It is unsafe to do virtual to physical translations before mm_init() is
called if struct page is needed in order to determine the memory section
number (see SECTION_IN_PAGE_FLAGS). This is because only in mm_init()
we initialize struct pages for all the allocated memory when deferred
struct pages are used.
My recent fix in commit c9e97a1997 ("mm: initialize pages on demand
during boot") exposed this problem, because it greatly reduced number of
pages that are initialized before mm_init(), but the problem existed
even before my fix, as Fengguang Wu found.
Below is a more detailed explanation of the problem.
We initialize struct pages in four places:
1. Early in boot a small set of struct pages is initialized to fill the
first section, and lower zones.
2. During mm_init() we initialize "struct pages" for all the memory that
is allocated, i.e reserved in memblock.
3. Using on-demand logic when pages are allocated after mm_init call
(when memblock is finished)
4. After smp_init() when the rest free deferred pages are initialized.
The problem occurs if we try to do va to phys translation of a memory
between steps 1 and 2. Because we have not yet initialized struct pages
for all the reserved pages, it is inherently unsafe to do va to phys if
the translation itself requires access of "struct page" as in case of
this combination: CONFIG_SPARSE && !CONFIG_SPARSE_VMEMMAP
The following path exposes the problem:
start_kernel()
trap_init()
setup_cpu_entry_areas()
setup_cpu_entry_area(cpu)
get_cpu_gdt_paddr(cpu)
per_cpu_ptr_to_phys(addr)
pcpu_addr_to_page(addr)
virt_to_page(addr)
pfn_to_page(__pa(addr) >> PAGE_SHIFT)
We disable this path by not allowing NEED_PER_CPU_KM with deferred
struct pages feature.
The problems are discussed in these threads:
http://lkml.kernel.org/r/20180418135300.inazvpxjxowogyge@wfg-t540p.sh.intel.comhttp://lkml.kernel.org/r/20180419013128.iurzouiqxvcnpbvz@wfg-t540p.sh.intel.comhttp://lkml.kernel.org/r/20180426202619.2768-1-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180515175124.1770-1-pasha.tatashin@oracle.com
Fixes: 3a80a7fa79 ("mm: meminit: initialise a subset of struct pages if CONFIG_DEFERRED_STRUCT_PAGE_INIT is set")
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Dennis Zhou <dennisszhou@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A lot of Kconfig symbols have architecture specific dependencies.
In those cases that depend on architectures we have already removed,
they can be omitted.
Acked-by: Kalle Valo <kvalo@codeaurora.org>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Now that arch/metag/ has been removed, drop a bunch of metag references
in various codes across the whole tree:
- VM_GROWSUP and __VM_ARCH_SPECIFIC_1.
- MT_METAG_* ELF note types.
- METAG Kconfig dependencies (FRAME_POINTER) and ranges
(MAX_STACK_SIZE_MB).
- metag cases in tools (checkstack.pl, recordmcount.c, perf).
Signed-off-by: James Hogan <jhogan@kernel.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: linux-mm@kvack.org
Cc: linux-metag@vger.kernel.org
There is no need to have ARCH_SUPPORTS_DEFERRED_STRUCT_PAGE_INIT, as all
the page initialization code is in common code.
Also, there is no need to depend on MEMORY_HOTPLUG, as initialization
code does not really use hotplug memory functionality. So, we can
remove this requirement as well.
This patch allows to use deferred struct page initialization on all
platforms with memblock allocator.
Tested on x86, arm64, and sparc. Also, verified that code compiles on
PPC with CONFIG_MEMORY_HOTPLUG disabled.
Link: http://lkml.kernel.org/r/20171117014601.31606-1-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Performance of get_user_pages_fast() is critical for some workloads, but
it's tricky to test it directly.
This patch provides /sys/kernel/debug/gup_benchmark that helps with
testing performance of it.
See tools/testing/selftests/vm/gup_benchmark.c for userspace
counterpart.
Link: http://lkml.kernel.org/r/20170908215603.9189-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This moves all new code including new page migration helper behind kernel
Kconfig option so that there is no codee bloat for arch or user that do
not want to use HMM or any of its associated features.
arm allyesconfig (without all the patchset, then with and this patch):
text data bss dec hex filename
83721896 46511131 27582964 157815991 96814b7 ../without/vmlinux
83722364 46511131 27582964 157816459 968168b vmlinux
[jglisse@redhat.com: struct hmm is only use by HMM mirror functionality]
Link: http://lkml.kernel.org/r/20170825213133.27286-1-jglisse@redhat.com
[sfr@canb.auug.org.au: fix build (arm multi_v7_defconfig)]
Link: http://lkml.kernel.org/r/20170828181849.323ab81b@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170818032858.7447-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Platform with advance system bus (like CAPI or CCIX) allow device memory
to be accessible from CPU in a cache coherent fashion. Add a new type of
ZONE_DEVICE to represent such memory. The use case are the same as for
the un-addressable device memory but without all the corners cases.
Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
HMM (heterogeneous memory management) need struct page to support
migration from system main memory to device memory. Reasons for HMM and
migration to device memory is explained with HMM core patch.
This patch deals with device memory that is un-addressable memory (ie CPU
can not access it). Hence we do not want those struct page to be manage
like regular memory. That is why we extend ZONE_DEVICE to support
different types of memory.
A persistent memory type is define for existing user of ZONE_DEVICE and a
new device un-addressable type is added for the un-addressable memory
type. There is a clear separation between what is expected from each
memory type and existing user of ZONE_DEVICE are un-affected by new
requirement and new use of the un-addressable type. All specific code
path are protect with test against the memory type.
Because memory is un-addressable we use a new special swap type for when a
page is migrated to device memory (this reduces the number of maximum swap
file).
The main two additions beside memory type to ZONE_DEVICE is two callbacks.
First one, page_free() is call whenever page refcount reach 1 (which
means the page is free as ZONE_DEVICE page never reach a refcount of 0).
This allow device driver to manage its memory and associated struct page.
The second callback page_fault() happens when there is a CPU access to an
address that is back by a device page (which are un-addressable by the
CPU). This callback is responsible to migrate the page back to system
main memory. Device driver can not block migration back to system memory,
HMM make sure that such page can not be pin into device memory.
If device is in some error condition and can not migrate memory back then
a CPU page fault to device memory should end with SIGBUS.
[arnd@arndb.de: fix warning]
Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a heterogeneous memory management (HMM) process address space
mirroring. In a nutshell this provide an API to mirror process address
space on a device. This boils down to keeping CPU and device page table
synchronize (we assume that both device and CPU are cache coherent like
PCIe device can be).
This patch provide a simple API for device driver to achieve address space
mirroring thus avoiding each device driver to grow its own CPU page table
walker and its own CPU page table synchronization mechanism.
This is useful for NVidia GPU >= Pascal, Mellanox IB >= mlx5 and more
hardware in the future.
[jglisse@redhat.com: fix hmm for "mmu_notifier kill invalidate_page callback"]
Link: http://lkml.kernel.org/r/20170830231955.GD9445@redhat.com
Link: http://lkml.kernel.org/r/20170817000548.32038-4-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com>
Signed-off-by: Sherry Cheung <SCheung@nvidia.com>
Signed-off-by: Subhash Gutti <sgutti@nvidia.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
HMM provides 3 separate types of functionality:
- Mirroring: synchronize CPU page table and device page table
- Device memory: allocating struct page for device memory
- Migration: migrating regular memory to device memory
This patch introduces some common helpers and definitions to all of
those 3 functionality.
Link: http://lkml.kernel.org/r/20170817000548.32038-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com>
Signed-off-by: Sherry Cheung <SCheung@nvidia.com>
Signed-off-by: Subhash Gutti <sgutti@nvidia.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce CONFIG_ARCH_ENABLE_THP_MIGRATION to limit thp migration
functionality to x86_64, which should be safer at the first step.
Link: http://lkml.kernel.org/r/20170717193955.20207-5-zi.yan@sent.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
devm_memremap_pages() records mapped ranges in pgmap_radix with an entry
per section's worth of memory (128MB). The key for each of those
entries is a section number.
This leads to false positives when devm_memremap_pages() is passed a
section-unaligned range as lookups in the misalignment fail to return
NULL. We can close this hole by using the pfn as the key for entries in
the tree. The number of entries required to describe a remapped range
is reduced by leveraging multi-order entries.
In practice this approach usually yields just one entry in the tree if
the size and starting address are of the same power-of-2 alignment.
Previously we always needed nr_entries = mapping_size / 128MB.
Link: https://lists.01.org/pipermail/linux-nvdimm/2016-August/006666.html
Link: http://lkml.kernel.org/r/150215410565.39310.13767886055248249438.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KASAN doesn't happen work with memory hotplug because hotplugged memory
doesn't have any shadow memory. So any access to hotplugged memory
would cause a crash on shadow check.
Use memory hotplug notifier to allocate and map shadow memory when the
hotplugged memory is going online and free shadow after the memory
offlined.
Link: http://lkml.kernel.org/r/20170601162338.23540-4-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Highlights include:
- Support for STRICT_KERNEL_RWX on 64-bit server CPUs.
- Platform support for FSP2 (476fpe) board
- Enable ZONE_DEVICE on 64-bit server CPUs.
- Generic & powerpc spin loop primitives to optimise busy waiting
- Convert VDSO update function to use new update_vsyscall() interface
- Optimisations to hypercall/syscall/context-switch paths
- Improvements to the CPU idle code on Power8 and Power9.
As well as many other fixes and improvements.
Thanks to:
Akshay Adiga, Andrew Donnellan, Andrew Jeffery, Anshuman Khandual, Anton
Blanchard, Balbir Singh, Benjamin Herrenschmidt, Christophe Leroy, Christophe
Lombard, Colin Ian King, Dan Carpenter, Gautham R. Shenoy, Hari Bathini, Ian
Munsie, Ivan Mikhaylov, Javier Martinez Canillas, Madhavan Srinivasan,
Masahiro Yamada, Matt Brown, Michael Neuling, Michal Suchanek, Murilo
Opsfelder Araujo, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Paul
Mackerras, Pavel Machek, Russell Currey, Santosh Sivaraj, Stephen Rothwell,
Thiago Jung Bauermann, Yang Li.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZXyPCAAoJEFHr6jzI4aWAI9QQAISf2x5y//cqCi4ISyQB5pTq
KLS/yQajNkQOw7c0fzBZOaH5Xd/SJ6AcKWDg8yDlpDR3+sRRsr98iIRECgKS5I7/
DxD9ywcbSoMXFQQo1ZMCp5CeuMUIJRtugBnUQM+JXCSUCPbznCY5DchDTLyTBTpO
MeMVhI//JxthhoOMA9MudiEGaYCU9ho442Z4OJUSiLUv8WRbvQX9pTqoc4vx1fxA
BWf2mflztBVcIfKIyxIIIlDLukkMzix6gSYPMCbC7lzkbnU7JSqKiheJXjo1gJS2
ePHKDxeNR2/QP0g/j3aT/MR1uTt9MaNBSX3gANE1xQ9OoJ8m1sOtCO4gNbSdLWae
eXhDnoiEp930DRZOeEioOItuWWoxFaMyYk3BMmRKV4QNdYL3y3TRVeL2/XmRGqYL
Lxz4IY/x5TteFEJNGcRX90uizNSi8AaEXPF16pUk8Ctt6eH3ZSwPMv2fHeYVCMr0
KFlKHyaPEKEoztyzLcUR6u9QB56yxDN58bvLpd32AeHvKhqyxFoySy59x9bZbatn
B2y8mmDItg860e0tIG6jrtplpOVvL8i5jla5RWFVoQDuxxrLAds3vG9JZQs+eRzx
Fiic93bqeUAS6RzhXbJ6QQJYIyhE7yqpcgv7ME1W87SPef3HPBk9xlp3yIDwdA2z
bBDvrRnvupusz8qCWrxe
=w8rj
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Support for STRICT_KERNEL_RWX on 64-bit server CPUs.
- Platform support for FSP2 (476fpe) board
- Enable ZONE_DEVICE on 64-bit server CPUs.
- Generic & powerpc spin loop primitives to optimise busy waiting
- Convert VDSO update function to use new update_vsyscall() interface
- Optimisations to hypercall/syscall/context-switch paths
- Improvements to the CPU idle code on Power8 and Power9.
As well as many other fixes and improvements.
Thanks to: Akshay Adiga, Andrew Donnellan, Andrew Jeffery, Anshuman
Khandual, Anton Blanchard, Balbir Singh, Benjamin Herrenschmidt,
Christophe Leroy, Christophe Lombard, Colin Ian King, Dan Carpenter,
Gautham R. Shenoy, Hari Bathini, Ian Munsie, Ivan Mikhaylov, Javier
Martinez Canillas, Madhavan Srinivasan, Masahiro Yamada, Matt Brown,
Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Naveen N.
Rao, Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pavel Machek,
Russell Currey, Santosh Sivaraj, Stephen Rothwell, Thiago Jung
Bauermann, Yang Li"
* tag 'powerpc-4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (158 commits)
powerpc/Kconfig: Enable STRICT_KERNEL_RWX for some configs
powerpc/mm/radix: Implement STRICT_RWX/mark_rodata_ro() for Radix
powerpc/mm/hash: Implement mark_rodata_ro() for hash
powerpc/vmlinux.lds: Align __init_begin to 16M
powerpc/lib/code-patching: Use alternate map for patch_instruction()
powerpc/xmon: Add patch_instruction() support for xmon
powerpc/kprobes/optprobes: Use patch_instruction()
powerpc/kprobes: Move kprobes over to patch_instruction()
powerpc/mm/radix: Fix execute permissions for interrupt_vectors
powerpc/pseries: Fix passing of pp0 in updatepp() and updateboltedpp()
powerpc/64s: Blacklist rtas entry/exit from kprobes
powerpc/64s: Blacklist functions invoked on a trap
powerpc/64s: Un-blacklist system_call() from kprobes
powerpc/64s: Move system_call() symbol to just after setting MSR_EE
powerpc/64s: Blacklist system_call() and system_call_common() from kprobes
powerpc/64s: Convert .L__replay_interrupt_return to a local label
powerpc64/elfv1: Only dereference function descriptor for non-text symbols
cxl: Export library to support IBM XSL
powerpc/dts: Use #include "..." to include local DT
powerpc/perf/hv-24x7: Aggregate result elements on POWER9 SMT8
...
Commit 20b2f52b73 ("numa: add CONFIG_MOVABLE_NODE for
movable-dedicated node") has introduced CONFIG_MOVABLE_NODE without a
good explanation on why it is actually useful.
It makes a lot of sense to make movable node semantic opt in but we
already have that because the feature has to be explicitly enabled on
the kernel command line. A config option on top only makes the
configuration space larger without a good reason. It also adds an
additional ifdefery that pollutes the code.
Just drop the config option and make it de-facto always enabled. This
shouldn't introduce any change to the semantic.
Link: http://lkml.kernel.org/r/20170529114141.536-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "THP swap: Delay splitting THP during swapping out", v11.
This patchset is to optimize the performance of Transparent Huge Page
(THP) swap.
Recently, the performance of the storage devices improved so fast that
we cannot saturate the disk bandwidth with single logical CPU when do
page swap out even on a high-end server machine. Because the
performance of the storage device improved faster than that of single
logical CPU. And it seems that the trend will not change in the near
future. On the other hand, the THP becomes more and more popular
because of increased memory size. So it becomes necessary to optimize
THP swap performance.
The advantages of the THP swap support include:
- Batch the swap operations for the THP to reduce lock
acquiring/releasing, including allocating/freeing the swap space,
adding/deleting to/from the swap cache, and writing/reading the swap
space, etc. This will help improve the performance of the THP swap.
- The THP swap space read/write will be 2M sequential IO. It is
particularly helpful for the swap read, which are usually 4k random
IO. This will improve the performance of the THP swap too.
- It will help the memory fragmentation, especially when the THP is
heavily used by the applications. The 2M continuous pages will be
free up after THP swapping out.
- It will improve the THP utilization on the system with the swap
turned on. Because the speed for khugepaged to collapse the normal
pages into the THP is quite slow. After the THP is split during the
swapping out, it will take quite long time for the normal pages to
collapse back into the THP after being swapped in. The high THP
utilization helps the efficiency of the page based memory management
too.
There are some concerns regarding THP swap in, mainly because possible
enlarged read/write IO size (for swap in/out) may put more overhead on
the storage device. To deal with that, the THP swap in should be turned
on only when necessary. For example, it can be selected via
"always/never/madvise" logic, to be turned on globally, turned off
globally, or turned on only for VMA with MADV_HUGEPAGE, etc.
This patchset is the first step for the THP swap support. The plan is
to delay splitting THP step by step, finally avoid splitting THP during
the THP swapping out and swap out/in the THP as a whole.
As the first step, in this patchset, the splitting huge page is delayed
from almost the first step of swapping out to after allocating the swap
space for the THP and adding the THP into the swap cache. This will
reduce lock acquiring/releasing for the locks used for the swap cache
management.
With the patchset, the swap out throughput improves 15.5% (from about
3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case
with 8 processes. The test is done on a Xeon E5 v3 system. The swap
device used is a RAM simulated PMEM (persistent memory) device. To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.
This patch (of 5):
In this patch, splitting huge page is delayed from almost the first step
of swapping out to after allocating the swap space for the THP
(Transparent Huge Page) and adding the THP into the swap cache. This
will batch the corresponding operation, thus improve THP swap out
throughput.
This is the first step for the THP swap optimization. The plan is to
delay splitting the THP step by step and avoid splitting the THP
finally.
In this patch, one swap cluster is used to hold the contents of each THP
swapped out. So, the size of the swap cluster is changed to that of the
THP (Transparent Huge Page) on x86_64 architecture (512). For other
architectures which want such THP swap optimization,
ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for
the architecture. In effect, this will enlarge swap cluster size by 2
times on x86_64. Which may make it harder to find a free cluster when
the swap space becomes fragmented. So that, this may reduce the
continuous swap space allocation and sequential write in theory. The
performance test in 0day shows no regressions caused by this.
In the future of THP swap optimization, some information of the swapped
out THP (such as compound map count) will be recorded in the
swap_cluster_info data structure.
The mem cgroup swap accounting functions are enhanced to support charge
or uncharge a swap cluster backing a THP as a whole.
The swap cluster allocate/free functions are added to allocate/free a
swap cluster for a THP. A fair simple algorithm is used for swap
cluster allocation, that is, only the first swap device in priority list
will be tried to allocate the swap cluster. The function will fail if
the trying is not successful, and the caller will fallback to allocate a
single swap slot instead. This works good enough for normal cases. If
the difference of the number of the free swap clusters among multiple
swap devices is significant, it is possible that some THPs are split
earlier than necessary. For example, this could be caused by big size
difference among multiple swap devices.
The swap cache functions is enhanced to support add/delete THP to/from
the swap cache as a set of (HPAGE_PMD_NR) sub-pages. This may be
enhanced in the future with multi-order radix tree. But because we will
split the THP soon during swapping out, that optimization doesn't make
much sense for this first step.
The THP splitting functions are enhanced to support to split THP in swap
cache during swapping out. The page lock will be held during allocating
the swap cluster, adding the THP into the swap cache and splitting the
THP. So in the code path other than swapping out, if the THP need to be
split, the PageSwapCache(THP) will be always false.
The swap cluster is only available for SSD, so the THP swap optimization
in this patchset has no effect for HDD.
[ying.huang@intel.com: fix two issues in THP optimize patch]
Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com
[hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size]
Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option]
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull percpu updates from Tejun Heo:
"These are the percpu changes for the v4.13-rc1 merge window. There are
a couple visibility related changes - tracepoints and allocator stats
through debugfs, along with __ro_after_init markings and a cosmetic
rename in percpu_counter.
Please note that the simple O(#elements_in_the_chunk) area allocator
used by percpu allocator is again showing scalability issues,
primarily with bpf allocating and freeing large number of counters.
Dennis is working on the replacement allocator and the percpu
allocator will be seeing increased churns in the coming cycles"
* 'for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: fix static checker warnings in pcpu_destroy_chunk
percpu: fix early calls for spinlock in pcpu_stats
percpu: resolve err may not be initialized in pcpu_alloc
percpu_counter: Rename __percpu_counter_add to percpu_counter_add_batch
percpu: add tracepoint support for percpu memory
percpu: expose statistics about percpu memory via debugfs
percpu: migrate percpu data structures to internal header
percpu: add missing lockdep_assert_held to func pcpu_free_area
mark most percpu globals as __ro_after_init
Currently ZONE_DEVICE depends on X86_64 and this will get unwieldly as
new architectures (and platforms) get ZONE_DEVICE support. Move to an
arch selected Kconfig option to save us the trouble.
Cc: linux-mm@kvack.org
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There is limited visibility into the use of percpu memory leaving us
unable to reason about correctness of parameters and overall use of
percpu memory. These counters and statistics aim to help understand
basic statistics about percpu memory such as number of allocations over
the lifetime, allocation sizes, and fragmentation.
New Config: PERCPU_STATS
Signed-off-by: Dennis Zhou <dennisz@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This patch provides all required callbacks required by the generic
get_user_pages_fast() code and switches x86 over - and removes
the platform specific implementation.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170606113133.22974-2-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
AVR32 architecture has been removed from the Linux kernel sources, hence
clean up the special handling setting two quicklists by default in
mm/Kconfig.
Signed-off-by: Hans-Christian Noren Egtvedt <egtvedt@samfundet.no>
Add arch specific callback in the generic THP page cache code that will
deposit and withdarw preallocated page table. Archs like ppc64 use this
preallocated table to store the hash pte slot information.
Testing:
kernel build of the patch series on tmpfs mounted with option huge=always
The related thp stat:
thp_fault_alloc 72939
thp_fault_fallback 60547
thp_collapse_alloc 603
thp_collapse_alloc_failed 0
thp_file_alloc 253763
thp_file_mapped 4251
thp_split_page 51518
thp_split_page_failed 1
thp_deferred_split_page 73566
thp_split_pmd 665
thp_zero_page_alloc 3
thp_zero_page_alloc_failed 0
[akpm@linux-foundation.org: remove unneeded parentheses, per Kirill]
Link: http://lkml.kernel.org/r/20161113150025.17942-2-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When movable nodes are enabled, any node containing only hotpluggable
memory is made movable at boot time.
On x86, hotpluggable memory is discovered by parsing the ACPI SRAT,
making corresponding calls to memblock_mark_hotplug().
If we introduce a dt property to describe memory as hotpluggable,
configs supporting early fdt may then also do this marking and use
movable nodes.
Link: http://lkml.kernel.org/r/1479160961-25840-5-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To support movable memory nodes (CONFIG_MOVABLE_NODE), at least one of
the following must be true:
1. This config has the capability to identify movable nodes at boot.
Right now, only x86 can do this.
2. Our config supports memory hotplug, which means that a movable node
can be created by hotplugging all of its memory into ZONE_MOVABLE.
Fix the Kconfig definition of CONFIG_MOVABLE_NODE, which currently
recognizes (1), but not (2).
Link: http://lkml.kernel.org/r/1479160961-25840-4-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No, KASAN may not be able to co-exist with HOTPLUG_MEMORY at runtime,
but for build testing there is no reason not to allow them together.
This hopefully means better build coverage and fewer embarrasing silly
problems like the one fixed by commit 9db4f36e82 ("mm: remove unused
variable in memory hotplug") in the future.
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current wording of the COMPACTION Kconfig help text doesn't
emphasise that disabling COMPACTION might cripple the page allocator
which relies on the compaction quite heavily for high order requests and
an unexpected OOM can happen with the lack of compaction. Make sure we
are vocal about that.
Link: http://lkml.kernel.org/r/20160823091726.GK23577@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Markus Trippelsdorf <markus@trippelsdorf.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At present it is obvious that memory online and offline will fail when
KASAN is enabled. So add the condition to limit the memory_hotplug when
KASAN is enabled.
Link: http://lkml.kernel.org/r/1470063651-29519-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When it was first introduced CONFIG_ZONE_DEVICE depended on disabling
CONFIG_ZONE_DMA, a configuration choice reserved for "experts".
However, now that the ZONE_DMA conflict has been eliminated it no longer
makes sense to require CONFIG_EXPERT.
Link: http://lkml.kernel.org/r/146687646274.39261.14267596518720371009.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Eric Sandeen <sandeen@redhat.com>
Reported-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For file mappings, we don't deposit page tables on THP allocation
because it's not strictly required to implement split_huge_pmd(): we can
just clear pmd and let following page faults to reconstruct the page
table.
But Power makes use of deposited page table to address MMU quirk.
Let's hide THP page cache, including huge tmpfs, under separate config
option, so it can be forbidden on Power.
We can revert the patch later once solution for Power found.
Link: http://lkml.kernel.org/r/1466021202-61880-36-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we have !NO_BOOTMEM, the deferred page struct initialization
doesn't work well because the pages reserved in bootmem are released to
the page allocator uncoditionally. It causes memory corruption and
system crash eventually.
As Mel suggested, the bootmem is retiring slowly. We fix the issue by
simply hiding DEFERRED_STRUCT_PAGE_INIT when bootmem is enabled.
Link: http://lkml.kernel.org/r/1460602170-5821-1-git-send-email-gwshan@linux.vnet.ibm.com
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Per the suggestion from Michal Hocko [1], DEFERRED_STRUCT_PAGE_INIT
requires some ordering wrt other initialization operations, e.g.
page_ext_init has to happen after the whole memmap is initialized
properly.
For SPARSEMEM this requires to wait for page_alloc_init_late. Other
memory models (e.g. flatmem) might have different initialization
layouts (page_ext_init_flatmem). Currently DEFERRED_STRUCT_PAGE_INIT
depends on MEMORY_HOTPLUG which in turn
depends on SPARSEMEM || X86_64_ACPI_NUMA
depends on ARCH_ENABLE_MEMORY_HOTPLUG
and X86_64_ACPI_NUMA depends on NUMA which in turn disable FLATMEM
memory model:
config ARCH_FLATMEM_ENABLE
def_bool y
depends on X86_32 && !NUMA
so FLATMEM is ruled out via dependency maze. Be explicit and disable
FLATMEM for DEFERRED_STRUCT_PAGE_INIT so that we do not reintroduce
subtle initialization bugs
[1] http://lkml.kernel.org/r/20160523073157.GD2278@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1464027356-32282-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've been receiving increasingly concerned notes from 0day about how
much my recent changes have been bloating the radix tree. Make it
happier by only including multiorder support if
CONFIG_TRANSPARENT_HUGEPAGES is set.
This is an independent Kconfig option, so other radix tree users can
also set it if they have a need.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch introduces z3fold, a special purpose allocator for storing
compressed pages. It is designed to store up to three compressed pages
per physical page. It is a ZBUD derivative which allows for higher
compression ratio keeping the simplicity and determinism of its
predecessor.
This patch comes as a follow-up to the discussions at the Embedded Linux
Conference in San-Diego related to the talk [1]. The outcome of these
discussions was that it would be good to have a compressed page
allocator as stable and deterministic as zbud with with higher
compression ratio.
To keep the determinism and simplicity, z3fold, just like zbud, always
stores an integral number of compressed pages per page, but it can store
up to 3 pages unlike zbud which can store at most 2. Therefore the
compression ratio goes to around 2.6x while zbud's one is around 1.7x.
The patch is based on the latest linux.git tree.
This version has been updated after testing on various simulators (e.g.
ARM Versatile Express, MIPS Malta, x86_64/Haswell) and basing on
comments from Dan Streetman [3].
[1] https://openiotelc2016.sched.org/event/6DAC/swapping-and-embedded-compression-relieves-the-pressure-vitaly-wool-softprise-consulting-ou
[2] https://lkml.org/lkml/2016/4/21/799
[3] https://lkml.org/lkml/2016/5/4/852
Link: http://lkml.kernel.org/r/20160509151753.ec3f9fda3c9898d31ff52a32@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset continues the work I started with commit 31bc3858ea
("memory-hotplug: add automatic onlining policy for the newly added
memory").
Initially I was going to stop there and bring the policy setting logic
to userspace. I met two issues on this way:
1) It is possible to have memory hotplugged at boot (e.g. with QEMU).
These blocks stay offlined if we turn the onlining policy on by
userspace.
2) My attempt to bring this policy setting to systemd failed, systemd
maintainers suggest to change the default in kernel or ... to use
tmpfiles.d to alter the policy (which looks like a hack to me):
https://github.com/systemd/systemd/pull/2938
Here I suggest to add a config option to set the default value for the
policy and a kernel command line parameter to make the override.
This patch (of 2):
Introduce config option to set the default value for memory hotplug
onlining policy (/sys/devices/system/memory/auto_online_blocks). The
reason one would want to turn this option on are to have early onlining
for hotpluggable memory available at boot and to not require any
userspace actions to make memory hotplug work.
[akpm@linux-foundation.org: tweak Kconfig text]
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Lennart Poettering <lennart@poettering.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now we have IS_ENABLED helper to check if a Kconfig option is enabled or
not, so ZONE_DMA_FLAG sounds no longer useful.
And, the use of ZONE_DMA_FLAG in slab looks pointless according to the
comment [1] from Johannes Weiner, so remove them and ORing passed in
flags with the cache gfp flags has been done in kmem_getpages().
[1] https://lkml.org/lkml/2014/9/25/553
Link: http://lkml.kernel.org/r/1462381297-11009-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 protection key support from Ingo Molnar:
"This tree adds support for a new memory protection hardware feature
that is available in upcoming Intel CPUs: 'protection keys' (pkeys).
There's a background article at LWN.net:
https://lwn.net/Articles/643797/
The gist is that protection keys allow the encoding of
user-controllable permission masks in the pte. So instead of having a
fixed protection mask in the pte (which needs a system call to change
and works on a per page basis), the user can map a (handful of)
protection mask variants and can change the masks runtime relatively
cheaply, without having to change every single page in the affected
virtual memory range.
This allows the dynamic switching of the protection bits of large
amounts of virtual memory, via user-space instructions. It also
allows more precise control of MMU permission bits: for example the
executable bit is separate from the read bit (see more about that
below).
This tree adds the MM infrastructure and low level x86 glue needed for
that, plus it adds a high level API to make use of protection keys -
if a user-space application calls:
mmap(..., PROT_EXEC);
or
mprotect(ptr, sz, PROT_EXEC);
(note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice
this special case, and will set a special protection key on this
memory range. It also sets the appropriate bits in the Protection
Keys User Rights (PKRU) register so that the memory becomes unreadable
and unwritable.
So using protection keys the kernel is able to implement 'true'
PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies
PROT_READ as well. Unreadable executable mappings have security
advantages: they cannot be read via information leaks to figure out
ASLR details, nor can they be scanned for ROP gadgets - and they
cannot be used by exploits for data purposes either.
We know about no user-space code that relies on pure PROT_EXEC
mappings today, but binary loaders could start making use of this new
feature to map binaries and libraries in a more secure fashion.
There is other pending pkeys work that offers more high level system
call APIs to manage protection keys - but those are not part of this
pull request.
Right now there's a Kconfig that controls this feature
(CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled
(like most x86 CPU feature enablement code that has no runtime
overhead), but it's not user-configurable at the moment. If there's
any serious problem with this then we can make it configurable and/or
flip the default"
* 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
x86/mm/pkeys: Fix mismerge of protection keys CPUID bits
mm/pkeys: Fix siginfo ABI breakage caused by new u64 field
x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA
mm/core, x86/mm/pkeys: Add execute-only protection keys support
x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags
x86/mm/pkeys: Allow kernel to modify user pkey rights register
x86/fpu: Allow setting of XSAVE state
x86/mm: Factor out LDT init from context init
mm/core, x86/mm/pkeys: Add arch_validate_pkey()
mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits()
x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU
x86/mm/pkeys: Add Kconfig prompt to existing config option
x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps
x86/mm/pkeys: Dump PKRU with other kernel registers
mm/core, x86/mm/pkeys: Differentiate instruction fetches
x86/mm/pkeys: Optimize fault handling in access_error()
mm/core: Do not enforce PKEY permissions on remote mm access
um, pkeys: Add UML arch_*_access_permitted() methods
mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys
x86/mm/gup: Simplify get_user_pages() PTE bit handling
...
The primary use case for devm_memremap_pages() is to allocate an memmap
array from persistent memory. That capabilty requires vmem_altmap which
requires SPARSEMEM_VMEMMAP.
Also, without SPARSEMEM_VMEMMAP the addition of ZONE_DEVICE expands
ZONES_WIDTH and triggers the:
"Unfortunate NUMA and NUMA Balancing config, growing page-frame for
last_cpupid."
...warning in mm/memory.c. SPARSEMEM_VMEMMAP=n && ZONE_DEVICE=y is not
a configuration we should worry about supporting.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ZONE_DEVICE (merged in 4.3) and ZONE_CMA (proposed) are examples of new
mm zones that are bumping up against the current maximum limit of 4
zones, i.e. 2 bits in page->flags for the GFP_ZONE_TABLE.
The GFP_ZONE_TABLE poses an interesting constraint since
include/linux/gfp.h gets included by the 32-bit portion of a 64-bit
build. We need to be careful to only build the table for zones that
have a corresponding gfp_t flag. GFP_ZONES_SHIFT is introduced for this
purpose. This patch does not attempt to solve the problem of adding a
new zone that also has a corresponding GFP_ flag.
Vlastimil points out that ZONE_DEVICE, by depending on x86_64 and
SPARSEMEM_VMEMMAP implies that SECTIONS_WIDTH is zero. In other words
even though ZONE_DEVICE does not fit in GFP_ZONE_TABLE it is free to
consume another bit in page->flags (expand ZONES_WIDTH) with room to
spare.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=110931
Fixes: 033fbae988 ("mm: ZONE_DEVICE for "device memory"")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Mark <markk@clara.co.uk>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MEMORY_HOTPLUG already depends on ARCH_ENABLE_MEMORY_HOTPLUG which is
selected by the supported architectures, so the following arch depend is
unnecessary.
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The syscall-level code is passed a protection key and need to
return an appropriate error code if the protection key is bogus.
We will be using this in subsequent patches.
Note that this also begins a series of arch-specific calls that
we need to expose in otherwise arch-independent code. We create
a linux/pkeys.h header where we will put *all* the stubs for
these functions.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210232.774EEAAB@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
vma->vm_flags is an 'unsigned long', so has space for 32 flags
on 32-bit architectures. The high 32 bits are unused on 64-bit
platforms. We've steered away from using the unused high VMA
bits for things because we would have difficulty supporting it
on 32-bit.
Protection Keys are not available in 32-bit mode, so there is
no concern about supporting this feature in 32-bit mode or on
32-bit CPUs.
This patch carves out 4 bits from the high half of
vma->vm_flags and allows architectures to set config option
to make them available.
Sparse complains about these constants unless we explicitly
call them "UL".
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Valentin Rothberg <valentinrothberg@gmail.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xie XiuQi <xiexiuqi@huawei.com>
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210208.81AF00D5@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The description mentions kswapd threads, while the deferred struct page
initialization is actually done by one-off "pgdatinitX" threads.
Fix the description so that potentially users are not confused about
pgdatinit threads using CPU after boot instead of kswapd.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh has pointed that compound_head() call can be unsafe in some
context. There's one example:
CPU0 CPU1
isolate_migratepages_block()
page_count()
compound_head()
!!PageTail() == true
put_page()
tail->first_page = NULL
head = tail->first_page
alloc_pages(__GFP_COMP)
prep_compound_page()
tail->first_page = head
__SetPageTail(p);
!!PageTail() == true
<head == NULL dereferencing>
The race is pure theoretical. I don't it's possible to trigger it in
practice. But who knows.
We can fix the race by changing how encode PageTail() and compound_head()
within struct page to be able to update them in one shot.
The patch introduces page->compound_head into third double word block in
front of compound_dtor and compound_order. Bit 0 encodes PageTail() and
the rest bits are pointer to head page if bit zero is set.
The patch moves page->pmd_huge_pte out of word, just in case if an
architecture defines pgtable_t into something what can have the bit 0
set.
hugetlb_cgroup uses page->lru.next in the second tail page to store
pointer struct hugetlb_cgroup. The patch switch it to use page->private
in the second tail page instead. The space is free since ->first_page is
removed from the union.
The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER
limitation, since there's now space in first tail page to store struct
hugetlb_cgroup pointer. But that's out of scope of the patch.
That means page->compound_head shares storage space with:
- page->lru.next;
- page->next;
- page->rcu_head.next;
That's too long list to be absolutely sure, but looks like nobody uses
bit 0 of the word.
page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use
call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future
call_rcu_lazy() is not allowed as it makes use of the bit and we can
get false positive PageTail().
[1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV8WvjAAoJEAhfPr2O5OEV5wIP/AjmqOau99ms4FvOQ932sO57
kKDM4CYeTBkYY2Xz2eGStgxhcEj538JTf6SXdrceEEYJHb/GNCb2iBM1TnB4YciF
rqhFv+n3R8h4Yn5KmhEhYzEfO7HUoyHPrOhcmTLzDoTO5wyrhAlPZxDWHohmfU84
uQ8WyGPYLxwm8hdZ+/NkB8PXsGbWN65EoKzN6tt2kA6HUP52UxE0Cw7Qu7Iu5zmO
y/x03mMbjhCBFFE41EeM76J+xKBhuaS4cyf8g08DJy5Zpf6ic8bKFmVg1tAFOZRD
mCETLrUlPYhglHqOoVS25bCI5kCw9xTAyjPZdQnwCTwgHl5gG3E4oJYKASrmZlps
igMSmLJEpQilsLy1Ze+K+Ci8EILmZzwbi21X0sbjq74Jd+tJZ+C8ZuWHVmPEF9j7
iHtZNIRzkzufNBJZn3DsmlGBb/Xc/UqfZVnJAB9gu3Ktav6dmtEIHrGRPpL19iYH
WtJWLt/Bpyb318K+fnxL8SzUqUxZJ4+8DrMtlgTqHmIRwVQ4CczyeWi0utQmBXEF
CaNp00S2V9N1hn8OIc+gaf7LTYJn0LkHFsskoiUZ5aZQd9ai0ql0IT1xLe0r8lMi
+ieB0Vp4wJtaodWIXOPeFugDqQXIb0Mh2M8J9FIJ116FLIai6btzO2iyVCtlR9Bg
1uPztCfJ/nusPPHnE26R
=TEFw
-----END PGP SIGNATURE-----
Merge tag 'media/v4.3-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-media
Pull media updates from Mauro Carvalho Chehab:
"A series of patches that move part of the code used to allocate memory
from the media subsystem to the mm subsystem"
[ The mm parts have been acked by VM people, and the series was
apparently in -mm for a while - Linus ]
* tag 'media/v4.3-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-media:
[media] drm/exynos: Convert g2d_userptr_get_dma_addr() to use get_vaddr_frames()
[media] media: vb2: Remove unused functions
[media] media: vb2: Convert vb2_dc_get_userptr() to use frame vector
[media] media: vb2: Convert vb2_vmalloc_get_userptr() to use frame vector
[media] media: vb2: Convert vb2_dma_sg_get_userptr() to use frame vector
[media] vb2: Provide helpers for mapping virtual addresses
[media] media: omap_vout: Convert omap_vout_uservirt_to_phys() to use get_vaddr_pfns()
[media] mm: Provide new get_vaddr_frames() helper
[media] vb2: Push mmap_sem down to memops
Knowing the portion of memory that is not used by a certain application or
memory cgroup (idle memory) can be useful for partitioning the system
efficiently, e.g. by setting memory cgroup limits appropriately.
Currently, the only means to estimate the amount of idle memory provided
by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
access bit for all pages mapped to a particular process by writing 1 to
clear_refs, wait for some time, and then count smaps:Referenced. However,
this method has two serious shortcomings:
- it does not count unmapped file pages
- it affects the reclaimer logic
To overcome these drawbacks, this patch introduces two new page flags,
Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
A page's Idle flag can only be set from userspace by setting bit in
/sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
and it is cleared whenever the page is accessed either through page tables
(it is cleared in page_referenced() in this case) or using the read(2)
system call (mark_page_accessed()). Thus by setting the Idle flag for
pages of a particular workload, which can be found e.g. by reading
/proc/PID/pagemap, waiting for some time to let the workload access its
working set, and then reading the bitmap file, one can estimate the amount
of pages that are not used by the workload.
The Young page flag is used to avoid interference with the memory
reclaimer. A page's Young flag is set whenever the Access bit of a page
table entry pointing to the page is cleared by writing to the bitmap file.
If page_referenced() is called on a Young page, it will add 1 to its
return value, therefore concealing the fact that the Access bit was
cleared.
Note, since there is no room for extra page flags on 32 bit, this feature
uses extended page flags when compiled on 32 bit.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: kpageidle requires an MMU]
[akpm@linux-foundation.org: decouple from page-flags rework]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map. This facility is used by the pmem driver to
enable pfn_to_page() operations on the page frames returned by DAX
('direct_access' in 'struct block_device_operations'). For now, the
'memmap' allocation for these "device" pages comes from "System
RAM". Support for allocating the memmap from device memory will
arrive in a later kernel.
2/ Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3. Completion of
the conversion is targeted for v4.4.
3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
5/ Miscellaneous updates and fixes to libnvdimm including support
for issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5
JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R
OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C
nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ
NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e
zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR
1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA
sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb
bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1
o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz
dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn
slsw6DkrWT60CRE42nbK
=o57/
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This update has successfully completed a 0day-kbuild run and has
appeared in a linux-next release. The changes outside of the typical
drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
the introduction of ZONE_DEVICE + devm_memremap_pages().
Summary:
- Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map.
This facility is used by the pmem driver to enable pfn_to_page()
operations on the page frames returned by DAX ('direct_access' in
'struct block_device_operations').
For now, the 'memmap' allocation for these "device" pages comes
from "System RAM". Support for allocating the memmap from device
memory will arrive in a later kernel.
- Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3.
Completion of the conversion is targeted for v4.4.
- Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
- Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
- Miscellaneous updates and fixes to libnvdimm including support for
issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes"
* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
libnvdimm, pmem: direct map legacy pmem by default
libnvdimm, pmem: 'struct page' for pmem
libnvdimm, pfn: 'struct page' provider infrastructure
x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
add devm_memremap_pages
mm: ZONE_DEVICE for "device memory"
mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
dax: drop size parameter to ->direct_access()
nd_blk: change aperture mapping from WC to WB
nvdimm: change to use generic kvfree()
pmem, dax: have direct_access use __pmem annotation
dax: update I/O path to do proper PMEM flushing
pmem: add copy_from_iter_pmem() and clear_pmem()
pmem, x86: clean up conditional pmem includes
pmem: remove layer when calling arch_has_wmb_pmem()
pmem, x86: move x86 PMEM API to new pmem.h header
libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
pmem: switch to devm_ allocations
devres: add devm_memremap
libnvdimm, btt: write and validate parent_uuid
...
While pmem is usable as a block device or via DAX mappings to userspace
there are several usage scenarios that can not target pmem due to its
lack of struct page coverage. In preparation for "hot plugging" pmem
into the vmemmap add ZONE_DEVICE as a new zone to tag these pages
separately from the ones that are subject to standard page allocations.
Importantly "device memory" can be removed at will by userspace
unbinding the driver of the device.
Having a separate zone prevents allocation and otherwise marks these
pages that are distinct from typical uniform memory. Device memory has
different lifetime and performance characteristics than RAM. However,
since we have run out of ZONES_SHIFT bits this functionality currently
depends on sacrificing ZONE_DMA.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Jerome Glisse <j.glisse@gmail.com>
[hch: various simplifications in the arch interface]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Provide new function get_vaddr_frames(). This function maps virtual
addresses from given start and fills given array with page frame numbers of
the corresponding pages. If given start belongs to a normal vma, the function
grabs reference to each of the pages to pin them in memory. If start
belongs to VM_IO | VM_PFNMAP vma, we don't touch page structures. Caller
must make sure pfns aren't reused for anything else while he is using
them.
This function is created for various drivers to simplify handling of
their buffers.
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
This patch initalises all low memory struct pages and 2G of the highest
zone on each node during memory initialisation if
CONFIG_DEFERRED_STRUCT_PAGE_INIT is set. That config option cannot be set
but will be available in a later patch. Parallel initialisation of struct
page depends on some features from memory hotplug and it is necessary to
alter alter section annotations.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>