/* * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "ath9k.h" #include "ar9003_mac.h" #define BITS_PER_BYTE 8 #define OFDM_PLCP_BITS 22 #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f) #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) #define L_STF 8 #define L_LTF 8 #define L_SIG 4 #define HT_SIG 8 #define HT_STF 4 #define HT_LTF(_ns) (4 * (_ns)) #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) #define OFDM_SIFS_TIME 16 static u16 bits_per_symbol[][2] = { /* 20MHz 40MHz */ { 26, 54 }, /* 0: BPSK */ { 52, 108 }, /* 1: QPSK 1/2 */ { 78, 162 }, /* 2: QPSK 3/4 */ { 104, 216 }, /* 3: 16-QAM 1/2 */ { 156, 324 }, /* 4: 16-QAM 3/4 */ { 208, 432 }, /* 5: 64-QAM 2/3 */ { 234, 486 }, /* 6: 64-QAM 3/4 */ { 260, 540 }, /* 7: 64-QAM 5/6 */ }; #define IS_HT_RATE(_rate) ((_rate) & 0x80) static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct list_head *bf_head, int frmlen); static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, struct ath_txq *txq, struct list_head *bf_q, struct ath_tx_status *ts, int txok, int sendbar); static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, struct list_head *head); static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len); static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts, int nframes, int nbad, int txok, bool update_rc); static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, int seqno); enum { MCS_HT20, MCS_HT20_SGI, MCS_HT40, MCS_HT40_SGI, }; static int ath_max_4ms_framelen[4][32] = { [MCS_HT20] = { 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172, 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280, 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532, 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532, }, [MCS_HT20_SGI] = { 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744, 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532, 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532, 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532, }, [MCS_HT40] = { 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532, 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532, 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532, 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532, }, [MCS_HT40_SGI] = { 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532, 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532, 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532, 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532, } }; /*********************/ /* Aggregation logic */ /*********************/ static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) { struct ath_atx_ac *ac = tid->ac; if (tid->paused) return; if (tid->sched) return; tid->sched = true; list_add_tail(&tid->list, &ac->tid_q); if (ac->sched) return; ac->sched = true; list_add_tail(&ac->list, &txq->axq_acq); } static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid) { struct ath_txq *txq = tid->ac->txq; WARN_ON(!tid->paused); spin_lock_bh(&txq->axq_lock); tid->paused = false; if (list_empty(&tid->buf_q)) goto unlock; ath_tx_queue_tid(txq, tid); ath_txq_schedule(sc, txq); unlock: spin_unlock_bh(&txq->axq_lock); } static u16 ath_frame_seqno(struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; return le16_to_cpu(hdr->seq_ctrl) >> IEEE80211_SEQ_SEQ_SHIFT; } static int ath_frame_len(struct sk_buff *skb) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int frmlen = skb->len + FCS_LEN; int padpos, padsize; /* Remove the padding size, if any */ padpos = ath9k_cmn_padpos(hdr->frame_control); padsize = padpos & 3; if (padsize && skb->len > padpos + padsize) frmlen -= padsize; if (tx_info->control.hw_key) frmlen += tx_info->control.hw_key->icv_len; return frmlen; } static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) { struct ath_txq *txq = tid->ac->txq; struct ath_buf *bf; struct list_head bf_head; struct ath_tx_status ts; INIT_LIST_HEAD(&bf_head); memset(&ts, 0, sizeof(ts)); spin_lock_bh(&txq->axq_lock); while (!list_empty(&tid->buf_q)) { bf = list_first_entry(&tid->buf_q, struct ath_buf, list); list_move_tail(&bf->list, &bf_head); if (bf_isretried(bf)) { ath_tx_update_baw(sc, tid, ath_frame_seqno(bf->bf_mpdu)); ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0); } else { ath_tx_send_normal(sc, txq, tid, &bf_head, ath_frame_len(bf->bf_mpdu)); } } spin_unlock_bh(&txq->axq_lock); } static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, int seqno) { int index, cindex; index = ATH_BA_INDEX(tid->seq_start, seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); __clear_bit(cindex, tid->tx_buf); while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { INCR(tid->seq_start, IEEE80211_SEQ_MAX); INCR(tid->baw_head, ATH_TID_MAX_BUFS); } } static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, u16 seqno) { int index, cindex; index = ATH_BA_INDEX(tid->seq_start, seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); __set_bit(cindex, tid->tx_buf); if (index >= ((tid->baw_tail - tid->baw_head) & (ATH_TID_MAX_BUFS - 1))) { tid->baw_tail = cindex; INCR(tid->baw_tail, ATH_TID_MAX_BUFS); } } /* * TODO: For frame(s) that are in the retry state, we will reuse the * sequence number(s) without setting the retry bit. The * alternative is to give up on these and BAR the receiver's window * forward. */ static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid) { struct ath_buf *bf; struct list_head bf_head; struct ath_tx_status ts; u16 bf_seqno; memset(&ts, 0, sizeof(ts)); INIT_LIST_HEAD(&bf_head); for (;;) { if (list_empty(&tid->buf_q)) break; bf = list_first_entry(&tid->buf_q, struct ath_buf, list); list_move_tail(&bf->list, &bf_head); bf_seqno = ath_frame_seqno(bf->bf_mpdu); if (bf_isretried(bf)) ath_tx_update_baw(sc, tid, bf_seqno); spin_unlock(&txq->axq_lock); ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0); spin_lock(&txq->axq_lock); } tid->seq_next = tid->seq_start; tid->baw_tail = tid->baw_head; } static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf) { struct sk_buff *skb; struct ieee80211_hdr *hdr; bf->bf_state.bf_type |= BUF_RETRY; bf->bf_retries++; TX_STAT_INC(txq->axq_qnum, a_retries); skb = bf->bf_mpdu; hdr = (struct ieee80211_hdr *)skb->data; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); } static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) { struct ath_buf *bf = NULL; spin_lock_bh(&sc->tx.txbuflock); if (unlikely(list_empty(&sc->tx.txbuf))) { spin_unlock_bh(&sc->tx.txbuflock); return NULL; } bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); list_del(&bf->list); spin_unlock_bh(&sc->tx.txbuflock); return bf; } static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) { spin_lock_bh(&sc->tx.txbuflock); list_add_tail(&bf->list, &sc->tx.txbuf); spin_unlock_bh(&sc->tx.txbuflock); } static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) { struct ath_buf *tbf; tbf = ath_tx_get_buffer(sc); if (WARN_ON(!tbf)) return NULL; ATH_TXBUF_RESET(tbf); tbf->aphy = bf->aphy; tbf->bf_mpdu = bf->bf_mpdu; tbf->bf_buf_addr = bf->bf_buf_addr; memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); tbf->bf_state = bf->bf_state; return tbf; } static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, struct ath_tx_status *ts, int txok, int *nframes, int *nbad) { u16 seq_st = 0; u32 ba[WME_BA_BMP_SIZE >> 5]; int ba_index; int isaggr = 0; *nbad = 0; *nframes = 0; isaggr = bf_isaggr(bf); if (isaggr) { seq_st = ts->ts_seqnum; memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); } while (bf) { ba_index = ATH_BA_INDEX(seq_st, ath_frame_seqno(bf->bf_mpdu)); (*nframes)++; if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) (*nbad)++; bf = bf->bf_next; } } static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf, struct list_head *bf_q, struct ath_tx_status *ts, int txok, bool retry) { struct ath_node *an = NULL; struct sk_buff *skb; struct ieee80211_sta *sta; struct ieee80211_hw *hw; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *tx_info; struct ath_atx_tid *tid = NULL; struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; struct list_head bf_head, bf_pending; u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0; u32 ba[WME_BA_BMP_SIZE >> 5]; int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; bool rc_update = true; struct ieee80211_tx_rate rates[4]; u16 bf_seqno; int nframes; u8 tidno; skb = bf->bf_mpdu; hdr = (struct ieee80211_hdr *)skb->data; tx_info = IEEE80211_SKB_CB(skb); hw = bf->aphy->hw; memcpy(rates, tx_info->control.rates, sizeof(rates)); rcu_read_lock(); sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); if (!sta) { rcu_read_unlock(); INIT_LIST_HEAD(&bf_head); while (bf) { bf_next = bf->bf_next; bf->bf_state.bf_type |= BUF_XRETRY; if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) || !bf->bf_stale || bf_next != NULL) list_move_tail(&bf->list, &bf_head); ath_tx_rc_status(bf, ts, 1, 1, 0, false); ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0, 0); bf = bf_next; } return; } an = (struct ath_node *)sta->drv_priv; tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; tid = ATH_AN_2_TID(an, tidno); /* * The hardware occasionally sends a tx status for the wrong TID. * In this case, the BA status cannot be considered valid and all * subframes need to be retransmitted */ if (tidno != ts->tid) txok = false; isaggr = bf_isaggr(bf); memset(ba, 0, WME_BA_BMP_SIZE >> 3); if (isaggr && txok) { if (ts->ts_flags & ATH9K_TX_BA) { seq_st = ts->ts_seqnum; memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); } else { /* * AR5416 can become deaf/mute when BA * issue happens. Chip needs to be reset. * But AP code may have sychronization issues * when perform internal reset in this routine. * Only enable reset in STA mode for now. */ if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) needreset = 1; } } INIT_LIST_HEAD(&bf_pending); INIT_LIST_HEAD(&bf_head); ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); while (bf) { txfail = txpending = 0; bf_next = bf->bf_next; skb = bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); bf_seqno = ath_frame_seqno(skb); if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf_seqno))) { /* transmit completion, subframe is * acked by block ack */ acked_cnt++; } else if (!isaggr && txok) { /* transmit completion */ acked_cnt++; } else { if (!(tid->state & AGGR_CLEANUP) && retry) { if (bf->bf_retries < ATH_MAX_SW_RETRIES) { ath_tx_set_retry(sc, txq, bf); txpending = 1; } else { bf->bf_state.bf_type |= BUF_XRETRY; txfail = 1; sendbar = 1; txfail_cnt++; } } else { /* * cleanup in progress, just fail * the un-acked sub-frames */ txfail = 1; } } if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) && bf_next == NULL) { /* * Make sure the last desc is reclaimed if it * not a holding desc. */ if (!bf_last->bf_stale) list_move_tail(&bf->list, &bf_head); else INIT_LIST_HEAD(&bf_head); } else { BUG_ON(list_empty(bf_q)); list_move_tail(&bf->list, &bf_head); } if (!txpending || (tid->state & AGGR_CLEANUP)) { /* * complete the acked-ones/xretried ones; update * block-ack window */ spin_lock_bh(&txq->axq_lock); ath_tx_update_baw(sc, tid, bf_seqno); spin_unlock_bh(&txq->axq_lock); if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { memcpy(tx_info->control.rates, rates, sizeof(rates)); ath_tx_rc_status(bf, ts, nframes, nbad, txok, true); rc_update = false; } else { ath_tx_rc_status(bf, ts, nframes, nbad, txok, false); } ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, !txfail, sendbar); } else { /* retry the un-acked ones */ if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) { if (bf->bf_next == NULL && bf_last->bf_stale) { struct ath_buf *tbf; tbf = ath_clone_txbuf(sc, bf_last); /* * Update tx baw and complete the * frame with failed status if we * run out of tx buf. */ if (!tbf) { spin_lock_bh(&txq->axq_lock); ath_tx_update_baw(sc, tid, bf_seqno); spin_unlock_bh(&txq->axq_lock); bf->bf_state.bf_type |= BUF_XRETRY; ath_tx_rc_status(bf, ts, nframes, nbad, 0, false); ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0, 0); break; } ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc); list_add_tail(&tbf->list, &bf_head); } else { /* * Clear descriptor status words for * software retry */ ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc); } } /* * Put this buffer to the temporary pending * queue to retain ordering */ list_splice_tail_init(&bf_head, &bf_pending); } bf = bf_next; } /* prepend un-acked frames to the beginning of the pending frame queue */ if (!list_empty(&bf_pending)) { spin_lock_bh(&txq->axq_lock); list_splice(&bf_pending, &tid->buf_q); ath_tx_queue_tid(txq, tid); spin_unlock_bh(&txq->axq_lock); } if (tid->state & AGGR_CLEANUP) { ath_tx_flush_tid(sc, tid); if (tid->baw_head == tid->baw_tail) { tid->state &= ~AGGR_ADDBA_COMPLETE; tid->state &= ~AGGR_CLEANUP; } } rcu_read_unlock(); if (needreset) ath_reset(sc, false); } static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, struct ath_atx_tid *tid) { struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ieee80211_tx_rate *rates; u32 max_4ms_framelen, frmlen; u16 aggr_limit, legacy = 0; int i; skb = bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); rates = tx_info->control.rates; /* * Find the lowest frame length among the rate series that will have a * 4ms transmit duration. * TODO - TXOP limit needs to be considered. */ max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; for (i = 0; i < 4; i++) { if (rates[i].count) { int modeidx; if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { legacy = 1; break; } if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) modeidx = MCS_HT40; else modeidx = MCS_HT20; if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) modeidx++; frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx]; max_4ms_framelen = min(max_4ms_framelen, frmlen); } } /* * limit aggregate size by the minimum rate if rate selected is * not a probe rate, if rate selected is a probe rate then * avoid aggregation of this packet. */ if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) return 0; if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED) aggr_limit = min((max_4ms_framelen * 3) / 8, (u32)ATH_AMPDU_LIMIT_MAX); else aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); /* * h/w can accept aggregates upto 16 bit lengths (65535). * The IE, however can hold upto 65536, which shows up here * as zero. Ignore 65536 since we are constrained by hw. */ if (tid->an->maxampdu) aggr_limit = min(aggr_limit, tid->an->maxampdu); return aggr_limit; } /* * Returns the number of delimiters to be added to * meet the minimum required mpdudensity. */ static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, struct ath_buf *bf, u16 frmlen) { struct sk_buff *skb = bf->bf_mpdu; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); u32 nsymbits, nsymbols; u16 minlen; u8 flags, rix; int width, streams, half_gi, ndelim, mindelim; /* Select standard number of delimiters based on frame length alone */ ndelim = ATH_AGGR_GET_NDELIM(frmlen); /* * If encryption enabled, hardware requires some more padding between * subframes. * TODO - this could be improved to be dependent on the rate. * The hardware can keep up at lower rates, but not higher rates */ if (tx_info->control.hw_key) ndelim += ATH_AGGR_ENCRYPTDELIM; /* * Convert desired mpdu density from microeconds to bytes based * on highest rate in rate series (i.e. first rate) to determine * required minimum length for subframe. Take into account * whether high rate is 20 or 40Mhz and half or full GI. * * If there is no mpdu density restriction, no further calculation * is needed. */ if (tid->an->mpdudensity == 0) return ndelim; rix = tx_info->control.rates[0].idx; flags = tx_info->control.rates[0].flags; width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; if (half_gi) nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); else nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); if (nsymbols == 0) nsymbols = 1; streams = HT_RC_2_STREAMS(rix); nsymbits = bits_per_symbol[rix % 8][width] * streams; minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; if (frmlen < minlen) { mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; ndelim = max(mindelim, ndelim); } return ndelim; } static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct list_head *bf_q, int *aggr_len) { #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) struct ath_buf *bf, *bf_first, *bf_prev = NULL; int rl = 0, nframes = 0, ndelim, prev_al = 0; u16 aggr_limit = 0, al = 0, bpad = 0, al_delta, h_baw = tid->baw_size / 2; enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; struct ieee80211_tx_info *tx_info; int frmlen; u16 bf_seqno; bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list); do { bf = list_first_entry(&tid->buf_q, struct ath_buf, list); bf_seqno = ath_frame_seqno(bf->bf_mpdu); /* do not step over block-ack window */ if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf_seqno)) { status = ATH_AGGR_BAW_CLOSED; break; } if (!rl) { aggr_limit = ath_lookup_rate(sc, bf, tid); rl = 1; } /* do not exceed aggregation limit */ frmlen = ath_frame_len(bf->bf_mpdu); al_delta = ATH_AGGR_DELIM_SZ + frmlen; if (nframes && (aggr_limit < (al + bpad + al_delta + prev_al))) { status = ATH_AGGR_LIMITED; break; } tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); if (nframes && ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || !(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS))) break; /* do not exceed subframe limit */ if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { status = ATH_AGGR_LIMITED; break; } nframes++; /* add padding for previous frame to aggregation length */ al += bpad + al_delta; /* * Get the delimiters needed to meet the MPDU * density for this node. */ ndelim = ath_compute_num_delims(sc, tid, bf_first, frmlen); bpad = PADBYTES(al_delta) + (ndelim << 2); bf->bf_next = NULL; ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0); /* link buffers of this frame to the aggregate */ if (!bf_isretried(bf)) ath_tx_addto_baw(sc, tid, bf_seqno); ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim); list_move_tail(&bf->list, bf_q); if (bf_prev) { bf_prev->bf_next = bf; ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc, bf->bf_daddr); } bf_prev = bf; } while (!list_empty(&tid->buf_q)); *aggr_len = al; return status; #undef PADBYTES } static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid) { struct ath_buf *bf; enum ATH_AGGR_STATUS status; struct list_head bf_q; int aggr_len; do { if (list_empty(&tid->buf_q)) return; INIT_LIST_HEAD(&bf_q); status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len); /* * no frames picked up to be aggregated; * block-ack window is not open. */ if (list_empty(&bf_q)) break; bf = list_first_entry(&bf_q, struct ath_buf, list); bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list); /* if only one frame, send as non-aggregate */ if (bf == bf->bf_lastbf) { bf->bf_state.bf_type &= ~BUF_AGGR; ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc); ath_buf_set_rate(sc, bf, ath_frame_len(bf->bf_mpdu)); ath_tx_txqaddbuf(sc, txq, &bf_q); continue; } /* setup first desc of aggregate */ bf->bf_state.bf_type |= BUF_AGGR; ath_buf_set_rate(sc, bf, aggr_len); ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, aggr_len); /* anchor last desc of aggregate */ ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc); ath_tx_txqaddbuf(sc, txq, &bf_q); TX_STAT_INC(txq->axq_qnum, a_aggr); } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH && status != ATH_AGGR_BAW_CLOSED); } int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid, u16 *ssn) { struct ath_atx_tid *txtid; struct ath_node *an; an = (struct ath_node *)sta->drv_priv; txtid = ATH_AN_2_TID(an, tid); if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE)) return -EAGAIN; txtid->state |= AGGR_ADDBA_PROGRESS; txtid->paused = true; *ssn = txtid->seq_start; return 0; } void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) { struct ath_node *an = (struct ath_node *)sta->drv_priv; struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); struct ath_txq *txq = txtid->ac->txq; if (txtid->state & AGGR_CLEANUP) return; if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { txtid->state &= ~AGGR_ADDBA_PROGRESS; return; } spin_lock_bh(&txq->axq_lock); txtid->paused = true; /* * If frames are still being transmitted for this TID, they will be * cleaned up during tx completion. To prevent race conditions, this * TID can only be reused after all in-progress subframes have been * completed. */ if (txtid->baw_head != txtid->baw_tail) txtid->state |= AGGR_CLEANUP; else txtid->state &= ~AGGR_ADDBA_COMPLETE; spin_unlock_bh(&txq->axq_lock); ath_tx_flush_tid(sc, txtid); } void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) { struct ath_atx_tid *txtid; struct ath_node *an; an = (struct ath_node *)sta->drv_priv; if (sc->sc_flags & SC_OP_TXAGGR) { txtid = ATH_AN_2_TID(an, tid); txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; txtid->state |= AGGR_ADDBA_COMPLETE; txtid->state &= ~AGGR_ADDBA_PROGRESS; ath_tx_resume_tid(sc, txtid); } } /********************/ /* Queue Management */ /********************/ static void ath_txq_drain_pending_buffers(struct ath_softc *sc, struct ath_txq *txq) { struct ath_atx_ac *ac, *ac_tmp; struct ath_atx_tid *tid, *tid_tmp; list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { list_del(&ac->list); ac->sched = false; list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { list_del(&tid->list); tid->sched = false; ath_tid_drain(sc, txq, tid); } } } struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath9k_tx_queue_info qi; static const int subtype_txq_to_hwq[] = { [WME_AC_BE] = ATH_TXQ_AC_BE, [WME_AC_BK] = ATH_TXQ_AC_BK, [WME_AC_VI] = ATH_TXQ_AC_VI, [WME_AC_VO] = ATH_TXQ_AC_VO, }; int qnum, i; memset(&qi, 0, sizeof(qi)); qi.tqi_subtype = subtype_txq_to_hwq[subtype]; qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; qi.tqi_physCompBuf = 0; /* * Enable interrupts only for EOL and DESC conditions. * We mark tx descriptors to receive a DESC interrupt * when a tx queue gets deep; otherwise waiting for the * EOL to reap descriptors. Note that this is done to * reduce interrupt load and this only defers reaping * descriptors, never transmitting frames. Aside from * reducing interrupts this also permits more concurrency. * The only potential downside is if the tx queue backs * up in which case the top half of the kernel may backup * due to a lack of tx descriptors. * * The UAPSD queue is an exception, since we take a desc- * based intr on the EOSP frames. */ if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE | TXQ_FLAG_TXERRINT_ENABLE; } else { if (qtype == ATH9K_TX_QUEUE_UAPSD) qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; else qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE; } qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); if (qnum == -1) { /* * NB: don't print a message, this happens * normally on parts with too few tx queues */ return NULL; } if (qnum >= ARRAY_SIZE(sc->tx.txq)) { ath_print(common, ATH_DBG_FATAL, "qnum %u out of range, max %u!\n", qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq)); ath9k_hw_releasetxqueue(ah, qnum); return NULL; } if (!ATH_TXQ_SETUP(sc, qnum)) { struct ath_txq *txq = &sc->tx.txq[qnum]; txq->axq_qnum = qnum; txq->axq_link = NULL; INIT_LIST_HEAD(&txq->axq_q); INIT_LIST_HEAD(&txq->axq_acq); spin_lock_init(&txq->axq_lock); txq->axq_depth = 0; txq->axq_tx_inprogress = false; sc->tx.txqsetup |= 1<txq_headidx = txq->txq_tailidx = 0; for (i = 0; i < ATH_TXFIFO_DEPTH; i++) INIT_LIST_HEAD(&txq->txq_fifo[i]); INIT_LIST_HEAD(&txq->txq_fifo_pending); } return &sc->tx.txq[qnum]; } int ath_txq_update(struct ath_softc *sc, int qnum, struct ath9k_tx_queue_info *qinfo) { struct ath_hw *ah = sc->sc_ah; int error = 0; struct ath9k_tx_queue_info qi; if (qnum == sc->beacon.beaconq) { /* * XXX: for beacon queue, we just save the parameter. * It will be picked up by ath_beaconq_config when * it's necessary. */ sc->beacon.beacon_qi = *qinfo; return 0; } BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); ath9k_hw_get_txq_props(ah, qnum, &qi); qi.tqi_aifs = qinfo->tqi_aifs; qi.tqi_cwmin = qinfo->tqi_cwmin; qi.tqi_cwmax = qinfo->tqi_cwmax; qi.tqi_burstTime = qinfo->tqi_burstTime; qi.tqi_readyTime = qinfo->tqi_readyTime; if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL, "Unable to update hardware queue %u!\n", qnum); error = -EIO; } else { ath9k_hw_resettxqueue(ah, qnum); } return error; } int ath_cabq_update(struct ath_softc *sc) { struct ath9k_tx_queue_info qi; int qnum = sc->beacon.cabq->axq_qnum; ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); /* * Ensure the readytime % is within the bounds. */ if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; qi.tqi_readyTime = (sc->beacon_interval * sc->config.cabqReadytime) / 100; ath_txq_update(sc, qnum, &qi); return 0; } /* * Drain a given TX queue (could be Beacon or Data) * * This assumes output has been stopped and * we do not need to block ath_tx_tasklet. */ void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx) { struct ath_buf *bf, *lastbf; struct list_head bf_head; struct ath_tx_status ts; memset(&ts, 0, sizeof(ts)); INIT_LIST_HEAD(&bf_head); for (;;) { spin_lock_bh(&txq->axq_lock); if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) { txq->txq_headidx = txq->txq_tailidx = 0; spin_unlock_bh(&txq->axq_lock); break; } else { bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx], struct ath_buf, list); } } else { if (list_empty(&txq->axq_q)) { txq->axq_link = NULL; spin_unlock_bh(&txq->axq_lock); break; } bf = list_first_entry(&txq->axq_q, struct ath_buf, list); if (bf->bf_stale) { list_del(&bf->list); spin_unlock_bh(&txq->axq_lock); ath_tx_return_buffer(sc, bf); continue; } } lastbf = bf->bf_lastbf; if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx], &lastbf->list); INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); } else { /* remove ath_buf's of the same mpdu from txq */ list_cut_position(&bf_head, &txq->axq_q, &lastbf->list); } txq->axq_depth--; spin_unlock_bh(&txq->axq_lock); if (bf_isampdu(bf)) ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0, retry_tx); else ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0); } spin_lock_bh(&txq->axq_lock); txq->axq_tx_inprogress = false; spin_unlock_bh(&txq->axq_lock); if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { spin_lock_bh(&txq->axq_lock); while (!list_empty(&txq->txq_fifo_pending)) { bf = list_first_entry(&txq->txq_fifo_pending, struct ath_buf, list); list_cut_position(&bf_head, &txq->txq_fifo_pending, &bf->bf_lastbf->list); spin_unlock_bh(&txq->axq_lock); if (bf_isampdu(bf)) ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0, retry_tx); else ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0); spin_lock_bh(&txq->axq_lock); } spin_unlock_bh(&txq->axq_lock); } /* flush any pending frames if aggregation is enabled */ if (sc->sc_flags & SC_OP_TXAGGR) { if (!retry_tx) { spin_lock_bh(&txq->axq_lock); ath_txq_drain_pending_buffers(sc, txq); spin_unlock_bh(&txq->axq_lock); } } } void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_txq *txq; int i, npend = 0; if (sc->sc_flags & SC_OP_INVALID) return; /* Stop beacon queue */ ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); /* Stop data queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) { txq = &sc->tx.txq[i]; ath9k_hw_stoptxdma(ah, txq->axq_qnum); npend += ath9k_hw_numtxpending(ah, txq->axq_qnum); } } if (npend) { int r; ath_print(common, ATH_DBG_FATAL, "Failed to stop TX DMA. Resetting hardware!\n"); r = ath9k_hw_reset(ah, sc->sc_ah->curchan, ah->caldata, false); if (r) ath_print(common, ATH_DBG_FATAL, "Unable to reset hardware; reset status %d\n", r); } for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) ath_draintxq(sc, &sc->tx.txq[i], retry_tx); } } void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) { ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); sc->tx.txqsetup &= ~(1<axq_qnum); } void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) { struct ath_atx_ac *ac; struct ath_atx_tid *tid; if (list_empty(&txq->axq_acq)) return; ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); list_del(&ac->list); ac->sched = false; do { if (list_empty(&ac->tid_q)) return; tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list); list_del(&tid->list); tid->sched = false; if (tid->paused) continue; ath_tx_sched_aggr(sc, txq, tid); /* * add tid to round-robin queue if more frames * are pending for the tid */ if (!list_empty(&tid->buf_q)) ath_tx_queue_tid(txq, tid); break; } while (!list_empty(&ac->tid_q)); if (!list_empty(&ac->tid_q)) { if (!ac->sched) { ac->sched = true; list_add_tail(&ac->list, &txq->axq_acq); } } } /***********/ /* TX, DMA */ /***********/ /* * Insert a chain of ath_buf (descriptors) on a txq and * assume the descriptors are already chained together by caller. */ static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, struct list_head *head) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath_buf *bf; /* * Insert the frame on the outbound list and * pass it on to the hardware. */ if (list_empty(head)) return; bf = list_first_entry(head, struct ath_buf, list); ath_print(common, ATH_DBG_QUEUE, "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth); if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { if (txq->axq_depth >= ATH_TXFIFO_DEPTH) { list_splice_tail_init(head, &txq->txq_fifo_pending); return; } if (!list_empty(&txq->txq_fifo[txq->txq_headidx])) ath_print(common, ATH_DBG_XMIT, "Initializing tx fifo %d which " "is non-empty\n", txq->txq_headidx); INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]); list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]); INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); ath_print(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n", txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); } else { list_splice_tail_init(head, &txq->axq_q); if (txq->axq_link == NULL) { ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); ath_print(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n", txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); } else { *txq->axq_link = bf->bf_daddr; ath_print(common, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n", txq->axq_qnum, txq->axq_link, ito64(bf->bf_daddr), bf->bf_desc); } ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc, &txq->axq_link); ath9k_hw_txstart(ah, txq->axq_qnum); } txq->axq_depth++; } static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid, struct ath_buf *bf, struct ath_tx_control *txctl) { struct list_head bf_head; u16 bf_seqno; bf->bf_state.bf_type |= BUF_AMPDU; TX_STAT_INC(txctl->txq->axq_qnum, a_queued); bf_seqno = ath_frame_seqno(bf->bf_mpdu); /* * Do not queue to h/w when any of the following conditions is true: * - there are pending frames in software queue * - the TID is currently paused for ADDBA/BAR request * - seqno is not within block-ack window * - h/w queue depth exceeds low water mark */ if (!list_empty(&tid->buf_q) || tid->paused || !BAW_WITHIN(tid->seq_start, tid->baw_size, bf_seqno) || txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) { /* * Add this frame to software queue for scheduling later * for aggregation. */ list_add_tail(&bf->list, &tid->buf_q); ath_tx_queue_tid(txctl->txq, tid); return; } INIT_LIST_HEAD(&bf_head); list_add(&bf->list, &bf_head); /* Add sub-frame to BAW */ if (!bf_isretried(bf)) ath_tx_addto_baw(sc, tid, bf_seqno); /* Queue to h/w without aggregation */ bf->bf_lastbf = bf; ath_buf_set_rate(sc, bf, txctl->frmlen); ath_tx_txqaddbuf(sc, txctl->txq, &bf_head); } static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct list_head *bf_head, int frmlen) { struct ath_buf *bf; bf = list_first_entry(bf_head, struct ath_buf, list); bf->bf_state.bf_type &= ~BUF_AMPDU; /* update starting sequence number for subsequent ADDBA request */ if (tid) INCR(tid->seq_start, IEEE80211_SEQ_MAX); bf->bf_lastbf = bf; ath_buf_set_rate(sc, bf, frmlen); ath_tx_txqaddbuf(sc, txq, bf_head); TX_STAT_INC(txq->axq_qnum, queued); } static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) { struct ieee80211_hdr *hdr; enum ath9k_pkt_type htype; __le16 fc; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; if (ieee80211_is_beacon(fc)) htype = ATH9K_PKT_TYPE_BEACON; else if (ieee80211_is_probe_resp(fc)) htype = ATH9K_PKT_TYPE_PROBE_RESP; else if (ieee80211_is_atim(fc)) htype = ATH9K_PKT_TYPE_ATIM; else if (ieee80211_is_pspoll(fc)) htype = ATH9K_PKT_TYPE_PSPOLL; else htype = ATH9K_PKT_TYPE_NORMAL; return htype; } static void assign_aggr_tid_seqno(struct sk_buff *skb) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; struct ath_node *an; struct ath_atx_tid *tid; __le16 fc; u8 tidno; if (!tx_info->control.sta) return; an = (struct ath_node *)tx_info->control.sta->drv_priv; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; /* * Override seqno set by upper layer with the one * in tx aggregation state. */ tid = ATH_AN_2_TID(an, tidno); hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); INCR(tid->seq_next, IEEE80211_SEQ_MAX); } static int setup_tx_flags(struct sk_buff *skb) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); int flags = 0; flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */ flags |= ATH9K_TXDESC_INTREQ; if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) flags |= ATH9K_TXDESC_NOACK; if (tx_info->flags & IEEE80211_TX_CTL_LDPC) flags |= ATH9K_TXDESC_LDPC; return flags; } /* * rix - rate index * pktlen - total bytes (delims + data + fcs + pads + pad delims) * width - 0 for 20 MHz, 1 for 40 MHz * half_gi - to use 4us v/s 3.6 us for symbol time */ static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, int width, int half_gi, bool shortPreamble) { u32 nbits, nsymbits, duration, nsymbols; int streams; /* find number of symbols: PLCP + data */ streams = HT_RC_2_STREAMS(rix); nbits = (pktlen << 3) + OFDM_PLCP_BITS; nsymbits = bits_per_symbol[rix % 8][width] * streams; nsymbols = (nbits + nsymbits - 1) / nsymbits; if (!half_gi) duration = SYMBOL_TIME(nsymbols); else duration = SYMBOL_TIME_HALFGI(nsymbols); /* addup duration for legacy/ht training and signal fields */ duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); return duration; } static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath9k_11n_rate_series series[4]; struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ieee80211_tx_rate *rates; const struct ieee80211_rate *rate; struct ieee80211_hdr *hdr; int i, flags = 0; u8 rix = 0, ctsrate = 0; bool is_pspoll; memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4); skb = bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); rates = tx_info->control.rates; hdr = (struct ieee80211_hdr *)skb->data; is_pspoll = ieee80211_is_pspoll(hdr->frame_control); /* * We check if Short Preamble is needed for the CTS rate by * checking the BSS's global flag. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. */ rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info); ctsrate = rate->hw_value; if (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ctsrate |= rate->hw_value_short; for (i = 0; i < 4; i++) { bool is_40, is_sgi, is_sp; int phy; if (!rates[i].count || (rates[i].idx < 0)) continue; rix = rates[i].idx; series[i].Tries = rates[i].count; series[i].ChSel = common->tx_chainmask; if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) || (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) { series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; flags |= ATH9K_TXDESC_RTSENA; } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; flags |= ATH9K_TXDESC_CTSENA; } if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) series[i].RateFlags |= ATH9K_RATESERIES_2040; if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) series[i].RateFlags |= ATH9K_RATESERIES_HALFGI; is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); if (rates[i].flags & IEEE80211_TX_RC_MCS) { /* MCS rates */ series[i].Rate = rix | 0x80; series[i].PktDuration = ath_pkt_duration(sc, rix, len, is_40, is_sgi, is_sp); if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) series[i].RateFlags |= ATH9K_RATESERIES_STBC; continue; } /* legcay rates */ if ((tx_info->band == IEEE80211_BAND_2GHZ) && !(rate->flags & IEEE80211_RATE_ERP_G)) phy = WLAN_RC_PHY_CCK; else phy = WLAN_RC_PHY_OFDM; rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx]; series[i].Rate = rate->hw_value; if (rate->hw_value_short) { if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) series[i].Rate |= rate->hw_value_short; } else { is_sp = false; } series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, phy, rate->bitrate * 100, len, rix, is_sp); } /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) flags &= ~ATH9K_TXDESC_RTSENA; /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ if (flags & ATH9K_TXDESC_RTSENA) flags &= ~ATH9K_TXDESC_CTSENA; /* set dur_update_en for l-sig computation except for PS-Poll frames */ ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc, bf->bf_lastbf->bf_desc, !is_pspoll, ctsrate, 0, series, 4, flags); if (sc->config.ath_aggr_prot && flags) ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192); } static struct ath_buf *ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_txq *txq, struct sk_buff *skb, int frmlen) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb; struct ath_buf *bf; struct ath_desc *ds; enum ath9k_key_type keytype; u32 keyix; int frm_type; bf = ath_tx_get_buffer(sc); if (!bf) { ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n"); return NULL; } ATH_TXBUF_RESET(bf); if (ieee80211_is_data_qos(hdr->frame_control) && conf_is_ht(&hw->conf) && (sc->sc_flags & SC_OP_TXAGGR)) assign_aggr_tid_seqno(skb); bf->aphy = aphy; bf->bf_flags = setup_tx_flags(skb); bf->bf_mpdu = skb; bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, skb->len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { bf->bf_mpdu = NULL; bf->bf_buf_addr = 0; ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL, "dma_mapping_error() on TX\n"); ath_tx_return_buffer(sc, bf); return NULL; } frm_type = get_hw_packet_type(skb); ds = bf->bf_desc; ath9k_hw_set_desc_link(ah, ds, 0); keytype = ath9k_cmn_get_hw_crypto_keytype(skb); if (tx_info->control.hw_key) keyix = tx_info->control.hw_key->hw_key_idx; else keyix = ATH9K_TXKEYIX_INVALID; ath9k_hw_set11n_txdesc(ah, ds, frmlen, frm_type, MAX_RATE_POWER, keyix, keytype, bf->bf_flags); ath9k_hw_filltxdesc(ah, ds, skb->len, /* segment length */ true, /* first segment */ true, /* last segment */ ds, /* first descriptor */ bf->bf_buf_addr, txq->axq_qnum); return bf; } /* FIXME: tx power */ static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf, struct ath_tx_control *txctl) { struct sk_buff *skb = bf->bf_mpdu; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ath_node *an = NULL; struct list_head bf_head; struct ath_atx_tid *tid; u8 tidno; spin_lock_bh(&txctl->txq->axq_lock); if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tx_info->control.sta) { an = (struct ath_node *)tx_info->control.sta->drv_priv; tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; tid = ATH_AN_2_TID(an, tidno); WARN_ON(tid->ac->txq != txctl->txq); /* * Try aggregation if it's a unicast data frame * and the destination is HT capable. */ ath_tx_send_ampdu(sc, tid, bf, txctl); } else { INIT_LIST_HEAD(&bf_head); list_add_tail(&bf->list, &bf_head); bf->bf_state.bfs_ftype = txctl->frame_type; bf->bf_state.bfs_paprd = txctl->paprd; if (bf->bf_state.bfs_paprd) ar9003_hw_set_paprd_txdesc(sc->sc_ah, bf->bf_desc, bf->bf_state.bfs_paprd); ath_tx_send_normal(sc, txctl->txq, NULL, &bf_head, txctl->frmlen); } spin_unlock_bh(&txctl->txq->axq_lock); } /* Upon failure caller should free skb */ int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, struct ath_tx_control *txctl) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_txq *txq = txctl->txq; struct ath_buf *bf; int padpos, padsize; int frmlen = skb->len + FCS_LEN; int q; if (info->control.hw_key) frmlen += info->control.hw_key->icv_len; txctl->frmlen = frmlen; /* * As a temporary workaround, assign seq# here; this will likely need * to be cleaned up to work better with Beacon transmission and virtual * BSSes. */ if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) sc->tx.seq_no += 0x10; hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); } /* Add the padding after the header if this is not already done */ padpos = ath9k_cmn_padpos(hdr->frame_control); padsize = padpos & 3; if (padsize && skb->len > padpos) { if (skb_headroom(skb) < padsize) return -ENOMEM; skb_push(skb, padsize); memmove(skb->data, skb->data + padsize, padpos); } bf = ath_tx_setup_buffer(hw, txctl->txq, skb, frmlen); if (unlikely(!bf)) return -ENOMEM; q = skb_get_queue_mapping(skb); spin_lock_bh(&txq->axq_lock); if (txq == sc->tx.txq_map[q] && ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) { ath_mac80211_stop_queue(sc, q); txq->stopped = 1; } spin_unlock_bh(&txq->axq_lock); ath_tx_start_dma(sc, bf, txctl); return 0; } /*****************/ /* TX Completion */ /*****************/ static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, struct ath_wiphy *aphy, int tx_flags, int ftype, struct ath_txq *txq) { struct ieee80211_hw *hw = sc->hw; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; int q, padpos, padsize; ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb); if (aphy) hw = aphy->hw; if (tx_flags & ATH_TX_BAR) tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) { /* Frame was ACKed */ tx_info->flags |= IEEE80211_TX_STAT_ACK; } padpos = ath9k_cmn_padpos(hdr->frame_control); padsize = padpos & 3; if (padsize && skb->len>padpos+padsize) { /* * Remove MAC header padding before giving the frame back to * mac80211. */ memmove(skb->data + padsize, skb->data, padpos); skb_pull(skb, padsize); } if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) { sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; ath_print(common, ATH_DBG_PS, "Going back to sleep after having " "received TX status (0x%lx)\n", sc->ps_flags & (PS_WAIT_FOR_BEACON | PS_WAIT_FOR_CAB | PS_WAIT_FOR_PSPOLL_DATA | PS_WAIT_FOR_TX_ACK)); } if (unlikely(ftype)) ath9k_tx_status(hw, skb, ftype); else { q = skb_get_queue_mapping(skb); if (txq == sc->tx.txq_map[q]) { spin_lock_bh(&txq->axq_lock); if (WARN_ON(--txq->pending_frames < 0)) txq->pending_frames = 0; spin_unlock_bh(&txq->axq_lock); } ieee80211_tx_status(hw, skb); } } static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, struct ath_txq *txq, struct list_head *bf_q, struct ath_tx_status *ts, int txok, int sendbar) { struct sk_buff *skb = bf->bf_mpdu; unsigned long flags; int tx_flags = 0; if (sendbar) tx_flags = ATH_TX_BAR; if (!txok) { tx_flags |= ATH_TX_ERROR; if (bf_isxretried(bf)) tx_flags |= ATH_TX_XRETRY; } dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); bf->bf_buf_addr = 0; if (bf->bf_state.bfs_paprd) { if (!sc->paprd_pending) dev_kfree_skb_any(skb); else complete(&sc->paprd_complete); } else { ath_debug_stat_tx(sc, bf, ts); ath_tx_complete(sc, skb, bf->aphy, tx_flags, bf->bf_state.bfs_ftype, txq); } /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't * accidentally reference it later. */ bf->bf_mpdu = NULL; /* * Return the list of ath_buf of this mpdu to free queue */ spin_lock_irqsave(&sc->tx.txbuflock, flags); list_splice_tail_init(bf_q, &sc->tx.txbuf); spin_unlock_irqrestore(&sc->tx.txbuflock, flags); } static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts, int nframes, int nbad, int txok, bool update_rc) { struct sk_buff *skb = bf->bf_mpdu; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hw *hw = bf->aphy->hw; struct ath_softc *sc = bf->aphy->sc; struct ath_hw *ah = sc->sc_ah; u8 i, tx_rateindex; if (txok) tx_info->status.ack_signal = ts->ts_rssi; tx_rateindex = ts->ts_rateindex; WARN_ON(tx_rateindex >= hw->max_rates); if (ts->ts_status & ATH9K_TXERR_FILT) tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc) { tx_info->flags |= IEEE80211_TX_STAT_AMPDU; BUG_ON(nbad > nframes); tx_info->status.ampdu_len = nframes; tx_info->status.ampdu_ack_len = nframes - nbad; } if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) { /* * If an underrun error is seen assume it as an excessive * retry only if max frame trigger level has been reached * (2 KB for single stream, and 4 KB for dual stream). * Adjust the long retry as if the frame was tried * hw->max_rate_tries times to affect how rate control updates * PER for the failed rate. * In case of congestion on the bus penalizing this type of * underruns should help hardware actually transmit new frames * successfully by eventually preferring slower rates. * This itself should also alleviate congestion on the bus. */ if (ieee80211_is_data(hdr->frame_control) && (ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN)) && ah->tx_trig_level >= sc->sc_ah->caps.tx_triglevel_max) tx_info->status.rates[tx_rateindex].count = hw->max_rate_tries; } for (i = tx_rateindex + 1; i < hw->max_rates; i++) { tx_info->status.rates[i].count = 0; tx_info->status.rates[i].idx = -1; } tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; } static void ath_wake_mac80211_queue(struct ath_softc *sc, int qnum) { struct ath_txq *txq; txq = sc->tx.txq_map[qnum]; spin_lock_bh(&txq->axq_lock); if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) { if (ath_mac80211_start_queue(sc, qnum)) txq->stopped = 0; } spin_unlock_bh(&txq->axq_lock); } static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath_buf *bf, *lastbf, *bf_held = NULL; struct list_head bf_head; struct ath_desc *ds; struct ath_tx_status ts; int txok; int status; int qnum; ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n", txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), txq->axq_link); for (;;) { spin_lock_bh(&txq->axq_lock); if (list_empty(&txq->axq_q)) { txq->axq_link = NULL; spin_unlock_bh(&txq->axq_lock); break; } bf = list_first_entry(&txq->axq_q, struct ath_buf, list); /* * There is a race condition that a BH gets scheduled * after sw writes TxE and before hw re-load the last * descriptor to get the newly chained one. * Software must keep the last DONE descriptor as a * holding descriptor - software does so by marking * it with the STALE flag. */ bf_held = NULL; if (bf->bf_stale) { bf_held = bf; if (list_is_last(&bf_held->list, &txq->axq_q)) { spin_unlock_bh(&txq->axq_lock); break; } else { bf = list_entry(bf_held->list.next, struct ath_buf, list); } } lastbf = bf->bf_lastbf; ds = lastbf->bf_desc; memset(&ts, 0, sizeof(ts)); status = ath9k_hw_txprocdesc(ah, ds, &ts); if (status == -EINPROGRESS) { spin_unlock_bh(&txq->axq_lock); break; } /* * Remove ath_buf's of the same transmit unit from txq, * however leave the last descriptor back as the holding * descriptor for hw. */ lastbf->bf_stale = true; INIT_LIST_HEAD(&bf_head); if (!list_is_singular(&lastbf->list)) list_cut_position(&bf_head, &txq->axq_q, lastbf->list.prev); txq->axq_depth--; txok = !(ts.ts_status & ATH9K_TXERR_MASK); txq->axq_tx_inprogress = false; if (bf_held) list_del(&bf_held->list); spin_unlock_bh(&txq->axq_lock); if (bf_held) ath_tx_return_buffer(sc, bf_held); if (!bf_isampdu(bf)) { /* * This frame is sent out as a single frame. * Use hardware retry status for this frame. */ if (ts.ts_status & ATH9K_TXERR_XRETRY) bf->bf_state.bf_type |= BUF_XRETRY; ath_tx_rc_status(bf, &ts, 1, txok ? 0 : 1, txok, true); } qnum = skb_get_queue_mapping(bf->bf_mpdu); if (bf_isampdu(bf)) ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok, true); else ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0); if (txq == sc->tx.txq_map[qnum]) ath_wake_mac80211_queue(sc, qnum); spin_lock_bh(&txq->axq_lock); if (sc->sc_flags & SC_OP_TXAGGR) ath_txq_schedule(sc, txq); spin_unlock_bh(&txq->axq_lock); } } static void ath_tx_complete_poll_work(struct work_struct *work) { struct ath_softc *sc = container_of(work, struct ath_softc, tx_complete_work.work); struct ath_txq *txq; int i; bool needreset = false; for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) { txq = &sc->tx.txq[i]; spin_lock_bh(&txq->axq_lock); if (txq->axq_depth) { if (txq->axq_tx_inprogress) { needreset = true; spin_unlock_bh(&txq->axq_lock); break; } else { txq->axq_tx_inprogress = true; } } spin_unlock_bh(&txq->axq_lock); } if (needreset) { ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET, "tx hung, resetting the chip\n"); ath9k_ps_wakeup(sc); ath_reset(sc, true); ath9k_ps_restore(sc); } ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT)); } void ath_tx_tasklet(struct ath_softc *sc) { int i; u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1); ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask); for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) ath_tx_processq(sc, &sc->tx.txq[i]); } } void ath_tx_edma_tasklet(struct ath_softc *sc) { struct ath_tx_status txs; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_hw *ah = sc->sc_ah; struct ath_txq *txq; struct ath_buf *bf, *lastbf; struct list_head bf_head; int status; int txok; int qnum; for (;;) { status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs); if (status == -EINPROGRESS) break; if (status == -EIO) { ath_print(common, ATH_DBG_XMIT, "Error processing tx status\n"); break; } /* Skip beacon completions */ if (txs.qid == sc->beacon.beaconq) continue; txq = &sc->tx.txq[txs.qid]; spin_lock_bh(&txq->axq_lock); if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) { spin_unlock_bh(&txq->axq_lock); return; } bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx], struct ath_buf, list); lastbf = bf->bf_lastbf; INIT_LIST_HEAD(&bf_head); list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx], &lastbf->list); INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); txq->axq_depth--; txq->axq_tx_inprogress = false; spin_unlock_bh(&txq->axq_lock); txok = !(txs.ts_status & ATH9K_TXERR_MASK); if (!bf_isampdu(bf)) { if (txs.ts_status & ATH9K_TXERR_XRETRY) bf->bf_state.bf_type |= BUF_XRETRY; ath_tx_rc_status(bf, &txs, 1, txok ? 0 : 1, txok, true); } qnum = skb_get_queue_mapping(bf->bf_mpdu); if (bf_isampdu(bf)) ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok, true); else ath_tx_complete_buf(sc, bf, txq, &bf_head, &txs, txok, 0); if (txq == sc->tx.txq_map[qnum]) ath_wake_mac80211_queue(sc, qnum); spin_lock_bh(&txq->axq_lock); if (!list_empty(&txq->txq_fifo_pending)) { INIT_LIST_HEAD(&bf_head); bf = list_first_entry(&txq->txq_fifo_pending, struct ath_buf, list); list_cut_position(&bf_head, &txq->txq_fifo_pending, &bf->bf_lastbf->list); ath_tx_txqaddbuf(sc, txq, &bf_head); } else if (sc->sc_flags & SC_OP_TXAGGR) ath_txq_schedule(sc, txq); spin_unlock_bh(&txq->axq_lock); } } /*****************/ /* Init, Cleanup */ /*****************/ static int ath_txstatus_setup(struct ath_softc *sc, int size) { struct ath_descdma *dd = &sc->txsdma; u8 txs_len = sc->sc_ah->caps.txs_len; dd->dd_desc_len = size * txs_len; dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len, &dd->dd_desc_paddr, GFP_KERNEL); if (!dd->dd_desc) return -ENOMEM; return 0; } static int ath_tx_edma_init(struct ath_softc *sc) { int err; err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); if (!err) ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, sc->txsdma.dd_desc_paddr, ATH_TXSTATUS_RING_SIZE); return err; } static void ath_tx_edma_cleanup(struct ath_softc *sc) { struct ath_descdma *dd = &sc->txsdma; dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr); } int ath_tx_init(struct ath_softc *sc, int nbufs) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); int error = 0; spin_lock_init(&sc->tx.txbuflock); error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, "tx", nbufs, 1, 1); if (error != 0) { ath_print(common, ATH_DBG_FATAL, "Failed to allocate tx descriptors: %d\n", error); goto err; } error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, "beacon", ATH_BCBUF, 1, 1); if (error != 0) { ath_print(common, ATH_DBG_FATAL, "Failed to allocate beacon descriptors: %d\n", error); goto err; } INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { error = ath_tx_edma_init(sc); if (error) goto err; } err: if (error != 0) ath_tx_cleanup(sc); return error; } void ath_tx_cleanup(struct ath_softc *sc) { if (sc->beacon.bdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf); if (sc->tx.txdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf); if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ath_tx_edma_cleanup(sc); } void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) { struct ath_atx_tid *tid; struct ath_atx_ac *ac; int tidno, acno; for (tidno = 0, tid = &an->tid[tidno]; tidno < WME_NUM_TID; tidno++, tid++) { tid->an = an; tid->tidno = tidno; tid->seq_start = tid->seq_next = 0; tid->baw_size = WME_MAX_BA; tid->baw_head = tid->baw_tail = 0; tid->sched = false; tid->paused = false; tid->state &= ~AGGR_CLEANUP; INIT_LIST_HEAD(&tid->buf_q); acno = TID_TO_WME_AC(tidno); tid->ac = &an->ac[acno]; tid->state &= ~AGGR_ADDBA_COMPLETE; tid->state &= ~AGGR_ADDBA_PROGRESS; } for (acno = 0, ac = &an->ac[acno]; acno < WME_NUM_AC; acno++, ac++) { ac->sched = false; ac->txq = sc->tx.txq_map[acno]; INIT_LIST_HEAD(&ac->tid_q); } } void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) { struct ath_atx_ac *ac; struct ath_atx_tid *tid; struct ath_txq *txq; int tidno; for (tidno = 0, tid = &an->tid[tidno]; tidno < WME_NUM_TID; tidno++, tid++) { ac = tid->ac; txq = ac->txq; spin_lock_bh(&txq->axq_lock); if (tid->sched) { list_del(&tid->list); tid->sched = false; } if (ac->sched) { list_del(&ac->list); tid->ac->sched = false; } ath_tid_drain(sc, txq, tid); tid->state &= ~AGGR_ADDBA_COMPLETE; tid->state &= ~AGGR_CLEANUP; spin_unlock_bh(&txq->axq_lock); } }