PPAT_PERFECT_MATCH (~0U) struct intel_ppat; struct intel_ppat_entry { struct intel_ppat *ppat; struct kref ref; u8 value; }; struct intel_ppat { struct intel_ppat_entry entries[INTEL_MAX_PPAT_ENTRIES]; DECLARE_BITMAP(used, INTEL_MAX_PPAT_ENTRIES); DECLARE_BITMAP(dirty, INTEL_MAX_PPAT_ENTRIES); unsigned int max_entries; u8 clear_value; /* * Return a score to show how two PPAT values match, * a INTEL_PPAT_PERFECT_MATCH indicates a perfect match */ unsigned int (*match)(u8 src, u8 dst); void (*update_hw)(struct drm_i915_private *i915); struct drm_i915_private *i915; }; const struct intel_ppat_entry * intel_ppat_get(struct drm_i915_private *i915, u8 value); void intel_ppat_put(const struct intel_ppat_entry *entry); int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915); void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915); int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv); int i915_ggtt_init_hw(struct drm_i915_private *dev_priv); int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv); void i915_ggtt_enable_guc(struct drm_i915_private *i915); void i915_ggtt_disable_guc(struct drm_i915_private *i915); int i915_gem_init_ggtt(struct drm_i915_private *dev_priv); void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv); int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv); void i915_ppgtt_release(struct kref *kref); struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv, struct drm_i915_file_private *fpriv, const char *name); void i915_ppgtt_close(struct i915_address_space *vm); static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt) { if (ppgtt) kref_get(&ppgtt->ref); } static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt) { if (ppgtt) kref_put(&ppgtt->ref, i915_ppgtt_release); } void i915_check_and_clear_faults(struct drm_i915_private *dev_priv); void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv); void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv); int __must_check i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, struct sg_table *pages); void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, struct sg_table *pages); int i915_gem_gtt_reserve(struct i915_address_space *vm, struct drm_mm_node *node, u64 size, u64 offset, unsigned long color, unsigned int flags); int i915_gem_gtt_insert(struct i915_address_space *vm, struct drm_mm_node *node, u64 size, u64 alignment, unsigned long color, u64 start, u64 end, unsigned int flags); /* Flags used by pin/bind&friends. */ #define PIN_NONBLOCK BIT(0) #define PIN_MAPPABLE BIT(1) #define PIN_ZONE_4G BIT(2) #define PIN_NONFAULT BIT(3) #define PIN_NOEVICT BIT(4) #define PIN_MBZ BIT(5) /* I915_VMA_PIN_OVERFLOW */ #define PIN_GLOBAL BIT(6) /* I915_VMA_GLOBAL_BIND */ #define PIN_USER BIT(7) /* I915_VMA_LOCAL_BIND */ #define PIN_UPDATE BIT(8) #define PIN_HIGH BIT(9) #define PIN_OFFSET_BIAS BIT(10) #define PIN_OFFSET_FIXED BIT(11) #define PIN_OFFSET_MASK (-I915_GTT_PAGE_SIZE) #endif