Commit Graph

1466 Commits

Author SHA1 Message Date
Liu Bo
c2931667c8 Btrfs: adjust outstanding_extents counter properly when dio write is split
Currently how btrfs dio deals with split dio write is not good
enough if dio write is split into several segments due to the
lack of contiguous space, a large dio write like 'dd bs=1G count=1'
can end up with incorrect outstanding_extents counter and endio
would complain loudly with an assertion.

This fixes the problem by compensating the outstanding_extents
counter in inode if a large dio write gets split.

Reported-by: Anand Jain <anand.jain@oracle.com>
Tested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-01-03 17:29:50 +01:00
Linus Torvalds
231753ef78 Merge uncontroversial parts of branch 'readlink' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
Pull partial readlink cleanups from Miklos Szeredi.

This is the uncontroversial part of the readlink cleanup patch-set that
simplifies the default readlink handling.

Miklos and Al are still discussing the rest of the series.

* git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
  vfs: make generic_readlink() static
  vfs: remove ".readlink = generic_readlink" assignments
  vfs: default to generic_readlink()
  vfs: replace calling i_op->readlink with vfs_readlink()
  proc/self: use generic_readlink
  ecryptfs: use vfs_get_link()
  bad_inode: add missing i_op initializers
2016-12-17 19:16:12 -08:00
Linus Torvalds
087a76d390 Merge branch 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "Jeff Mahoney and Dave Sterba have a really nice set of cleanups in
  here, and Christoph pitched in corrections/improvements to make btrfs
  use proper helpers for bio walking instead of doing it by hand.

  There are some key fixes as well, including some long standing bugs
  that took forever to track down in btrfs_drop_extents and during
  balance"

* 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (77 commits)
  btrfs: limit async_work allocation and worker func duration
  Revert "Btrfs: adjust len of writes if following a preallocated extent"
  Btrfs: don't WARN() in btrfs_transaction_abort() for IO errors
  btrfs: opencode chunk locking, remove helpers
  btrfs: remove root parameter from transaction commit/end routines
  btrfs: split btrfs_wait_marked_extents into normal and tree log functions
  btrfs: take an fs_info directly when the root is not used otherwise
  btrfs: simplify btrfs_wait_cache_io prototype
  btrfs: convert extent-tree tracepoints to use fs_info
  btrfs: root->fs_info cleanup, access fs_info->delayed_root directly
  btrfs: root->fs_info cleanup, add fs_info convenience variables
  btrfs: root->fs_info cleanup, update_block_group{,flags}
  btrfs: root->fs_info cleanup, lock/unlock_chunks
  btrfs: root->fs_info cleanup, btrfs_calc_{trans,trunc}_metadata_size
  btrfs: pull node/sector/stripe sizes out of root and into fs_info
  btrfs: root->fs_info cleanup, io_ctl_init
  btrfs: root->fs_info cleanup, use fs_info->dev_root everywhere
  btrfs: struct reada_control.root -> reada_control.fs_info
  btrfs: struct btrfsic_state->root should be an fs_info
  btrfs: alloc_reserved_file_extent trace point should use extent_root
  ...
2016-12-16 10:53:01 -08:00
Linus Torvalds
36869cb93d Merge branch 'for-4.10/block' of git://git.kernel.dk/linux-block
Pull block layer updates from Jens Axboe:
 "This is the main block pull request this series. Contrary to previous
  release, I've kept the core and driver changes in the same branch. We
  always ended up having dependencies between the two for obvious
  reasons, so makes more sense to keep them together. That said, I'll
  probably try and keep more topical branches going forward, especially
  for cycles that end up being as busy as this one.

  The major parts of this pull request is:

   - Improved support for O_DIRECT on block devices, with a small
     private implementation instead of using the pig that is
     fs/direct-io.c. From Christoph.

   - Request completion tracking in a scalable fashion. This is utilized
     by two components in this pull, the new hybrid polling and the
     writeback queue throttling code.

   - Improved support for polling with O_DIRECT, adding a hybrid mode
     that combines pure polling with an initial sleep. From me.

   - Support for automatic throttling of writeback queues on the block
     side. This uses feedback from the device completion latencies to
     scale the queue on the block side up or down. From me.

   - Support from SMR drives in the block layer and for SD. From Hannes
     and Shaun.

   - Multi-connection support for nbd. From Josef.

   - Cleanup of request and bio flags, so we have a clear split between
     which are bio (or rq) private, and which ones are shared. From
     Christoph.

   - A set of patches from Bart, that improve how we handle queue
     stopping and starting in blk-mq.

   - Support for WRITE_ZEROES from Chaitanya.

   - Lightnvm updates from Javier/Matias.

   - Supoort for FC for the nvme-over-fabrics code. From James Smart.

   - A bunch of fixes from a whole slew of people, too many to name
     here"

* 'for-4.10/block' of git://git.kernel.dk/linux-block: (182 commits)
  blk-stat: fix a few cases of missing batch flushing
  blk-flush: run the queue when inserting blk-mq flush
  elevator: make the rqhash helpers exported
  blk-mq: abstract out blk_mq_dispatch_rq_list() helper
  blk-mq: add blk_mq_start_stopped_hw_queue()
  block: improve handling of the magic discard payload
  blk-wbt: don't throttle discard or write zeroes
  nbd: use dev_err_ratelimited in io path
  nbd: reset the setup task for NBD_CLEAR_SOCK
  nvme-fabrics: Add FC LLDD loopback driver to test FC-NVME
  nvme-fabrics: Add target support for FC transport
  nvme-fabrics: Add host support for FC transport
  nvme-fabrics: Add FC transport LLDD api definitions
  nvme-fabrics: Add FC transport FC-NVME definitions
  nvme-fabrics: Add FC transport error codes to nvme.h
  Add type 0x28 NVME type code to scsi fc headers
  nvme-fabrics: patch target code in prep for FC transport support
  nvme-fabrics: set sqe.command_id in core not transports
  parser: add u64 number parser
  nvme-rdma: align to generic ib_event logging helper
  ...
2016-12-13 10:19:16 -08:00
Chris Mason
7c4c71ac8a Revert "Btrfs: adjust len of writes if following a preallocated extent"
This is exposing an existing deadlock between fsync and AIO.  Until we
have the deadlock fixed, I'm pulling this one out.

This reverts commit a23eaa875f.

Signed-off-by: Chris Mason <clm@fb.com>
2016-12-11 15:27:15 -08:00
Miklos Szeredi
dfeef68862 vfs: remove ".readlink = generic_readlink" assignments
If .readlink == NULL implies generic_readlink().

Generated by:

to_del="\.readlink.*=.*generic_readlink"
for i in `git grep -l $to_del`; do sed -i "/$to_del"/d $i; done

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2016-12-09 16:45:04 +01:00
Jeff Mahoney
3a45bb207e btrfs: remove root parameter from transaction commit/end routines
Now we only use the root parameter to print the root objectid in
a tracepoint.  We can use the root parameter from the transaction
handle for that.  It's also used to join the transaction with
async commits, so we remove the comment that it's just for checking.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:07:00 +01:00
Jeff Mahoney
2ff7e61e0d btrfs: take an fs_info directly when the root is not used otherwise
There are loads of functions in btrfs that accept a root parameter
but only use it to obtain an fs_info pointer.  Let's convert those to
just accept an fs_info pointer directly.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:06:59 +01:00
Jeff Mahoney
0b246afa62 btrfs: root->fs_info cleanup, add fs_info convenience variables
In routines where someptr->fs_info is referenced multiple times, we
introduce a convenience variable.  This makes the code considerably
more readable.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:06:59 +01:00
Jeff Mahoney
27965b6c2c btrfs: root->fs_info cleanup, btrfs_calc_{trans,trunc}_metadata_size
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:06:58 +01:00
Jeff Mahoney
da17066c40 btrfs: pull node/sector/stripe sizes out of root and into fs_info
We track the node sizes per-root, but they never vary from the values
in the superblock.  This patch messes with the 80-column style a bit,
but subsequent patches to factor out root->fs_info into a convenience
variable fix it up again.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:06:58 +01:00
Jeff Mahoney
6bccf3ab1e btrfs: call functions that always use the same root with fs_info instead
There are many functions that are always called with the same root
argument.  Rather than passing the same root every time, we can
pass an fs_info pointer instead and have the function get the root
pointer itself.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06 16:06:57 +01:00
Christoph Hellwig
6a2de22f6b btrfs: don't access the bio directly in the direct I/O code
Just use bio_for_each_segment_all to iterate over all segments.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30 13:45:20 +01:00
Jeff Mahoney
d2fbb2b589 btrfs: increment ctx->pos for every emitted or skipped dirent in readdir
If we process the last item in the leaf and hit an I/O error while
reading the next leaf, we return -EIO without having adjusted the
position.  Since we have emitted dirents, getdents() will return
the byte count to the user instead of the error.  Subsequent callers
will emit the last successful dirent again, and return -EIO again,
with the same result.  Callers loop forever.

Instead, if we always increment ctx->pos after emitting or skipping
the dirent, we'll be sure that we won't hit the same one again.  When
we go to process the next leaf, we won't have emitted any dirents
and the -EIO will be returned to the user properly.  We also don't
need to track if we've emitted a dirent already or if we've changed
the position yet.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30 13:45:19 +01:00
Jeff Mahoney
c2951f32d3 btrfs: remove old tree_root dirent processing in btrfs_real_readdir()
Commit 3de4586c52 (Btrfs: Allow subvolumes and snapshots anywhere
in the directory tree) introduced the current system of placing
snapshots in the directory tree.  It also introduced the behavior of
creating the snapshot and then creating the directory entries for it.

We've kept this code around for compatibility reasons, but it turns
out that no file systems with the old tree_root based snapshots can
be mounted on newer (>= 2009) kernels anyway.  About a month after the
above commit, commit 2a7108ad89 (Btrfs: rev the disk format for the
inode compat and csum selection changes) landed, changing the superblock
magic number.

As a result, we know that we'll never encounter tree_root-based dirents
or have to deal with skipping our own snapshot dirents.  Since that
also means that we're now only iterating over DIR_INDEX items, which only
contain one directory entry per leaf item, we don't need to loop over
the leaf item contents anymore either.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30 13:45:19 +01:00
Domagoj Tršan
0b5e3dafb6 btrfs: change btrfs_csum_final result param type to u8
csum member of struct btrfs_super_block has array type of u8. It makes
sense that function btrfs_csum_final should be also declared to accept
u8 *. I changed the declaration of method void btrfs_csum_final(u32 crc,
char *result); to void btrfs_csum_final(u32 crc, u8 *result);

Signed-off-by: Domagoj Tršan <domagoj.trsan@gmail.com>
[ changed cast to u8 at several call sites ]
Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30 13:45:18 +01:00
Liu Bo
a23eaa875f Btrfs: adjust len of writes if following a preallocated extent
If we have

|0--hole--4095||4096--preallocate--12287|

instead of using preallocated space, a 8K direct write will just
create a new 8K extent and it'll end up with

|0--new extent--8191||8192--preallocate--12287|

It's because we find a hole em and then go to create a new 8K
extent directly without adjusting @len.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30 13:45:18 +01:00
David Sterba
b159fa2808 btrfs: remove constant parameter to memset_extent_buffer and rename it
The only memset we do is to 0, so sink the parameter to the function and
simplify all calls. Rename the function to reflect the behaviour.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30 13:45:17 +01:00
David Sterba
926b92335a btrfs: remove unused headers, statfs.h
Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30 13:45:14 +01:00
Omar Sandoval
8e2bd3b7fa Btrfs: deal with existing encompassing extent map in btrfs_get_extent()
My QEMU VM was seeing inexplicable I/O errors that I tracked down to
errors coming from the qcow2 virtual drive in the host system. The qcow2
file is a nocow file on my Btrfs drive, which QEMU opens with O_DIRECT.
Every once in awhile, pread() or pwrite() would return EEXIST, which
makes no sense. This turned out to be a bug in btrfs_get_extent().

Commit 8dff9c8534 ("Btrfs: deal with duplciates during extent_map
insertion in btrfs_get_extent") fixed a case in btrfs_get_extent() where
two threads race on adding the same extent map to an inode's extent map
tree. However, if the added em is merged with an adjacent em in the
extent tree, then we'll end up with an existing extent that is not
identical to but instead encompasses the extent we tried to add. When we
call merge_extent_mapping() to find the nonoverlapping part of the new
em, the arithmetic overflows because there is no such thing. We then end
up trying to add a bogus em to the em_tree, which results in a EEXIST
that can bubble all the way up to userspace.

Fix it by extending the identical extent map special case.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30 13:45:14 +01:00
Christoph Hellwig
cf8cddd38b btrfs: don't abuse REQ_OP_* flags for btrfs_map_block
btrfs_map_block supports different types of mappings, which to a large
extent resemble block layer operations.  But they don't always do, and
currently btrfs dangerously overlays it's own flag over the block layer
flags.  This is just asking for a conflict, so introduce a different
map flags enum inside of btrfs instead.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-29 14:10:38 +01:00
Linus Torvalds
46d7cbb2c4 Merge branch 'for-4.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from Chris Mason:
 "Some fixes that Dave Sterba collected.  We held off on these last week
  because I was focused on the memory corruption testing"

* 'for-4.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: fix WARNING in btrfs_select_ref_head()
  Btrfs: remove some no-op casts
  btrfs: pass correct args to btrfs_async_run_delayed_refs()
  btrfs: make file clone aware of fatal signals
  btrfs: qgroup: Prevent qgroup->reserved from going subzero
  Btrfs: kill BUG_ON in do_relocation
2016-11-04 20:08:16 -07:00
Christoph Hellwig
70fd76140a block,fs: use REQ_* flags directly
Remove the WRITE_* and READ_SYNC wrappers, and just use the flags
directly.  Where applicable this also drops usage of the
bio_set_op_attrs wrapper.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-11-01 09:43:26 -06:00
Christoph Hellwig
ef295ecf09 block: better op and flags encoding
Now that we don't need the common flags to overflow outside the range
of a 32-bit type we can encode them the same way for both the bio and
request fields.  This in addition allows us to place the operation
first (and make some room for more ops while we're at it) and to
stop having to shift around the operation values.

In addition this allows passing around only one value in the block layer
instead of two (and eventuall also in the file systems, but we can do
that later) and thus clean up a lot of code.

Last but not least this allows decreasing the size of the cmd_flags
field in struct request to 32-bits.  Various functions passing this
value could also be updated, but I'd like to avoid the churn for now.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-10-28 08:48:16 -06:00
Wang Xiaoguang
dd4b857aab btrfs: pass correct args to btrfs_async_run_delayed_refs()
In btrfs_truncate_inode_items()->btrfs_async_run_delayed_refs(), we
swap the arg2 and arg3 wrongly, fix this.

This bug just impacts asynchronous delayed refs handle when we truncate inodes.
In delayed_ref_async_start(), there is such codes:

    trans = btrfs_join_transaction(async->root);
    if (trans->transid > async->transid)
        goto end;
    ret = btrfs_run_delayed_refs(trans, async->root, async->count);

From this codes, we can see that this just influence whether can we handle
delayed refs or the number of delayed refs to handle, this may impact
performance, but will not result in missing delayed refs, all delayed refs will
be handled in btrfs_commit_transaction().

Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-10-24 18:20:29 +02:00
Goldwyn Rodrigues
0b34c261e2 btrfs: qgroup: Prevent qgroup->reserved from going subzero
While free'ing qgroup->reserved resources, we much check if
the page has not been invalidated by a truncate operation
by checking if the page is still dirty before reducing the
qgroup resources. Resources in such a case are free'd when
the entire extent is released by delayed_ref.

This fixes a double accounting while releasing resources
in case of truncating a file, reproduced by the following testcase.

SCRATCH_DEV=/dev/vdb
SCRATCH_MNT=/mnt
mkfs.btrfs -f $SCRATCH_DEV
mount -t btrfs $SCRATCH_DEV $SCRATCH_MNT
cd $SCRATCH_MNT
btrfs quota enable $SCRATCH_MNT
btrfs subvolume create a
btrfs qgroup limit 500m a $SCRATCH_MNT
sync
for c in {1..15}; do
dd if=/dev/zero  bs=1M count=40 of=$SCRATCH_MNT/a/file;
done

sleep 10
sync
sleep 5

touch $SCRATCH_MNT/a/newfile

echo "Removing file"
rm $SCRATCH_MNT/a/file

Fixes: b9d0b38928 ("btrfs: Add handler for invalidate page")
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-10-24 18:20:21 +02:00
Linus Torvalds
f29135b54b Merge branch 'for-linus-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This is a big variety of fixes and cleanups.

  Liu Bo continues to fixup fuzzer related problems, and some of Josef's
  cleanups are prep for his bigger extent buffer changes (slated for
  v4.10)"

* 'for-linus-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (39 commits)
  Revert "btrfs: let btrfs_delete_unused_bgs() to clean relocated bgs"
  Btrfs: remove unnecessary btrfs_mark_buffer_dirty in split_leaf
  Btrfs: don't BUG() during drop snapshot
  btrfs: fix btrfs_no_printk stub helper
  Btrfs: memset to avoid stale content in btree leaf
  btrfs: parent_start initialization cleanup
  btrfs: Remove already completed TODO comment
  btrfs: Do not reassign count in btrfs_run_delayed_refs
  btrfs: fix a possible umount deadlock
  Btrfs: fix memory leak in do_walk_down
  btrfs: btrfs_debug should consume fs_info when DEBUG is not defined
  btrfs: convert send's verbose_printk to btrfs_debug
  btrfs: convert pr_* to btrfs_* where possible
  btrfs: convert printk(KERN_* to use pr_* calls
  btrfs: unsplit printed strings
  btrfs: clean the old superblocks before freeing the device
  Btrfs: kill BUG_ON in run_delayed_tree_ref
  Btrfs: don't leak reloc root nodes on error
  btrfs: squash lines for simple wrapper functions
  Btrfs: improve check_node to avoid reading corrupted nodes
  ...
2016-10-11 11:23:06 -07:00
Linus Torvalds
101105b171 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more vfs updates from Al Viro:
 ">rename2() work from Miklos + current_time() from Deepa"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  fs: Replace current_fs_time() with current_time()
  fs: Replace CURRENT_TIME_SEC with current_time() for inode timestamps
  fs: Replace CURRENT_TIME with current_time() for inode timestamps
  fs: proc: Delete inode time initializations in proc_alloc_inode()
  vfs: Add current_time() api
  vfs: add note about i_op->rename changes to porting
  fs: rename "rename2" i_op to "rename"
  vfs: remove unused i_op->rename
  fs: make remaining filesystems use .rename2
  libfs: support RENAME_NOREPLACE in simple_rename()
  fs: support RENAME_NOREPLACE for local filesystems
  ncpfs: fix unused variable warning
2016-10-10 20:16:43 -07:00
Al Viro
3873691e5a Merge remote-tracking branch 'ovl/rename2' into for-linus 2016-10-10 23:02:51 -04:00
Linus Torvalds
97d2116708 Merge branch 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs xattr updates from Al Viro:
 "xattr stuff from Andreas

  This completes the switch to xattr_handler ->get()/->set() from
  ->getxattr/->setxattr/->removexattr"

* 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  vfs: Remove {get,set,remove}xattr inode operations
  xattr: Stop calling {get,set,remove}xattr inode operations
  vfs: Check for the IOP_XATTR flag in listxattr
  xattr: Add __vfs_{get,set,remove}xattr helpers
  libfs: Use IOP_XATTR flag for empty directory handling
  vfs: Use IOP_XATTR flag for bad-inode handling
  vfs: Add IOP_XATTR inode operations flag
  vfs: Move xattr_resolve_name to the front of fs/xattr.c
  ecryptfs: Switch to generic xattr handlers
  sockfs: Get rid of getxattr iop
  sockfs: getxattr: Fail with -EOPNOTSUPP for invalid attribute names
  kernfs: Switch to generic xattr handlers
  hfs: Switch to generic xattr handlers
  jffs2: Remove jffs2_{get,set,remove}xattr macros
  xattr: Remove unnecessary NULL attribute name check
2016-10-10 17:11:50 -07:00
Linus Torvalds
fed41f7d03 Merge branch 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull splice fixups from Al Viro:
 "A couple of fixups for interaction of pipe-backed iov_iter with
  O_DIRECT reads + constification of a couple of primitives in uio.h
  missed by previous rounds.

  Kudos to davej - his fuzzing has caught those bugs"

* 'work.splice_read' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  [btrfs] fix check_direct_IO() for non-iovec iterators
  constify iov_iter_count() and iter_is_iovec()
  fix ITER_PIPE interaction with direct_IO
2016-10-10 13:38:49 -07:00
Linus Torvalds
abb5a14fa2 Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull misc vfs updates from Al Viro:
 "Assorted misc bits and pieces.

  There are several single-topic branches left after this (rename2
  series from Miklos, current_time series from Deepa Dinamani, xattr
  series from Andreas, uaccess stuff from from me) and I'd prefer to
  send those separately"

* 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (39 commits)
  proc: switch auxv to use of __mem_open()
  hpfs: support FIEMAP
  cifs: get rid of unused arguments of CIFSSMBWrite()
  posix_acl: uapi header split
  posix_acl: xattr representation cleanups
  fs/aio.c: eliminate redundant loads in put_aio_ring_file
  fs/internal.h: add const to ns_dentry_operations declaration
  compat: remove compat_printk()
  fs/buffer.c: make __getblk_slow() static
  proc: unsigned file descriptors
  fs/file: more unsigned file descriptors
  fs: compat: remove redundant check of nr_segs
  cachefiles: Fix attempt to read i_blocks after deleting file [ver #2]
  cifs: don't use memcpy() to copy struct iov_iter
  get rid of separate multipage fault-in primitives
  fs: Avoid premature clearing of capabilities
  fs: Give dentry to inode_change_ok() instead of inode
  fuse: Propagate dentry down to inode_change_ok()
  ceph: Propagate dentry down to inode_change_ok()
  xfs: Propagate dentry down to inode_change_ok()
  ...
2016-10-10 13:04:49 -07:00
Al Viro
cd27e45504 [btrfs] fix check_direct_IO() for non-iovec iterators
looking for duplicate ->iov_base makes sense only for
iovec-backed iterators; for kvec-backed ones it's pointless,
for bvec-backed ones it's pointless and broken on 32bit (we
walk through an array of struct bio_vec accessing them as if
they were struct iovec; works by accident on 64bit, but on
32bit it'll blow up) and for pipe-backed ones it's pointless
and ends up oopsing.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-10-10 13:58:16 -04:00
Al Viro
e55f1d1d13 Merge remote-tracking branch 'jk/vfs' into work.misc 2016-10-08 11:06:08 -04:00
Andreas Gruenbacher
fd50ecaddf vfs: Remove {get,set,remove}xattr inode operations
These inode operations are no longer used; remove them.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-10-07 21:48:36 -04:00
Deepa Dinamani
c2050a454c fs: Replace current_fs_time() with current_time()
current_fs_time() uses struct super_block* as an argument.
As per Linus's suggestion, this is changed to take struct
inode* as a parameter instead. This is because the function
is primarily meant for vfs inode timestamps.
Also the function was renamed as per Arnd's suggestion.

Change all calls to current_fs_time() to use the new
current_time() function instead. current_fs_time() will be
deleted.

Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-09-27 21:06:22 -04:00
Miklos Szeredi
2773bf00ae fs: rename "rename2" i_op to "rename"
Generated patch:

sed -i "s/\.rename2\t/\.rename\t\t/" `git grep -wl rename2`
sed -i "s/\brename2\b/rename/g" `git grep -wl rename2`

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2016-09-27 11:03:58 +02:00
Jeff Mahoney
ab8d0fc48d btrfs: convert pr_* to btrfs_* where possible
For many printks, we want to know which file system issued the message.

This patch converts most pr_* calls to use the btrfs_* versions instead.
In some cases, this means adding plumbing to allow call sites access to
an fs_info pointer.

fs/btrfs/check-integrity.c is left alone for another day.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-09-26 19:37:04 +02:00
Jeff Mahoney
5d163e0e68 btrfs: unsplit printed strings
CodingStyle chapter 2:
"[...] never break user-visible strings such as printk messages,
because that breaks the ability to grep for them."

This patch unsplits user-visible strings.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-09-26 18:08:44 +02:00
Josef Bacik
afcdd129e0 Btrfs: add a flags field to btrfs_fs_info
We have a lot of random ints in btrfs_fs_info that can be put into flags.  This
is mostly equivalent with the exception of how we deal with quota going on or
off, now instead we set a flag when we are turning it on or off and deal with
that appropriately, rather than just having a pending state that the current
quota_enabled gets set to.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-09-26 17:59:49 +02:00
Qu Wenruo
ba8b04c1d4 btrfs: extend btrfs_set_extent_delalloc and its friends to support in-band dedupe and subpage size patchset
Extend btrfs_set_extent_delalloc() and extent_clear_unlock_delalloc()
parameters for both in-band dedupe and subpage sector size patchset.

This should reduce conflict of both patchset and the effort to rebase
them.

Cc: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-09-26 17:59:49 +02:00
Jan Kara
31051c85b5 fs: Give dentry to inode_change_ok() instead of inode
inode_change_ok() will be resposible for clearing capabilities and IMA
extended attributes and as such will need dentry. Give it as an argument
to inode_change_ok() instead of an inode. Also rename inode_change_ok()
to setattr_prepare() to better relect that it does also some
modifications in addition to checks.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
2016-09-22 10:56:19 +02:00
Miklos Szeredi
f031221001 btrfs: use filemap_check_errors()
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Cc: Chris Mason <clm@fb.com>
2016-09-16 12:44:21 +02:00
Bart Van Assche
4382e33ad3 block, dm-crypt, btrfs: Introduce bio_flags()
Introduce the bio_flags() macro. Ensure that the second argument of
bio_set_op_attrs() only contains flags and no operation. This patch
does not change any functionality.

Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Cc: Mike Christie <mchristi@redhat.com>
Cc: Chris Mason <clm@fb.com> (maintainer:BTRFS FILE SYSTEM)
Cc: Josef Bacik <jbacik@fb.com> (maintainer:BTRFS FILE SYSTEM)
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Damien Le Moal <damien.lemoal@hgst.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-09-14 08:48:27 -06:00
Linus Torvalds
28687b935e Merge branch 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "We've queued up a few different fixes in here.  These range from
  enospc corners to fsync and quota fixes, and a few targeted at error
  handling for corrupt metadata/fuzzing"

* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: fix lockdep warning on deadlock against an inode's log mutex
  Btrfs: detect corruption when non-root leaf has zero item
  Btrfs: check btree node's nritems
  btrfs: don't create or leak aliased root while cleaning up orphans
  Btrfs: fix em leak in find_first_block_group
  btrfs: do not background blkdev_put()
  Btrfs: clarify do_chunk_alloc()'s return value
  btrfs: fix fsfreeze hang caused by delayed iputs deal
  btrfs: update btrfs_space_info's bytes_may_use timely
  btrfs: divide btrfs_update_reserved_bytes() into two functions
  btrfs: use correct offset for reloc_inode in prealloc_file_extent_cluster()
  btrfs: qgroup: Fix qgroup incorrectness caused by log replay
  btrfs: relocation: Fix leaking qgroups numbers on data extents
  btrfs: qgroup: Refactor btrfs_qgroup_insert_dirty_extent()
  btrfs: waiting on qgroup rescan should not always be interruptible
  btrfs: properly track when rescan worker is running
  btrfs: flush_space: treat return value of do_chunk_alloc properly
  Btrfs: add ASSERT for block group's memory leak
  btrfs: backref: Fix soft lockup in __merge_refs function
  Btrfs: fix memory leak of reloc_root
2016-08-26 20:22:01 -07:00
Wang Xiaoguang
18513091af btrfs: update btrfs_space_info's bytes_may_use timely
This patch can fix some false ENOSPC errors, below test script can
reproduce one false ENOSPC error:
	#!/bin/bash
	dd if=/dev/zero of=fs.img bs=$((1024*1024)) count=128
	dev=$(losetup --show -f fs.img)
	mkfs.btrfs -f -M $dev
	mkdir /tmp/mntpoint
	mount $dev /tmp/mntpoint
	cd /tmp/mntpoint
	xfs_io -f -c "falloc 0 $((64*1024*1024))" testfile

Above script will fail for ENOSPC reason, but indeed fs still has free
space to satisfy this request. Please see call graph:
btrfs_fallocate()
|-> btrfs_alloc_data_chunk_ondemand()
|   bytes_may_use += 64M
|-> btrfs_prealloc_file_range()
    |-> btrfs_reserve_extent()
        |-> btrfs_add_reserved_bytes()
        |   alloc_type is RESERVE_ALLOC_NO_ACCOUNT, so it does not
        |   change bytes_may_use, and bytes_reserved += 64M. Now
        |   bytes_may_use + bytes_reserved == 128M, which is greater
        |   than btrfs_space_info's total_bytes, false enospc occurs.
        |   Note, the bytes_may_use decrease operation will be done in
        |   end of btrfs_fallocate(), which is too late.

Here is another simple case for buffered write:
                    CPU 1              |              CPU 2
                                       |
|-> cow_file_range()                   |-> __btrfs_buffered_write()
    |-> btrfs_reserve_extent()         |   |
    |                                  |   |
    |                                  |   |
    |    .....                         |   |-> btrfs_check_data_free_space()
    |                                  |
    |                                  |
    |-> extent_clear_unlock_delalloc() |

In CPU 1, btrfs_reserve_extent()->find_free_extent()->
btrfs_add_reserved_bytes() do not decrease bytes_may_use, the decrease
operation will be delayed to be done in extent_clear_unlock_delalloc().
Assume in this case, btrfs_reserve_extent() reserved 128MB data, CPU2's
btrfs_check_data_free_space() tries to reserve 100MB data space.
If
	100MB > data_sinfo->total_bytes - data_sinfo->bytes_used -
		data_sinfo->bytes_reserved - data_sinfo->bytes_pinned -
		data_sinfo->bytes_readonly - data_sinfo->bytes_may_use
btrfs_check_data_free_space() will try to allcate new data chunk or call
btrfs_start_delalloc_roots(), or commit current transaction in order to
reserve some free space, obviously a lot of work. But indeed it's not
necessary as long as decreasing bytes_may_use timely, we still have
free space, decreasing 128M from bytes_may_use.

To fix this issue, this patch chooses to update bytes_may_use for both
data and metadata in btrfs_add_reserved_bytes(). For compress path, real
extent length may not be equal to file content length, so introduce a
ram_bytes argument for btrfs_reserve_extent(), find_free_extent() and
btrfs_add_reserved_bytes(), it's becasue bytes_may_use is increased by
file content length. Then compress path can update bytes_may_use
correctly. Also now we can discard RESERVE_ALLOC_NO_ACCOUNT, RESERVE_ALLOC
and RESERVE_FREE.

As we know, usually EXTENT_DO_ACCOUNTING is used for error path. In
run_delalloc_nocow(), for inode marked as NODATACOW or extent marked as
PREALLOC, we also need to update bytes_may_use, but can not pass
EXTENT_DO_ACCOUNTING, because it also clears metadata reservation, so
here we introduce EXTENT_CLEAR_DATA_RESV flag to indicate btrfs_clear_bit_hook()
to update btrfs_space_info's bytes_may_use.

Meanwhile __btrfs_prealloc_file_range() will call
btrfs_free_reserved_data_space() internally for both sucessful and failed
path, btrfs_prealloc_file_range()'s callers does not need to call
btrfs_free_reserved_data_space() any more.

Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-08-25 03:58:26 -07:00
Linus Torvalds
9512c47ec2 Merge branch 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "Some fixes for btrfs send/recv and fsync from Filipe and Robbie Ko.

  Bonus points to Filipe for already having xfstests in place for many
  of these"

* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: remove unused function btrfs_add_delayed_qgroup_reserve()
  Btrfs: improve performance on fsync against new inode after rename/unlink
  Btrfs: be more precise on errors when getting an inode from disk
  Btrfs: send, don't bug on inconsistent snapshots
  Btrfs: send, avoid incorrect leaf accesses when sending utimes operations
  Btrfs: send, fix invalid leaf accesses due to incorrect utimes operations
  Btrfs: send, fix warning due to late freeing of orphan_dir_info structures
  Btrfs: incremental send, fix premature rmdir operations
  Btrfs: incremental send, fix invalid paths for rename operations
  Btrfs: send, add missing error check for calls to path_loop()
  Btrfs: send, fix failure to move directories with the same name around
  Btrfs: add missing check for writeback errors on fsync
2016-08-10 11:16:03 -07:00
Jens Axboe
1eff9d322a block: rename bio bi_rw to bi_opf
Since commit 63a4cc2486, bio->bi_rw contains flags in the lower
portion and the op code in the higher portions. This means that
old code that relies on manually setting bi_rw is most likely
going to be broken. Instead of letting that brokeness linger,
rename the member, to force old and out-of-tree code to break
at compile time instead of at runtime.

No intended functional changes in this commit.

Signed-off-by: Jens Axboe <axboe@fb.com>
2016-08-07 14:41:02 -06:00
Chris Mason
1083881654 Merge branch 'integration-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.8 2016-08-05 12:25:05 -07:00
Linus Torvalds
d58b0d980f Merge branch 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull more btrfs updates from Chris Mason:
 "This is part two of my btrfs pull, which is some cleanups and a batch
  of fixes.

  Most of the code here is from Jeff Mahoney, making the pointers we
  pass around internally more consistent and less confusing overall.  I
  noticed a small problem right before I sent this out yesterday, so I
  fixed it up and re-tested overnight"

* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (40 commits)
  Btrfs: fix __MAX_CSUM_ITEMS
  btrfs: btrfs_abort_transaction, drop root parameter
  btrfs: add btrfs_trans_handle->fs_info pointer
  btrfs: btrfs_relocate_chunk pass extent_root to btrfs_end_transaction
  btrfs: convert nodesize macros to static inlines
  btrfs: introduce BTRFS_MAX_ITEM_SIZE
  btrfs: cleanup, remove prototype for btrfs_find_root_ref
  btrfs: copy_to_sk drop unused root parameter
  btrfs: simpilify btrfs_subvol_inherit_props
  btrfs: tests, use BTRFS_FS_STATE_DUMMY_FS_INFO instead of dummy root
  btrfs: tests, require fs_info for root
  btrfs: tests, move initialization into tests/
  btrfs: btrfs_test_opt and friends should take a btrfs_fs_info
  btrfs: prefix fsid to all trace events
  btrfs: plumb fs_info into btrfs_work
  btrfs: remove obsolete part of comment in statfs
  btrfs: hide test-only member under ifdef
  btrfs: Ratelimit "no csum found" info message
  btrfs: Add ratelimit to btrfs printing
  Btrfs: fix unexpected balance crash due to BUG_ON
  ...
2016-08-04 19:56:16 -04:00
Filipe Manana
44f714dae5 Btrfs: improve performance on fsync against new inode after rename/unlink
With commit 56f23fdbb6 ("Btrfs: fix file/data loss caused by fsync after
rename and new inode") we got simple fix for a functional issue when the
following sequence of actions is done:

  at transaction N
  create file A at directory D
  at transaction N + M (where M >= 1)
  move/rename existing file A from directory D to directory E
  create a new file named A at directory D
  fsync the new file
  power fail

The solution was to simply detect such scenario and fallback to a full
transaction commit when we detect it. However this turned out to had a
significant impact on throughput (and a bit on latency too) for benchmarks
using the dbench tool, which simulates real workloads from smbd (Samba)
servers. For example on a test vm (with a debug kernel):

Unpatched:
Throughput 19.1572 MB/sec  32 clients  32 procs  max_latency=1005.229 ms

Patched:
Throughput 23.7015 MB/sec  32 clients  32 procs  max_latency=809.206 ms

The patched results (this patch is applied) are similar to the results of
a kernel with the commit 56f23fdbb6 ("Btrfs: fix file/data loss caused
by fsync after rename and new inode") reverted.

This change avoids the fallback to a transaction commit and instead makes
sure all the names of the conflicting inode (the one that had a name in a
past transaction that matches the name of the new file in the same parent
directory) are logged so that at log replay time we don't lose neither the
new file nor the old file, and the old file gets the name it was renamed
to.

This also ends up avoiding a full transaction commit for a similar case
that involves an unlink instead of a rename of the old file:

  at transaction N
  create file A at directory D
  at transaction N + M (where M >= 1)
  remove file A
  create a new file named A at directory D
  fsync the new file
  power fail

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-08-01 07:32:14 +01:00
Filipe Manana
67710892ec Btrfs: be more precise on errors when getting an inode from disk
When we attempt to read an inode from disk, we end up always returning an
-ESTALE error to the caller regardless of the actual failure reason, which
can be an out of memory problem (when allocating a path), some error found
when reading from the fs/subvolume btree (like a genuine IO error) or the
inode does not exists. So lets start returning the real error code to the
callers so that they don't treat all -ESTALE errors as meaning that the
inode does not exists (such as during orphan cleanup). This will also be
needed for a subsequent patch in the same series dealing with a special
fsync case.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-08-01 07:32:03 +01:00
Linus Torvalds
ba929b6646 Merge branch 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This pull is dedicated to Josef's enospc rework, which we've been
  testing for a few releases now.  It fixes some early enospc problems
  and is dramatically faster.

  This also includes an updated fix for the delalloc accounting that
  happens after a fault in copy_from_user.  My patch in v4.7 was almost
  but not quite enough"

* 'for-linus-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: fix delalloc accounting after copy_from_user faults
  Btrfs: avoid deadlocks during reservations in btrfs_truncate_block
  Btrfs: use FLUSH_LIMIT for relocation in reserve_metadata_bytes
  Btrfs: fill relocation block rsv after allocation
  Btrfs: always use trans->block_rsv for orphans
  Btrfs: change how we calculate the global block rsv
  Btrfs: use root when checking need_async_flush
  Btrfs: don't bother kicking async if there's nothing to reclaim
  Btrfs: fix release reserved extents trace points
  Btrfs: add fsid to some tracepoints
  Btrfs: add tracepoints for flush events
  Btrfs: fix delalloc reservation amount tracepoint
  Btrfs: trace pinned extents
  Btrfs: introduce ticketed enospc infrastructure
  Btrfs: add tracepoint for adding block groups
  Btrfs: warn_on for unaccounted spaces
  Btrfs: change delayed reservation fallback behavior
  Btrfs: always reserve metadata for delalloc extents
  Btrfs: fix callers of btrfs_block_rsv_migrate
  Btrfs: add bytes_readonly to the spaceinfo at once
2016-07-31 21:27:32 -04:00
Linus Torvalds
d05d7f4079 Merge branch 'for-4.8/core' of git://git.kernel.dk/linux-block
Pull core block updates from Jens Axboe:

   - the big change is the cleanup from Mike Christie, cleaning up our
     uses of command types and modified flags.  This is what will throw
     some merge conflicts

   - regression fix for the above for btrfs, from Vincent

   - following up to the above, better packing of struct request from
     Christoph

   - a 2038 fix for blktrace from Arnd

   - a few trivial/spelling fixes from Bart Van Assche

   - a front merge check fix from Damien, which could cause issues on
     SMR drives

   - Atari partition fix from Gabriel

   - convert cfq to highres timers, since jiffies isn't granular enough
     for some devices these days.  From Jan and Jeff

   - CFQ priority boost fix idle classes, from me

   - cleanup series from Ming, improving our bio/bvec iteration

   - a direct issue fix for blk-mq from Omar

   - fix for plug merging not involving the IO scheduler, like we do for
     other types of merges.  From Tahsin

   - expose DAX type internally and through sysfs.  From Toshi and Yigal

* 'for-4.8/core' of git://git.kernel.dk/linux-block: (76 commits)
  block: Fix front merge check
  block: do not merge requests without consulting with io scheduler
  block: Fix spelling in a source code comment
  block: expose QUEUE_FLAG_DAX in sysfs
  block: add QUEUE_FLAG_DAX for devices to advertise their DAX support
  Btrfs: fix comparison in __btrfs_map_block()
  block: atari: Return early for unsupported sector size
  Doc: block: Fix a typo in queue-sysfs.txt
  cfq-iosched: Charge at least 1 jiffie instead of 1 ns
  cfq-iosched: Fix regression in bonnie++ rewrite performance
  cfq-iosched: Convert slice_resid from u64 to s64
  block: Convert fifo_time from ulong to u64
  blktrace: avoid using timespec
  block/blk-cgroup.c: Declare local symbols static
  block/bio-integrity.c: Add #include "blk.h"
  block/partition-generic.c: Remove a set-but-not-used variable
  block: bio: kill BIO_MAX_SIZE
  cfq-iosched: temporarily boost queue priority for idle classes
  block: drbd: avoid to use BIO_MAX_SIZE
  block: bio: remove BIO_MAX_SECTORS
  ...
2016-07-26 15:03:07 -07:00
Jeff Mahoney
66642832f0 btrfs: btrfs_abort_transaction, drop root parameter
__btrfs_abort_transaction doesn't use its root parameter except to
obtain an fs_info pointer.  We can obtain that from trans->root->fs_info
for now and from trans->fs_info in a later patch.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:54:26 +02:00
Jeff Mahoney
f5ee5c9ac5 btrfs: tests, use BTRFS_FS_STATE_DUMMY_FS_INFO instead of dummy root
Now that we have a dummy fs_info associated with each test that
uses a root, we don't need the DUMMY_ROOT bit anymore.  This lets
us make choices without needing an actual root like in e.g.
btrfs_find_create_tree_block.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:54:19 +02:00
Jeff Mahoney
3cdde2240d btrfs: btrfs_test_opt and friends should take a btrfs_fs_info
btrfs_test_opt and friends only use the root pointer to access
the fs_info.  Let's pass the fs_info directly in preparation to
eliminate similar patterns all over btrfs.

Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:53:16 +02:00
Wang Xiaoguang
dda3245eca btrfs: expand cow_file_range() to support in-band dedup and subpage-blocksize
Extract cow_file_range() new parameters for both in-band dedupe and
subpage sector size patchset.

This should make conflict of both patchset to minimal, and reduce the
effort needed to rebase them.

Cc: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:52:25 +02:00
Ashish Samant
c8bb0c8bd2 btrfs: Cleanup compress_file_range()
Remove unnecessary checks in compress_file_range().

Signed-off-by: Ashish Samant <ashish.samant@oracle.com>
[ minor coding style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:52:25 +02:00
Liu Bo
6f034ece34 Btrfs: cleanup BUG_ON in merge_bio
One can use btrfs-corrupt-block to hit BUG_ON() in merge_bio(),
thus this aims to stop anyone to panic the whole system by using
 their btrfs.

Since the error in merge_bio can only come from __btrfs_map_block()
when chunk tree mapping has something insane and __btrfs_map_block()
has already had printed the reason, we can just return errors in
merge_bio.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:52:25 +02:00
Nikolay Borisov
fba4b69771 btrfs: Fix slab accounting flags
BTRFS is using a variety of slab caches to satisfy internal needs.
Those slab caches are always allocated with the SLAB_RECLAIM_ACCOUNT,
meaning allocations from the caches are going to be accounted as
SReclaimable. At the same time btrfs is not registering any shrinkers
whatsoever, thus preventing memory from the slabs to be shrunk. This
means those caches are not in fact reclaimable.

To fix this remove the SLAB_RECLAIM_ACCOUNT on all caches apart from the
inode cache, since this one is being freed by the generic VFS super_block
shrinker. Also set the transaction related caches as SLAB_TEMPORARY,
to better document the lifetime of the objects (it just translates
to SLAB_RECLAIM_ACCOUNT).

Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:52:25 +02:00
Nikolay Borisov
3d48d9810d btrfs: Handle uninitialised inode eviction
The code flow in btrfs_new_inode allows for btrfs_evict_inode to be
called with not fully initialised inode (e.g. ->root member not
being set). This can happen when btrfs_set_inode_index in
btrfs_new_inode fails, which in turn would call iput for the newly
allocated inode. This in turn leads to vfs calling into btrfs_evict_inode.
This leads to null pointer dereference. To handle this situation check whether
the passed inode has root set and just free it in case it doesn't.

Signed-off-by: Nikolay Borisov <kernel@kyup.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-26 13:52:25 +02:00
Josef Bacik
25d609f86d Btrfs: fix callers of btrfs_block_rsv_migrate
So btrfs_block_rsv_migrate just unconditionally calls block_rsv_migrate_bytes.
Not only this but it unconditionally changes the size of the block_rsv.  This
isn't a bug strictly speaking, but it makes truncate block rsv's look funny
because every time we migrate bytes over its size grows, even though we only
want it to be a specific size.  So collapse this into one function that takes an
update_size argument and make truncate and evict not update the size for
consistency sake.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-07-07 18:45:53 +02:00
Linus Torvalds
da2f6aba4a Merge branch 'for-linus-4.7-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes part 2 from Chris Mason:
 "This has one patch from Omar to bring iterate_shared back to btrfs.

  We have a tree of work we queue up for directory items and it doesn't
  lend itself well to shared access.  While we're cleaning it up, Omar
  has changed things to use an exclusive lock when there are delayed
  items"

* 'for-linus-4.7-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: fix ->iterate_shared() by upgrading i_rwsem for delayed nodes
2016-06-25 08:53:38 -07:00
Linus Torvalds
b971712afc Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "I have a two part pull this time because one of the patches Dave
  Sterba collected needed to be against v4.7-rc2 or higher (we used
  rc4).  I try to make my for-linus-xx branch testable on top of the
  last major so we can hand fixes to people on the list more easily, so
  I've split this pull in two.

  This first part has some fixes and two performance improvements that
  we've been testing for some time.

  Josef's two performance fixes are most notable.  The transid tracking
  patch makes a big improvement on pretty much every workload"

* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: Force stripesize to the value of sectorsize
  btrfs: fix disk_i_size update bug when fallocate() fails
  Btrfs: fix error handling in map_private_extent_buffer
  Btrfs: fix error return code in btrfs_init_test_fs()
  Btrfs: don't do nocow check unless we have to
  btrfs: fix deadlock in delayed_ref_async_start
  Btrfs: track transid for delayed ref flushing
2016-06-25 08:42:31 -07:00
Omar Sandoval
02dbfc99b4 Btrfs: fix ->iterate_shared() by upgrading i_rwsem for delayed nodes
Commit fe742fd4f9 ("Revert "btrfs: switch to ->iterate_shared()"")
backed out the conversion to ->iterate_shared() for Btrfs because the
delayed inode handling in btrfs_real_readdir() is racy. However, we can
still do readdir in parallel if there are no delayed nodes.

This is a temporary fix which upgrades the shared inode lock to an
exclusive lock only when we have delayed items until we come up with a
more complete solution. While we're here, rename the
btrfs_{get,put}_delayed_items functions to make it very clear that
they're just for readdir.

Tested with xfstests and by doing a parallel kernel build:

	while make tinyconfig && make -j4 && git clean dqfx; do
		:
	done

along with a bunch of parallel finds in another shell:

	while true; do
		for ((i=0; i<4; i++)); do
			find . >/dev/null &
		done
		wait
	done

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-06-25 06:20:10 -07:00
Josef Bacik
31b9655f43 Btrfs: track transid for delayed ref flushing
Using the offwakecputime bpf script I noticed most of our time was spent waiting
on the delayed ref throttling.  This is what is supposed to happen, but
sometimes the transaction can commit and then we're waiting for throttling that
doesn't matter anymore.  So change this stuff to be a little smarter by tracking
the transid we were in when we initiated the throttling.  If the transaction we
get is different then we can just bail out.  This resulted in a 50% speedup in
my fs_mark test, and reduced the amount of time spent throttling by 60 seconds
over the entire run (which is about 30 minutes).  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-06-22 17:54:18 -07:00
Linus Torvalds
4c6459f945 Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "The most user visible change here is a fix for our recent superblock
  validation checks that were causing problems on non-4k pagesized
  systems"

* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: btrfs_check_super_valid: Allow 4096 as stripesize
  btrfs: remove build fixup for qgroup_account_snapshot
  btrfs: use new error message helper in qgroup_account_snapshot
  btrfs: avoid blocking open_ctree from cleaner_kthread
  Btrfs: don't BUG_ON() in btrfs_orphan_add
  btrfs: account for non-CoW'd blocks in btrfs_abort_transaction
  Btrfs: check if extent buffer is aligned to sectorsize
  btrfs: Use correct format specifier
2016-06-18 05:57:59 -10:00
Josef Bacik
3b6571c180 Btrfs: don't BUG_ON() in btrfs_orphan_add
This is just a screwup for developers, so change it to an ASSERT() so developers
notice when things go wrong and deal with the error appropriately if ASSERT()
isn't enabled.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-17 18:32:40 +02:00
Mike Christie
6296b9604f block, drivers, fs: shrink bi_rw from long to int
We don't need bi_rw to be so large on 64 bit archs, so
reduce it to unsigned int.

Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-07 13:41:38 -06:00
Mike Christie
81a75f6781 btrfs: use bio fields for op and flags
The bio REQ_OP and bi_rw rq_flag_bits are now always setup, so there is
no need to pass around the rq_flag_bits bits too. btrfs users should
should access the bio insead.

Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-07 13:41:38 -06:00
Mike Christie
b3d3fa5199 btrfs: update __btrfs_map_block for REQ_OP transition
We no longer pass in a bitmap of rq_flag_bits bits to __btrfs_map_block.
It will always be a REQ_OP, or the btrfs specific REQ_GET_READ_MIRRORS,
so this drops the bit tests.

Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-07 13:41:38 -06:00
Mike Christie
37226b2111 btrfs: use bio op accessors
This should be the easier cases to convert btrfs to
bio_set_op_attrs/bio_op.
They are mostly just cut and replace type of changes.

Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-07 13:41:38 -06:00
Mike Christie
8a4c1e42e0 direct-io: use bio set/get op accessors
This patch has the dio code use a REQ_OP for the op and rq_flag_bits
for bi_rw flags. To set/get the op it uses the bio_set_op_attrs/bio_op
accssors.

It also begins to convert btrfs's dio_submit_t because of the dio
submit_io callout use. The next patches will completely convert
this code and the reset of the btrfs code paths.

Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-07 13:41:38 -06:00
Linus Torvalds
b2d5ad8223 Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "The important part of this pull is Filipe's set of fixes for btrfs
  device replacement.  Filipe fixed a few issues seen on the list and a
  number he found on his own"

* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: deal with duplciates during extent_map insertion in btrfs_get_extent
  Btrfs: fix race between device replace and read repair
  Btrfs: fix race between device replace and discard
  Btrfs: fix race between device replace and chunk allocation
  Btrfs: fix race setting block group back to RW mode during device replace
  Btrfs: fix unprotected assignment of the left cursor for device replace
  Btrfs: fix race setting block group readonly during device replace
  Btrfs: fix race between device replace and block group removal
  Btrfs: fix race between readahead and device replace/removal
2016-06-04 11:56:28 -07:00
Chris Mason
8dff9c8534 Btrfs: deal with duplciates during extent_map insertion in btrfs_get_extent
When dealing with inline extents, btrfs_get_extent will incorrectly try
to insert a duplicate extent_map.  The dup hits -EEXIST from
add_extent_map, but then we try to merge with the existing one and end
up trying to insert a zero length extent_map.

This actually works most of the time, except when there are extent maps
past the end of the inline extent.  rocksdb will trigger this sometimes
because it preallocates an extent and then truncates down.

Josef made a script to trigger with xfs_io:

	#!/bin/bash

	xfs_io -f -c "pwrite 0 1000" inline
	xfs_io -c "falloc -k 4k 1M" inline
	xfs_io -c "pread 0 1000" -c "fadvise -d 0 1000" -c "pread 0 1000" inline
	xfs_io -c "fadvise -d 0 1000" inline
	cat inline

You'll get EIOs trying to read inline after this because add_extent_map
is returning EEXIST

Signed-off-by: Chris Mason <clm@fb.com>
2016-06-03 12:32:34 -07:00
Linus Torvalds
559b6d90a0 Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs cleanups and fixes from Chris Mason:
 "We have another round of fixes and a few cleanups.

  I have a fix for short returns from btrfs_copy_from_user, which
  finally nails down a very hard to find regression we added in v4.6.

  Dave is pushing around gfp parameters, mostly to cleanup internal apis
  and make it a little more consistent.

  The rest are smaller fixes, and one speelling fixup patch"

* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (22 commits)
  Btrfs: fix handling of faults from btrfs_copy_from_user
  btrfs: fix string and comment grammatical issues and typos
  btrfs: scrub: Set bbio to NULL before calling btrfs_map_block
  Btrfs: fix unexpected return value of fiemap
  Btrfs: free sys_array eb as soon as possible
  btrfs: sink gfp parameter to convert_extent_bit
  btrfs: make state preallocation more speculative in __set_extent_bit
  btrfs: untangle gotos a bit in convert_extent_bit
  btrfs: untangle gotos a bit in __clear_extent_bit
  btrfs: untangle gotos a bit in __set_extent_bit
  btrfs: sink gfp parameter to set_record_extent_bits
  btrfs: sink gfp parameter to set_extent_new
  btrfs: sink gfp parameter to set_extent_defrag
  btrfs: sink gfp parameter to set_extent_delalloc
  btrfs: sink gfp parameter to clear_extent_dirty
  btrfs: sink gfp parameter to clear_record_extent_bits
  btrfs: sink gfp parameter to clear_extent_bits
  btrfs: sink gfp parameter to set_extent_bits
  btrfs: make find_workspace warn if there are no workspaces
  btrfs: make find_workspace always succeed
  ...
2016-05-27 16:37:36 -07:00
David Sterba
42f31734eb Merge branch 'cleanups-4.7' into for-chris-4.7-20160525 2016-05-25 22:51:03 +02:00
Nicholas D Steeves
0132761017 btrfs: fix string and comment grammatical issues and typos
Signed-off-by: Nicholas D Steeves <nsteeves@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-05-25 22:35:14 +02:00
Linus Torvalds
07be1337b9 Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This has our merge window series of cleanups and fixes.  These target
  a wide range of issues, but do include some important fixes for
  qgroups, O_DIRECT, and fsync handling.  Jeff Mahoney moved around a
  few definitions to make them easier for userland to consume.

  Also whiteout support is included now that issues with overlayfs have
  been cleared up.

  I have one more fix pending for page faults during btrfs_copy_from_user,
  but I wanted to get this bulk out the door first"

* 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (90 commits)
  btrfs: fix memory leak during RAID 5/6 device replacement
  Btrfs: add semaphore to synchronize direct IO writes with fsync
  Btrfs: fix race between block group relocation and nocow writes
  Btrfs: fix race between fsync and direct IO writes for prealloc extents
  Btrfs: fix number of transaction units for renames with whiteout
  Btrfs: pin logs earlier when doing a rename exchange operation
  Btrfs: unpin logs if rename exchange operation fails
  Btrfs: fix inode leak on failure to setup whiteout inode in rename
  btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT
  Btrfs: pin log earlier when renaming
  Btrfs: unpin log if rename operation fails
  Btrfs: don't do unnecessary delalloc flushes when relocating
  Btrfs: don't wait for unrelated IO to finish before relocation
  Btrfs: fix empty symlink after creating symlink and fsync parent dir
  Btrfs: fix for incorrect directory entries after fsync log replay
  btrfs: build fixup for qgroup_account_snapshot
  btrfs: qgroup: Fix qgroup accounting when creating snapshot
  Btrfs: fix fspath error deallocation
  btrfs: make find_workspace warn if there are no workspaces
  btrfs: make find_workspace always succeed
  ...
2016-05-21 10:49:22 -07:00
Linus Torvalds
e34df3344d Merge branch 'work.lookups' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull parallel lookup fixups from Al Viro:
 "Fix for xfs parallel readdir (turns out the cxfs exposure was not
  enough to catch all problems), and a reversion of btrfs back to
  ->iterate() until the fs/btrfs/delayed-inode.c gets fixed"

* 'work.lookups' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  xfs: concurrent readdir hangs on data buffer locks
  Revert "btrfs: switch to ->iterate_shared()"
2016-05-18 10:28:45 -07:00
Al Viro
fe742fd4f9 Revert "btrfs: switch to ->iterate_shared()"
This reverts commit 972b241f84.
Quoth Chris:
	didn't take the delayed inode stuff into account
	it got an rbtree of items and it pulls things out
	so in shared mode, its hugely racey
	sorry, lets revert and fix it for real inside of btrfs

Signed-off-by: Chris Mason <clm@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-18 13:19:17 -04:00
Linus Torvalds
ba5a2655c2 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull remaining vfs xattr work from Al Viro:
 "The rest of work.xattr (non-cifs conversions)"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  btrfs: Switch to generic xattr handlers
  ubifs: Switch to generic xattr handlers
  jfs: Switch to generic xattr handlers
  jfs: Clean up xattr name mapping
  gfs2: Switch to generic xattr handlers
  ceph: kill __ceph_removexattr()
  ceph: Switch to generic xattr handlers
  ceph: Get rid of d_find_alias in ceph_set_acl
2016-05-18 10:08:45 -07:00
Andreas Gruenbacher
e0d46f5c6e btrfs: Switch to generic xattr handlers
The btrfs_{set,remove}xattr inode operations check for a read-only root
(btrfs_root_readonly) before calling into generic_{set,remove}xattr.  If
this check is moved into __btrfs_setxattr, we can get rid of
btrfs_{set,remove}xattr.

This patch applies to mainline, I would like to keep it together with
the other xattr cleanups if possible, though.  Could you please review?

Thanks,
Andreas

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-17 19:17:09 -04:00
Linus Torvalds
c2e7b20705 Merge branch 'work.preadv2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs cleanups from Al Viro:
 "More cleanups from Christoph"

* 'work.preadv2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  nfsd: use RWF_SYNC
  fs: add RWF_DSYNC aand RWF_SYNC
  ceph: use generic_write_sync
  fs: simplify the generic_write_sync prototype
  fs: add IOCB_SYNC and IOCB_DSYNC
  direct-io: remove the offset argument to dio_complete
  direct-io: eliminate the offset argument to ->direct_IO
  xfs: eliminate the pos variable in xfs_file_dio_aio_write
  filemap: remove the pos argument to generic_file_direct_write
  filemap: remove pos variables in generic_file_read_iter
2016-05-17 15:05:23 -07:00
Chris Mason
c315ef8d9d Merge branch 'for-chris-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.7
Signed-off-by: Chris Mason <clm@fb.com>
2016-05-17 14:43:19 -07:00
Filipe Manana
5f9a8a51d8 Btrfs: add semaphore to synchronize direct IO writes with fsync
Due to the optimization of lockless direct IO writes (the inode's i_mutex
is not held) introduced in commit 38851cc19a ("Btrfs: implement unlocked
dio write"), we started having races between such writes with concurrent
fsync operations that use the fast fsync path. These races were addressed
in the patches titled "Btrfs: fix race between fsync and lockless direct
IO writes" and "Btrfs: fix race between fsync and direct IO writes for
prealloc extents". The races happened because the direct IO path, like
every other write path, does create extent maps followed by the
corresponding ordered extents while the fast fsync path collected first
ordered extents and then it collected extent maps. This made it possible
to log file extent items (based on the collected extent maps) without
waiting for the corresponding ordered extents to complete (get their IO
done). The two fixes mentioned before added a solution that consists of
making the direct IO path create first the ordered extents and then the
extent maps, while the fsync path attempts to collect any new ordered
extents once it collects the extent maps. This was simple and did not
require adding any synchonization primitive to any data structure (struct
btrfs_inode for example) but it makes things more fragile for future
development endeavours and adds an exceptional approach compared to the
other write paths.

This change adds a read-write semaphore to the btrfs inode structure and
makes the direct IO path create the extent maps and the ordered extents
while holding read access on that semaphore, while the fast fsync path
collects extent maps and ordered extents while holding write access on
that semaphore. The logic for direct IO write path is encapsulated in a
new helper function that is used both for cow and nocow direct IO writes.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-13 01:59:36 +01:00
Filipe Manana
f78c436c39 Btrfs: fix race between block group relocation and nocow writes
Relocation of a block group waits for all existing tasks flushing
dellaloc, starting direct IO writes and any ordered extents before
starting the relocation process. However for direct IO writes that end
up doing nocow (inode either has the flag nodatacow set or the write is
against a prealloc extent) we have a short time window that allows for a
race that makes relocation proceed without waiting for the direct IO
write to complete first, resulting in data loss after the relocation
finishes. This is illustrated by the following diagram:

           CPU 1                                     CPU 2

 btrfs_relocate_block_group(bg X)

                                               direct IO write starts against
                                               an extent in block group X
                                               using nocow mode (inode has the
                                               nodatacow flag or the write is
                                               for a prealloc extent)

                                               btrfs_direct_IO()
                                                 btrfs_get_blocks_direct()
                                                   --> can_nocow_extent() returns 1

   btrfs_inc_block_group_ro(bg X)
     --> turns block group into RO mode

   btrfs_wait_ordered_roots()
     --> returns and does not know about
         the DIO write happening at CPU 2
         (the task there has not created
          yet an ordered extent)

   relocate_block_group(bg X)
     --> rc->stage == MOVE_DATA_EXTENTS

     find_next_extent()
       --> returns extent that the DIO
           write is going to write to

     relocate_data_extent()

       relocate_file_extent_cluster()

         --> reads the extent from disk into
             pages belonging to the relocation
             inode and dirties them

                                                   --> creates DIO ordered extent

                                                 btrfs_submit_direct()
                                                   --> submits bio against a location
                                                       on disk obtained from an extent
                                                       map before the relocation started

   btrfs_wait_ordered_range()
     --> writes all the pages read before
         to disk (belonging to the
         relocation inode)

   relocation finishes

                                                 bio completes and wrote new data
                                                 to the old location of the block
                                                 group

So fix this by tracking the number of nocow writers for a block group and
make sure relocation waits for that number to go down to 0 before starting
to move the extents.

The same race can also happen with buffered writes in nocow mode since the
patch I recently made titled "Btrfs: don't do unnecessary delalloc flushes
when relocating", because we are no longer flushing all delalloc which
served as a synchonization mechanism (due to page locking) and ensured
the ordered extents for nocow buffered writes were created before we
called btrfs_wait_ordered_roots(). The race with direct IO writes in nocow
mode existed before that patch (no pages are locked or used during direct
IO) and that fixed only races with direct IO writes that do cow.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-13 01:59:34 +01:00
Filipe Manana
0b901916a0 Btrfs: fix race between fsync and direct IO writes for prealloc extents
When we do a direct IO write against a preallocated extent (fallocate)
that does not go beyond the i_size of the inode, we do the write operation
without holding the inode's i_mutex (an optimization that landed in
commit 38851cc19a ("Btrfs: implement unlocked dio write")). This allows
for a very tiny time window where a race can happen with a concurrent
fsync using the fast code path, as the direct IO write path creates first
a new extent map (no longer flagged as a prealloc extent) and then it
creates the ordered extent, while the fast fsync path first collects
ordered extents and then it collects extent maps. This allows for the
possibility of the fast fsync path to collect the new extent map without
collecting the new ordered extent, and therefore logging an extent item
based on the extent map without waiting for the ordered extent to be
created and complete. This can result in a situation where after a log
replay we end up with an extent not marked anymore as prealloc but it was
only partially written (or not written at all), exposing random, stale or
garbage data corresponding to the unwritten pages and without any
checksums in the csum tree covering the extent's range.

This is an extension of what was done in commit de0ee0edb2 ("Btrfs: fix
race between fsync and lockless direct IO writes").

So fix this by creating first the ordered extent and then the extent
map, so that this way if the fast fsync patch collects the new extent
map it also collects the corresponding ordered extent.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-13 01:59:32 +01:00
Filipe Manana
5062af35c3 Btrfs: fix number of transaction units for renames with whiteout
When we do a rename with the whiteout flag, we need to create the whiteout
inode, which in the worst case requires 5 transaction units (1 inode item,
1 inode ref, 2 dir items and 1 xattr if selinux is enabled). So bump the
number of transaction units from 11 to 16 if the whiteout flag is set.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-05-13 01:59:30 +01:00
Filipe Manana
376e5a57bf Btrfs: pin logs earlier when doing a rename exchange operation
The btrfs_rename_exchange() started as a copy-paste from btrfs_rename(),
which had a race fixed by my previous patch titled "Btrfs: pin log earlier
when renaming", and so it suffers from the same problem.

We pin the logs of the affected roots after we insert the new inode
references, leaving a time window where concurrent tasks logging the
inodes can end up logging both the new and old references, resulting
in log trees that when replayed can turn the metadata into inconsistent
states. This behaviour was added to btrfs_rename() in 2009 without any
explanation about why not pinning the logs earlier, just leaving a
comment about the posibility for the race. As of today it's perfectly
safe and sane to pin the logs before we start doing any of the steps
involved in the rename operation.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-05-13 01:59:28 +01:00
Filipe Manana
86e8aa0e77 Btrfs: unpin logs if rename exchange operation fails
If rename exchange operations fail at some point after we pinned any of
the logs, we end up aborting the current transaction but never unpin the
logs, which leaves concurrent tasks that are trying to sync the logs (as
part of an fsync request from user space) blocked forever and preventing
the filesystem from being unmountable.

Fix this by safely unpinning the log.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-05-13 01:59:26 +01:00
Filipe Manana
c990161888 Btrfs: fix inode leak on failure to setup whiteout inode in rename
If we failed to fully setup the whiteout inode during a rename operation
with the whiteout flag, we ended up leaking the inode, not decrementing
its link count nor removing all its items from the fs/subvol tree.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-05-13 01:59:23 +01:00
Dan Fuhry
cdd1fedf82 btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT
Two new flags, RENAME_EXCHANGE and RENAME_WHITEOUT, provide for new
behavior in the renameat2() syscall. This behavior is primarily used by
overlayfs. This patch adds support for these flags to btrfs, enabling it to
be used as a fully functional upper layer for overlayfs.

RENAME_EXCHANGE support was written by Davide Italiano originally
submitted on 2 April 2015.

Signed-off-by: Davide Italiano <dccitaliano@gmail.com>
Signed-off-by: Dan Fuhry <dfuhry@datto.com>
[ remove unlikely ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-05-13 01:59:21 +01:00
Filipe Manana
c4aba95454 Btrfs: pin log earlier when renaming
We were pinning the log right after the first step in the rename operation
(inserting inode ref for the new name in the destination directory)
instead of doing it before. This behaviour was introduced in 2009 for some
reason that was not mentioned neither on the changelog nor any comment,
with the drawback of a small time window where concurrent log writers can
end up logging the new inode reference for the inode we are renaming while
the rename operation is in progress (so that we can end up with a log
containing both the new and old references). As of today there's no reason
to not pin the log before that first step anymore, so just fix this.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-05-13 01:59:19 +01:00
Filipe Manana
3dc9e8f767 Btrfs: unpin log if rename operation fails
If rename operations fail at some point after we pinned the log, we end
up aborting the current transaction but never unpin the log, which leaves
concurrent tasks that are trying to sync the log (as part of an fsync
request from user space) blocked forever and preventing the filesystem
from being unmountable.

Fix this by safely unpinning the log.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-05-13 01:59:18 +01:00
Filipe Manana
9cfa3e34e2 Btrfs: don't do unnecessary delalloc flushes when relocating
Before we start the actual relocation process of a block group, we do
calls to flush delalloc of all inodes and then wait for ordered extents
to complete. However we do these flush calls just to make sure we don't
race with concurrent tasks that have actually already started to run
delalloc and have allocated an extent from the block group we want to
relocate, right before we set it to readonly mode, but have not yet
created the respective ordered extents. The flush calls make us wait
for such concurrent tasks because they end up calling
filemap_fdatawrite_range() (through btrfs_start_delalloc_roots() ->
__start_delalloc_inodes() -> btrfs_alloc_delalloc_work() ->
btrfs_run_delalloc_work()) which ends up serializing us with those tasks
due to attempts to lock the same pages (and the delalloc flush procedure
calls the allocator and creates the ordered extents before unlocking the
pages).

These flushing calls not only make us waste time (cpu, IO) but also reduce
the chances of writing larger extents (applications might be writing to
contiguous ranges and we flush before they finish dirtying the whole
ranges).

So make sure we don't flush delalloc and just wait for concurrent tasks
that have already started flushing delalloc and have allocated an extent
from the block group we are about to relocate.

This change also ends up fixing a race with direct IO writes that makes
relocation not wait for direct IO ordered extents. This race is
illustrated by the following diagram:

        CPU 1                                       CPU 2

 btrfs_relocate_block_group(bg X)

                                           starts direct IO write,
                                           target inode currently has no
                                           ordered extents ongoing nor
                                           dirty pages (delalloc regions),
                                           therefore the root for our inode
                                           is not in the list
                                           fs_info->ordered_roots

                                           btrfs_direct_IO()
                                             __blockdev_direct_IO()
                                               btrfs_get_blocks_direct()
                                                 btrfs_lock_extent_direct()
                                                   locks range in the io tree
                                                 btrfs_new_extent_direct()
                                                   btrfs_reserve_extent()
                                                     --> extent allocated
                                                         from bg X

   btrfs_inc_block_group_ro(bg X)

   btrfs_start_delalloc_roots()
     __start_delalloc_inodes()
       --> does nothing, no dealloc ranges
           in the inode's io tree so the
           inode's root is not in the list
           fs_info->delalloc_roots

   btrfs_wait_ordered_roots()
     --> does not find the inode's root in the
         list fs_info->ordered_roots

     --> ends up not waiting for the direct IO
         write started by the task at CPU 2

   relocate_block_group(rc->stage ==
     MOVE_DATA_EXTENTS)

     prepare_to_relocate()
       btrfs_commit_transaction()

     iterates the extent tree, using its
     commit root and moves extents into new
     locations

                                                   btrfs_add_ordered_extent_dio()
                                                     --> now a ordered extent is
                                                         created and added to the
                                                         list root->ordered_extents
                                                         and the root added to the
                                                         list fs_info->ordered_roots
                                                     --> this is too late and the
                                                         task at CPU 1 already
                                                         started the relocation

     btrfs_commit_transaction()

                                                   btrfs_finish_ordered_io()
                                                     btrfs_alloc_reserved_file_extent()
                                                       --> adds delayed data reference
                                                           for the extent allocated
                                                           from bg X

   relocate_block_group(rc->stage ==
     UPDATE_DATA_PTRS)

     prepare_to_relocate()
       btrfs_commit_transaction()
         --> delayed refs are run, so an extent
             item for the allocated extent from
             bg X is added to extent tree
         --> commit roots are switched, so the
             next scan in the extent tree will
             see the extent item

     sees the extent in the extent tree

When this happens the relocation produces the following warning when it
finishes:

[ 7260.832836] ------------[ cut here ]------------
[ 7260.834653] WARNING: CPU: 5 PID: 6765 at fs/btrfs/relocation.c:4318 btrfs_relocate_block_group+0x245/0x2a1 [btrfs]()
[ 7260.838268] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
[ 7260.850935] CPU: 5 PID: 6765 Comm: btrfs Not tainted 4.5.0-rc6-btrfs-next-28+ #1
[ 7260.852998] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 7260.852998]  0000000000000000 ffff88020bf57bc0 ffffffff812648b3 0000000000000000
[ 7260.852998]  0000000000000009 ffff88020bf57bf8 ffffffff81051608 ffffffffa03c1b2d
[ 7260.852998]  ffff8800b2bbb800 0000000000000000 ffff8800b17bcc58 ffff8800399dd000
[ 7260.852998] Call Trace:
[ 7260.852998]  [<ffffffff812648b3>] dump_stack+0x67/0x90
[ 7260.852998]  [<ffffffff81051608>] warn_slowpath_common+0x99/0xb2
[ 7260.852998]  [<ffffffffa03c1b2d>] ? btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
[ 7260.852998]  [<ffffffff810516d4>] warn_slowpath_null+0x1a/0x1c
[ 7260.852998]  [<ffffffffa03c1b2d>] btrfs_relocate_block_group+0x245/0x2a1 [btrfs]
[ 7260.852998]  [<ffffffffa039d9de>] btrfs_relocate_chunk.isra.29+0x66/0xdb [btrfs]
[ 7260.852998]  [<ffffffffa039f314>] btrfs_balance+0xde1/0xe4e [btrfs]
[ 7260.852998]  [<ffffffff8127d671>] ? debug_smp_processor_id+0x17/0x19
[ 7260.852998]  [<ffffffffa03a9583>] btrfs_ioctl_balance+0x255/0x2d3 [btrfs]
[ 7260.852998]  [<ffffffffa03ac96a>] btrfs_ioctl+0x11e0/0x1dff [btrfs]
[ 7260.852998]  [<ffffffff811451df>] ? handle_mm_fault+0x443/0xd63
[ 7260.852998]  [<ffffffff81491817>] ? _raw_spin_unlock+0x31/0x44
[ 7260.852998]  [<ffffffff8108b36a>] ? arch_local_irq_save+0x9/0xc
[ 7260.852998]  [<ffffffff811876ab>] vfs_ioctl+0x18/0x34
[ 7260.852998]  [<ffffffff81187cb2>] do_vfs_ioctl+0x550/0x5be
[ 7260.852998]  [<ffffffff81190c30>] ? __fget_light+0x4d/0x71
[ 7260.852998]  [<ffffffff81187d77>] SyS_ioctl+0x57/0x79
[ 7260.852998]  [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
[ 7260.893268] ---[ end trace eb7803b24ebab8ad ]---

This is because at the end of the first stage, in relocate_block_group(),
we commit the current transaction, which makes delayed refs run, the
commit roots are switched and so the second stage will find the extent
item that the ordered extent added to the delayed refs. But this extent
was not moved (ordered extent completed after first stage finished), so
at the end of the relocation our block group item still has a positive
used bytes counter, triggering a warning at the end of
btrfs_relocate_block_group(). Later on when trying to read the extent
contents from disk we hit a BUG_ON() due to the inability to map a block
with a logical address that belongs to the block group we relocated and
is no longer valid, resulting in the following trace:

[ 7344.885290] BTRFS critical (device sdi): unable to find logical 12845056 len 4096
[ 7344.887518] ------------[ cut here ]------------
[ 7344.888431] kernel BUG at fs/btrfs/inode.c:1833!
[ 7344.888431] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[ 7344.888431] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc
[ 7344.888431] CPU: 0 PID: 6831 Comm: od Tainted: G        W       4.5.0-rc6-btrfs-next-28+ #1
[ 7344.888431] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[ 7344.888431] task: ffff880215818600 ti: ffff880204684000 task.ti: ffff880204684000
[ 7344.888431] RIP: 0010:[<ffffffffa037c88c>]  [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
[ 7344.888431] RSP: 0018:ffff8802046878f0  EFLAGS: 00010282
[ 7344.888431] RAX: 00000000ffffffea RBX: 0000000000001000 RCX: 0000000000000001
[ 7344.888431] RDX: ffff88023ec0f950 RSI: ffffffff8183b638 RDI: 00000000ffffffff
[ 7344.888431] RBP: ffff880204687908 R08: 0000000000000001 R09: 0000000000000000
[ 7344.888431] R10: ffff880204687770 R11: ffffffff82f2d52d R12: 0000000000001000
[ 7344.888431] R13: ffff88021afbfee8 R14: 0000000000006208 R15: ffff88006cd199b0
[ 7344.888431] FS:  00007f1f9e1d6700(0000) GS:ffff88023ec00000(0000) knlGS:0000000000000000
[ 7344.888431] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 7344.888431] CR2: 00007f1f9dc8cb60 CR3: 000000023e3b6000 CR4: 00000000000006f0
[ 7344.888431] Stack:
[ 7344.888431]  0000000000001000 0000000000001000 ffff880204687b98 ffff880204687950
[ 7344.888431]  ffffffffa0395c8f ffffea0004d64d48 0000000000000000 0000000000001000
[ 7344.888431]  ffffea0004d64d48 0000000000001000 0000000000000000 0000000000000000
[ 7344.888431] Call Trace:
[ 7344.888431]  [<ffffffffa0395c8f>] submit_extent_page+0xf5/0x16f [btrfs]
[ 7344.888431]  [<ffffffffa03970ac>] __do_readpage+0x4a0/0x4f1 [btrfs]
[ 7344.888431]  [<ffffffffa039680d>] ? btrfs_create_repair_bio+0xcb/0xcb [btrfs]
[ 7344.888431]  [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431]  [<ffffffff8108df55>] ? trace_hardirqs_on+0xd/0xf
[ 7344.888431]  [<ffffffffa039728c>] __do_contiguous_readpages.constprop.26+0xc2/0xe4 [btrfs]
[ 7344.888431]  [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431]  [<ffffffffa039739b>] __extent_readpages.constprop.25+0xed/0x100 [btrfs]
[ 7344.888431]  [<ffffffff81129d24>] ? lru_cache_add+0xe/0x10
[ 7344.888431]  [<ffffffffa0397ea8>] extent_readpages+0x160/0x1aa [btrfs]
[ 7344.888431]  [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs]
[ 7344.888431]  [<ffffffff8115daad>] ? alloc_pages_current+0xa9/0xcd
[ 7344.888431]  [<ffffffffa037cdc9>] btrfs_readpages+0x1f/0x21 [btrfs]
[ 7344.888431]  [<ffffffff81128316>] __do_page_cache_readahead+0x168/0x1fc
[ 7344.888431]  [<ffffffff811285a0>] ondemand_readahead+0x1f6/0x207
[ 7344.888431]  [<ffffffff811285a0>] ? ondemand_readahead+0x1f6/0x207
[ 7344.888431]  [<ffffffff8111cf34>] ? pagecache_get_page+0x2b/0x154
[ 7344.888431]  [<ffffffff8112870e>] page_cache_sync_readahead+0x3d/0x3f
[ 7344.888431]  [<ffffffff8111dbf7>] generic_file_read_iter+0x197/0x4e1
[ 7344.888431]  [<ffffffff8117773a>] __vfs_read+0x79/0x9d
[ 7344.888431]  [<ffffffff81178050>] vfs_read+0x8f/0xd2
[ 7344.888431]  [<ffffffff81178a38>] SyS_read+0x50/0x7e
[ 7344.888431]  [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b
[ 7344.888431] Code: 8d 4d e8 45 31 c9 45 31 c0 48 8b 00 48 c1 e2 09 48 8b 80 80 fc ff ff 4c 89 65 e8 48 8b b8 f0 01 00 00 e8 1d 42 02 00 85 c0 79 02 <0f> 0b 4c 0
[ 7344.888431] RIP  [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs]
[ 7344.888431]  RSP <ffff8802046878f0>
[ 7344.970544] ---[ end trace eb7803b24ebab8ae ]---

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2016-05-13 01:59:16 +01:00
Al Viro
972b241f84 btrfs: switch to ->iterate_shared()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-09 11:42:19 -04:00
Christoph Hellwig
c8b8e32d70 direct-io: eliminate the offset argument to ->direct_IO
Including blkdev_direct_IO and dax_do_io.  It has to be ki_pos to actually
work, so eliminate the superflous argument.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-05-01 19:58:39 -04:00
David Sterba
7cd8c7527c btrfs: sink gfp parameter to set_extent_delalloc
Callers pass GFP_NOFS and tests pass GFP_KERNEL, but using NOFS there
does not hurt. No need to pass the flags around.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-04-29 11:01:47 +02:00
David Sterba
91166212e0 btrfs: sink gfp parameter to clear_extent_bits
Callers pass GFP_NOFS and GFP_KERNEL. No need to pass the flags around.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-04-29 11:01:47 +02:00
Luke Dashjr
4c63c2454e btrfs: bugfix: handle FS_IOC32_{GETFLAGS,SETFLAGS,GETVERSION} in btrfs_ioctl
32-bit ioctl uses these rather than the regular FS_IOC_* versions. They can
be handled in btrfs using the same code. Without this, 32-bit {ch,ls}attr
fail.

Signed-off-by: Luke Dashjr <luke-jr+git@utopios.org>
Cc: stable@vger.kernel.org
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-04-28 10:40:27 +02:00
Kirill A. Shutemov
09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Filipe Manana
ade770294d Btrfs: fix deadlock between direct IO reads and buffered writes
While running a test with a mix of buffered IO and direct IO against
the same files I hit a deadlock reported by the following trace:

[11642.140352] INFO: task kworker/u32:3:15282 blocked for more than 120 seconds.
[11642.142452]       Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.143982] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.146332] kworker/u32:3   D ffff880230ef7988 [11642.147737] systemd-journald[571]: Sent WATCHDOG=1 notification.
[11642.149771]     0 15282      2 0x00000000
[11642.151205] Workqueue: btrfs-flush_delalloc btrfs_flush_delalloc_helper [btrfs]
[11642.154074]  ffff880230ef7988 0000000000000246 0000000000014ec0 ffff88023ec94ec0
[11642.156722]  ffff880233fe8f80 ffff880230ef8000 ffff88023ec94ec0 7fffffffffffffff
[11642.159205]  0000000000000002 ffffffff8147b7f9 ffff880230ef79a0 ffffffff8147b541
[11642.161403] Call Trace:
[11642.162129]  [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.163396]  [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.164871]  [<ffffffff8147e7fe>] schedule_timeout+0x43/0x109
[11642.167020]  [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.167931]  [<ffffffff8108afd1>] ? trace_hardirqs_on_caller+0x17b/0x197
[11642.182320]  [<ffffffff8108affa>] ? trace_hardirqs_on+0xd/0xf
[11642.183762]  [<ffffffff810b079b>] ? timekeeping_get_ns+0xe/0x33
[11642.185308]  [<ffffffff810b0f61>] ? ktime_get+0x41/0x52
[11642.186782]  [<ffffffff8147ac08>] io_schedule_timeout+0xa0/0x102
[11642.188217]  [<ffffffff8147ac08>] ? io_schedule_timeout+0xa0/0x102
[11642.189626]  [<ffffffff8147b814>] bit_wait_io+0x1b/0x39
[11642.190803]  [<ffffffff8147bb21>] __wait_on_bit_lock+0x4c/0x90
[11642.192158]  [<ffffffff8111829f>] __lock_page+0x66/0x68
[11642.193379]  [<ffffffff81082f29>] ? autoremove_wake_function+0x3a/0x3a
[11642.194831]  [<ffffffffa0450ddd>] lock_page+0x31/0x34 [btrfs]
[11642.197068]  [<ffffffffa0454e3b>] extent_write_cache_pages.isra.19.constprop.35+0x1af/0x2f4 [btrfs]
[11642.199188]  [<ffffffffa0455373>] extent_writepages+0x4b/0x5c [btrfs]
[11642.200723]  [<ffffffffa043c913>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[11642.202465]  [<ffffffffa043aa82>] btrfs_writepages+0x28/0x2a [btrfs]
[11642.203836]  [<ffffffff811236bc>] do_writepages+0x23/0x2c
[11642.205624]  [<ffffffff811198c9>] __filemap_fdatawrite_range+0x5a/0x61
[11642.207057]  [<ffffffff81119946>] filemap_fdatawrite_range+0x13/0x15
[11642.208529]  [<ffffffffa044f87e>] btrfs_start_ordered_extent+0xd0/0x1a1 [btrfs]
[11642.210375]  [<ffffffffa0462613>] ? btrfs_scrubparity_helper+0x140/0x33a [btrfs]
[11642.212132]  [<ffffffffa044f974>] btrfs_run_ordered_extent_work+0x25/0x34 [btrfs]
[11642.213837]  [<ffffffffa046262f>] btrfs_scrubparity_helper+0x15c/0x33a [btrfs]
[11642.215457]  [<ffffffffa046293b>] btrfs_flush_delalloc_helper+0xe/0x10 [btrfs]
[11642.217095]  [<ffffffff8106483e>] process_one_work+0x256/0x48b
[11642.218324]  [<ffffffff81064f20>] worker_thread+0x1f5/0x2a7
[11642.219466]  [<ffffffff81064d2b>] ? rescuer_thread+0x289/0x289
[11642.220801]  [<ffffffff8106a500>] kthread+0xd4/0xdc
[11642.222032]  [<ffffffff8106a42c>] ? kthread_parkme+0x24/0x24
[11642.223190]  [<ffffffff8147fdef>] ret_from_fork+0x3f/0x70
[11642.224394]  [<ffffffff8106a42c>] ? kthread_parkme+0x24/0x24
[11642.226295] 2 locks held by kworker/u32:3/15282:
[11642.227273]  #0:  ("%s-%s""btrfs", name){++++.+}, at: [<ffffffff8106474d>] process_one_work+0x165/0x48b
[11642.229412]  #1:  ((&work->normal_work)){+.+.+.}, at: [<ffffffff8106474d>] process_one_work+0x165/0x48b
[11642.231414] INFO: task kworker/u32:8:15289 blocked for more than 120 seconds.
[11642.232872]       Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.234109] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.235776] kworker/u32:8   D ffff88020de5f848     0 15289      2 0x00000000
[11642.237412] Workqueue: writeback wb_workfn (flush-btrfs-481)
[11642.238670]  ffff88020de5f848 0000000000000246 0000000000014ec0 ffff88023ed54ec0
[11642.240475]  ffff88021b1ece40 ffff88020de60000 ffff88023ed54ec0 7fffffffffffffff
[11642.242154]  0000000000000002 ffffffff8147b7f9 ffff88020de5f860 ffffffff8147b541
[11642.243715] Call Trace:
[11642.244390]  [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.245432]  [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.246392]  [<ffffffff8147e7fe>] schedule_timeout+0x43/0x109
[11642.247479]  [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.248551]  [<ffffffff8108afd1>] ? trace_hardirqs_on_caller+0x17b/0x197
[11642.249968]  [<ffffffff8108affa>] ? trace_hardirqs_on+0xd/0xf
[11642.251043]  [<ffffffff810b079b>] ? timekeeping_get_ns+0xe/0x33
[11642.252202]  [<ffffffff810b0f61>] ? ktime_get+0x41/0x52
[11642.253210]  [<ffffffff8147ac08>] io_schedule_timeout+0xa0/0x102
[11642.254307]  [<ffffffff8147ac08>] ? io_schedule_timeout+0xa0/0x102
[11642.256118]  [<ffffffff8147b814>] bit_wait_io+0x1b/0x39
[11642.257131]  [<ffffffff8147bb21>] __wait_on_bit_lock+0x4c/0x90
[11642.258200]  [<ffffffff8111829f>] __lock_page+0x66/0x68
[11642.259168]  [<ffffffff81082f29>] ? autoremove_wake_function+0x3a/0x3a
[11642.260516]  [<ffffffffa0450ddd>] lock_page+0x31/0x34 [btrfs]
[11642.261841]  [<ffffffffa0454e3b>] extent_write_cache_pages.isra.19.constprop.35+0x1af/0x2f4 [btrfs]
[11642.263531]  [<ffffffffa0455373>] extent_writepages+0x4b/0x5c [btrfs]
[11642.264747]  [<ffffffffa043c913>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[11642.266148]  [<ffffffffa043aa82>] btrfs_writepages+0x28/0x2a [btrfs]
[11642.267264]  [<ffffffff811236bc>] do_writepages+0x23/0x2c
[11642.268280]  [<ffffffff81192a2b>] __writeback_single_inode+0xda/0x5ba
[11642.269407]  [<ffffffff811939f0>] writeback_sb_inodes+0x27b/0x43d
[11642.270476]  [<ffffffff81193c28>] __writeback_inodes_wb+0x76/0xae
[11642.271547]  [<ffffffff81193ea6>] wb_writeback+0x19e/0x41c
[11642.272588]  [<ffffffff81194821>] wb_workfn+0x201/0x341
[11642.273523]  [<ffffffff81194821>] ? wb_workfn+0x201/0x341
[11642.274479]  [<ffffffff8106483e>] process_one_work+0x256/0x48b
[11642.275497]  [<ffffffff81064f20>] worker_thread+0x1f5/0x2a7
[11642.276518]  [<ffffffff81064d2b>] ? rescuer_thread+0x289/0x289
[11642.277520]  [<ffffffff81064d2b>] ? rescuer_thread+0x289/0x289
[11642.278517]  [<ffffffff8106a500>] kthread+0xd4/0xdc
[11642.279371]  [<ffffffff8106a42c>] ? kthread_parkme+0x24/0x24
[11642.280468]  [<ffffffff8147fdef>] ret_from_fork+0x3f/0x70
[11642.281607]  [<ffffffff8106a42c>] ? kthread_parkme+0x24/0x24
[11642.282604] 3 locks held by kworker/u32:8/15289:
[11642.283423]  #0:  ("writeback"){++++.+}, at: [<ffffffff8106474d>] process_one_work+0x165/0x48b
[11642.285629]  #1:  ((&(&wb->dwork)->work)){+.+.+.}, at: [<ffffffff8106474d>] process_one_work+0x165/0x48b
[11642.287538]  #2:  (&type->s_umount_key#37){+++++.}, at: [<ffffffff81171217>] trylock_super+0x1b/0x4b
[11642.289423] INFO: task fdm-stress:26848 blocked for more than 120 seconds.
[11642.290547]       Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.291453] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.292864] fdm-stress      D ffff88022c107c20     0 26848  26591 0x00000000
[11642.294118]  ffff88022c107c20 000000038108affa 0000000000014ec0 ffff88023ed54ec0
[11642.295602]  ffff88013ab1ca40 ffff88022c108000 ffff8800b2fc19d0 00000000000e0fff
[11642.297098]  ffff8800b2fc19b0 ffff88022c107c88 ffff88022c107c38 ffffffff8147b541
[11642.298433] Call Trace:
[11642.298896]  [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.299738]  [<ffffffffa045225d>] lock_extent_bits+0xfe/0x1a3 [btrfs]
[11642.300833]  [<ffffffff81082eef>] ? add_wait_queue_exclusive+0x44/0x44
[11642.301943]  [<ffffffffa0447516>] lock_and_cleanup_extent_if_need+0x68/0x18e [btrfs]
[11642.303270]  [<ffffffffa04485ba>] __btrfs_buffered_write+0x238/0x4c1 [btrfs]
[11642.304552]  [<ffffffffa044b50a>] ? btrfs_file_write_iter+0x17c/0x408 [btrfs]
[11642.305782]  [<ffffffffa044b682>] btrfs_file_write_iter+0x2f4/0x408 [btrfs]
[11642.306878]  [<ffffffff8116e298>] __vfs_write+0x7c/0xa5
[11642.307729]  [<ffffffff8116e7d1>] vfs_write+0x9d/0xe8
[11642.308602]  [<ffffffff8116efbb>] SyS_write+0x50/0x7e
[11642.309410]  [<ffffffff8147fa97>] entry_SYSCALL_64_fastpath+0x12/0x6b
[11642.310403] 3 locks held by fdm-stress/26848:
[11642.311108]  #0:  (&f->f_pos_lock){+.+.+.}, at: [<ffffffff811877e8>] __fdget_pos+0x3a/0x40
[11642.312578]  #1:  (sb_writers#11){.+.+.+}, at: [<ffffffff811706ee>] __sb_start_write+0x5f/0xb0
[11642.314170]  #2:  (&sb->s_type->i_mutex_key#15){+.+.+.}, at: [<ffffffffa044b401>] btrfs_file_write_iter+0x73/0x408 [btrfs]
[11642.316796] INFO: task fdm-stress:26849 blocked for more than 120 seconds.
[11642.317842]       Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.318691] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.319959] fdm-stress      D ffff8801964ffa68     0 26849  26591 0x00000000
[11642.321312]  ffff8801964ffa68 00ff8801e9975f80 0000000000014ec0 ffff88023ed94ec0
[11642.322555]  ffff8800b00b4840 ffff880196500000 ffff8801e9975f20 0000000000000002
[11642.323715]  ffff8801e9975f18 ffff8800b00b4840 ffff8801964ffa80 ffffffff8147b541
[11642.325096] Call Trace:
[11642.325532]  [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.326303]  [<ffffffff8147e7fe>] schedule_timeout+0x43/0x109
[11642.327180]  [<ffffffff8108ae40>] ? mark_held_locks+0x5e/0x74
[11642.328114]  [<ffffffff8147f30e>] ? _raw_spin_unlock_irq+0x2c/0x4a
[11642.329051]  [<ffffffff8108afd1>] ? trace_hardirqs_on_caller+0x17b/0x197
[11642.330053]  [<ffffffff8147bceb>] __wait_for_common+0x109/0x147
[11642.330952]  [<ffffffff8147bceb>] ? __wait_for_common+0x109/0x147
[11642.331869]  [<ffffffff8147e7bb>] ? usleep_range+0x4a/0x4a
[11642.332925]  [<ffffffff81074075>] ? wake_up_q+0x47/0x47
[11642.333736]  [<ffffffff8147bd4d>] wait_for_completion+0x24/0x26
[11642.334672]  [<ffffffffa044f5ce>] btrfs_wait_ordered_extents+0x1c8/0x217 [btrfs]
[11642.335858]  [<ffffffffa0465b5a>] btrfs_mksubvol+0x224/0x45d [btrfs]
[11642.336854]  [<ffffffff81082eef>] ? add_wait_queue_exclusive+0x44/0x44
[11642.337820]  [<ffffffffa0465edb>] btrfs_ioctl_snap_create_transid+0x148/0x17a [btrfs]
[11642.339026]  [<ffffffffa046603b>] btrfs_ioctl_snap_create_v2+0xc7/0x110 [btrfs]
[11642.340214]  [<ffffffffa0468582>] btrfs_ioctl+0x590/0x27bd [btrfs]
[11642.341123]  [<ffffffff8147dc00>] ? mutex_unlock+0xe/0x10
[11642.341934]  [<ffffffffa00fa6e9>] ? ext4_file_write_iter+0x2a3/0x36f [ext4]
[11642.342936]  [<ffffffff8108895d>] ? __lock_is_held+0x3c/0x57
[11642.343772]  [<ffffffff81186a1d>] ? rcu_read_unlock+0x3e/0x5d
[11642.344673]  [<ffffffff8117dc95>] do_vfs_ioctl+0x458/0x4dc
[11642.346024]  [<ffffffff81186bbe>] ? __fget_light+0x62/0x71
[11642.346873]  [<ffffffff8117dd70>] SyS_ioctl+0x57/0x79
[11642.347720]  [<ffffffff8147fa97>] entry_SYSCALL_64_fastpath+0x12/0x6b
[11642.350222] 4 locks held by fdm-stress/26849:
[11642.350898]  #0:  (sb_writers#11){.+.+.+}, at: [<ffffffff811706ee>] __sb_start_write+0x5f/0xb0
[11642.352375]  #1:  (&type->i_mutex_dir_key#4/1){+.+.+.}, at: [<ffffffffa0465981>] btrfs_mksubvol+0x4b/0x45d [btrfs]
[11642.354072]  #2:  (&fs_info->subvol_sem){++++..}, at: [<ffffffffa0465a2a>] btrfs_mksubvol+0xf4/0x45d [btrfs]
[11642.355647]  #3:  (&root->ordered_extent_mutex){+.+...}, at: [<ffffffffa044f456>] btrfs_wait_ordered_extents+0x50/0x217 [btrfs]
[11642.357516] INFO: task fdm-stress:26850 blocked for more than 120 seconds.
[11642.358508]       Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.359376] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.368625] fdm-stress      D ffff88021f167688     0 26850  26591 0x00000000
[11642.369716]  ffff88021f167688 0000000000000001 0000000000014ec0 ffff88023edd4ec0
[11642.370950]  ffff880128a98680 ffff88021f168000 ffff88023edd4ec0 7fffffffffffffff
[11642.372210]  0000000000000002 ffffffff8147b7f9 ffff88021f1676a0 ffffffff8147b541
[11642.373430] Call Trace:
[11642.373853]  [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.374623]  [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.375948]  [<ffffffff8147e7fe>] schedule_timeout+0x43/0x109
[11642.376862]  [<ffffffff8147b7f9>] ? bit_wait+0x2f/0x2f
[11642.377637]  [<ffffffff8108afd1>] ? trace_hardirqs_on_caller+0x17b/0x197
[11642.378610]  [<ffffffff8108affa>] ? trace_hardirqs_on+0xd/0xf
[11642.379457]  [<ffffffff810b079b>] ? timekeeping_get_ns+0xe/0x33
[11642.380366]  [<ffffffff810b0f61>] ? ktime_get+0x41/0x52
[11642.381353]  [<ffffffff8147ac08>] io_schedule_timeout+0xa0/0x102
[11642.382255]  [<ffffffff8147ac08>] ? io_schedule_timeout+0xa0/0x102
[11642.383162]  [<ffffffff8147b814>] bit_wait_io+0x1b/0x39
[11642.383945]  [<ffffffff8147bb21>] __wait_on_bit_lock+0x4c/0x90
[11642.384875]  [<ffffffff8111829f>] __lock_page+0x66/0x68
[11642.385749]  [<ffffffff81082f29>] ? autoremove_wake_function+0x3a/0x3a
[11642.386721]  [<ffffffffa0450ddd>] lock_page+0x31/0x34 [btrfs]
[11642.387596]  [<ffffffffa0454e3b>] extent_write_cache_pages.isra.19.constprop.35+0x1af/0x2f4 [btrfs]
[11642.389030]  [<ffffffffa0455373>] extent_writepages+0x4b/0x5c [btrfs]
[11642.389973]  [<ffffffff810a25ad>] ? rcu_read_lock_sched_held+0x61/0x69
[11642.390939]  [<ffffffffa043c913>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[11642.392271]  [<ffffffffa0451c32>] ? __clear_extent_bit+0x26e/0x2c0 [btrfs]
[11642.393305]  [<ffffffffa043aa82>] btrfs_writepages+0x28/0x2a [btrfs]
[11642.394239]  [<ffffffff811236bc>] do_writepages+0x23/0x2c
[11642.395045]  [<ffffffff811198c9>] __filemap_fdatawrite_range+0x5a/0x61
[11642.395991]  [<ffffffff81119946>] filemap_fdatawrite_range+0x13/0x15
[11642.397144]  [<ffffffffa044f87e>] btrfs_start_ordered_extent+0xd0/0x1a1 [btrfs]
[11642.398392]  [<ffffffffa0452094>] ? clear_extent_bit+0x17/0x19 [btrfs]
[11642.399363]  [<ffffffffa0445945>] btrfs_get_blocks_direct+0x12b/0x61c [btrfs]
[11642.400445]  [<ffffffff8119f7a1>] ? dio_bio_add_page+0x3d/0x54
[11642.401309]  [<ffffffff8119fa93>] ? submit_page_section+0x7b/0x111
[11642.402213]  [<ffffffff811a0258>] do_blockdev_direct_IO+0x685/0xc24
[11642.403139]  [<ffffffffa044581a>] ? btrfs_page_exists_in_range+0x1a1/0x1a1 [btrfs]
[11642.404360]  [<ffffffffa043d267>] ? btrfs_get_extent_fiemap+0x1c0/0x1c0 [btrfs]
[11642.406187]  [<ffffffff811a0828>] __blockdev_direct_IO+0x31/0x33
[11642.407070]  [<ffffffff811a0828>] ? __blockdev_direct_IO+0x31/0x33
[11642.407990]  [<ffffffffa043d267>] ? btrfs_get_extent_fiemap+0x1c0/0x1c0 [btrfs]
[11642.409192]  [<ffffffffa043b4ca>] btrfs_direct_IO+0x1c7/0x27e [btrfs]
[11642.410146]  [<ffffffffa043d267>] ? btrfs_get_extent_fiemap+0x1c0/0x1c0 [btrfs]
[11642.411291]  [<ffffffff81119a2c>] generic_file_read_iter+0x89/0x4e1
[11642.412263]  [<ffffffff8108ac05>] ? mark_lock+0x24/0x201
[11642.413057]  [<ffffffff8116e1f8>] __vfs_read+0x79/0x9d
[11642.413897]  [<ffffffff8116e6f1>] vfs_read+0x8f/0xd2
[11642.414708]  [<ffffffff8116ef3d>] SyS_read+0x50/0x7e
[11642.415573]  [<ffffffff8147fa97>] entry_SYSCALL_64_fastpath+0x12/0x6b
[11642.416572] 1 lock held by fdm-stress/26850:
[11642.417345]  #0:  (&f->f_pos_lock){+.+.+.}, at: [<ffffffff811877e8>] __fdget_pos+0x3a/0x40
[11642.418703] INFO: task fdm-stress:26851 blocked for more than 120 seconds.
[11642.419698]       Not tainted 4.4.0-rc6-btrfs-next-21+ #1
[11642.420612] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[11642.421807] fdm-stress      D ffff880196483d28     0 26851  26591 0x00000000
[11642.422878]  ffff880196483d28 00ff8801c8f60740 0000000000014ec0 ffff88023ed94ec0
[11642.424149]  ffff8801c8f60740 ffff880196484000 0000000000000246 ffff8801c8f60740
[11642.425374]  ffff8801bb711840 ffff8801bb711878 ffff880196483d40 ffffffff8147b541
[11642.426591] Call Trace:
[11642.427013]  [<ffffffff8147b541>] schedule+0x82/0x9a
[11642.427856]  [<ffffffff8147b6d5>] schedule_preempt_disabled+0x18/0x24
[11642.428852]  [<ffffffff8147c23a>] mutex_lock_nested+0x1d7/0x3b4
[11642.429743]  [<ffffffffa044f456>] ? btrfs_wait_ordered_extents+0x50/0x217 [btrfs]
[11642.430911]  [<ffffffffa044f456>] btrfs_wait_ordered_extents+0x50/0x217 [btrfs]
[11642.432102]  [<ffffffffa044f674>] ? btrfs_wait_ordered_roots+0x57/0x191 [btrfs]
[11642.433259]  [<ffffffffa044f456>] ? btrfs_wait_ordered_extents+0x50/0x217 [btrfs]
[11642.434431]  [<ffffffffa044f6ea>] btrfs_wait_ordered_roots+0xcd/0x191 [btrfs]
[11642.436079]  [<ffffffffa0410cab>] btrfs_sync_fs+0xe0/0x1ad [btrfs]
[11642.437009]  [<ffffffff81197900>] ? SyS_tee+0x23c/0x23c
[11642.437860]  [<ffffffff81197920>] sync_fs_one_sb+0x20/0x22
[11642.438723]  [<ffffffff81171435>] iterate_supers+0x75/0xc2
[11642.439597]  [<ffffffff81197d00>] sys_sync+0x52/0x80
[11642.440454]  [<ffffffff8147fa97>] entry_SYSCALL_64_fastpath+0x12/0x6b
[11642.441533] 3 locks held by fdm-stress/26851:
[11642.442370]  #0:  (&type->s_umount_key#37){+++++.}, at: [<ffffffff8117141f>] iterate_supers+0x5f/0xc2
[11642.444043]  #1:  (&fs_info->ordered_operations_mutex){+.+...}, at: [<ffffffffa044f661>] btrfs_wait_ordered_roots+0x44/0x191 [btrfs]
[11642.446010]  #2:  (&root->ordered_extent_mutex){+.+...}, at: [<ffffffffa044f456>] btrfs_wait_ordered_extents+0x50/0x217 [btrfs]

This happened because under specific timings the path for direct IO reads
can deadlock with concurrent buffered writes. The diagram below shows how
this happens for an example file that has the following layout:

     [  extent A  ]  [  extent B  ]  [ ....
     0K              4K              8K

     CPU 1                                               CPU 2                             CPU 3

DIO read against range
 [0K, 8K[ starts

btrfs_direct_IO()
  --> calls btrfs_get_blocks_direct()
      which finds the extent map for the
      extent A and leaves the range
      [0K, 4K[ locked in the inode's
      io tree

                                                   buffered write against
                                                   range [4K, 8K[ starts

                                                   __btrfs_buffered_write()
                                                     --> dirties page at 4K

                                                                                     a user space
                                                                                     task calls sync
                                                                                     for e.g or
                                                                                     writepages() is
                                                                                     invoked by mm

                                                                                     writepages()
                                                                                       run_delalloc_range()
                                                                                         cow_file_range()
                                                                                           --> ordered extent X
                                                                                               for the buffered
                                                                                               write is created
                                                                                               and
                                                                                               writeback starts

  --> calls btrfs_get_blocks_direct()
      again, without submitting first
      a bio for reading extent A, and
      finds the extent map for extent B

  --> calls lock_extent_direct()

      --> locks range [4K, 8K[
      --> finds ordered extent X
          covering range [4K, 8K[
      --> unlocks range [4K, 8K[

                                                  buffered write against
                                                  range [0K, 8K[ starts

                                                  __btrfs_buffered_write()
                                                    prepare_pages()
                                                      --> locks pages with
                                                          offsets 0 and 4K
                                                    lock_and_cleanup_extent_if_need()
                                                      --> blocks attempting to
                                                          lock range [0K, 8K[ in
                                                          the inode's io tree,
                                                          because the range [0, 4K[
                                                          is already locked by the
                                                          direct IO task at CPU 1

      --> calls
          btrfs_start_ordered_extent(oe X)

          btrfs_start_ordered_extent(oe X)

            --> At this point writeback for ordered
                extent X has not finished yet

            filemap_fdatawrite_range()
              btrfs_writepages()
                extent_writepages()
                  extent_write_cache_pages()
                    --> finds page with offset 0
                        with the writeback tag
                        (and not dirty)
                    --> tries to lock it
                         --> deadlock, task at CPU 2
                             has the page locked and
                             is blocked on the io range
                             [0, 4K[ that was locked
                             earlier by this task

So fix this by falling back to a buffered read in the direct IO read path
when an ordered extent for a buffered write is found.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-03-01 08:23:37 -08:00
Chris Mason
c05c5ee5ea Btrfs patchsets for 4.6
-----BEGIN PGP SIGNATURE-----
 
 iQIcBAABCgAGBQJW0GSnAAoJEMVl1fnXbVg75qAP/0xbZPJtvTgRMSRnARtFJ28w
 vCsxqY+AatNJDuEpg2My/vscZvAVXGcTWjnM8NkXMMKN+oags47QN4qD0cuNv2kI
 JWcz7Ppt3GY6lcQbTj/Ce6N8RPRCNGsU7vxev+sKZ+jjXn+vuc+wKXnyJgaL1qcN
 XhcP2MccrXTVVJXLbGMFoaJXWWfd2i9uJ2MplmjFP7HQi5zP+5t/dsVaAQbc1dqx
 2TqgTJkUEPQqK8geAKom5wdLTmpLSgMWvg1m4lkYpDO89Fi+hFAKeeuJZvNutxVa
 hA0QLrLyZmr4tbZhM1of35Kl7N1uwCzOd8u6xsxurB12bibz67RbQpK+fazlCjKa
 wZJvJV+N3gqgCusLHlXYX0YalQxpWRQiKkjzpMy3Pq4K4soLrw20tQOnnBFhLR1y
 ZwqmZUN33lhFNCIWqLS4BLqDG+Z7Sf2aGhFtspMDjSUJe9gLbIpvH9sW6CexJI2r
 FnxTaVZ08uY0ky1dvZcRDR6zDDbVUpoQKWmwdZpxoEO1eLKjD01VsMOw5zlAaxdc
 a5SxKMVt0Gq56oTPgp0MuLHJr20pxx03yr+yl69VM8R1dAG/y61Dq5DwiFNQ8+J6
 jrX+eVYGBgTNYw/UGb14UPwVjQFFEs/vouphy6MmOVvNz+YZI6thN1uScB0vw7BV
 p/oFts5Fo0ipJgaBzGu4
 =CRdD
 -----END PGP SIGNATURE-----

Merge tag 'for-chris' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.6

Btrfs patchsets for 4.6
2016-03-01 08:13:56 -08:00
David Sterba
f004fae0cf Merge branch 'cleanups-4.6' into for-chris-4.6 2016-02-26 15:38:33 +01:00
David Sterba
675d276b32 Merge branch 'foreign/liubo/replace-lockup' into for-chris-4.6 2016-02-26 15:38:32 +01:00
David Sterba
e9ddd77a31 Merge branch 'foreign/josef/space-updates' into for-chris-4.6 2016-02-26 15:38:31 +01:00
David Sterba
e22b3d1fbe Merge branch 'dev/gfp-flags' into for-chris-4.6 2016-02-26 15:38:28 +01:00
David Sterba
5f1b5664d9 Merge branch 'chandan/prep-subpage-blocksize' into for-chris-4.6
# Conflicts:
#	fs/btrfs/file.c
2016-02-26 15:38:28 +01:00
Linus Torvalds
ce6b71432d Merge branch 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fix from Chris Mason:
 "My for-linus-4.5 branch has a btrfs DIO error passing fix.

  I know how much you love DIO, so I'm going to suggest against reading
  it.  We'll follow up with a patch to drop the error arg from
  dio_end_io in the next merge window."

* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: fix direct IO requests not reporting IO error to user space
2016-02-19 13:40:42 -08:00
Kinglong Mee
5598e9005a btrfs: drop null testing before destroy functions
Cleanup.

kmem_cache_destroy has support NULL argument checking,
so drop the double null testing before calling it.

Signed-off-by: Kinglong Mee <kinglongmee@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 11:46:03 +01:00
Deepa Dinamani
04b285f35e btrfs: Replace CURRENT_TIME by current_fs_time()
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_fs_time() instead.

Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: linux-btrfs@vger.kernel.org
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 11:46:03 +01:00
Josef Bacik
dc95f7bfc5 Btrfs: fix truncate_space_check
truncate_space_check is using btrfs_csum_bytes_to_leaves() but forgetting to
multiply by nodesize so we get an actual byte count.  We need a tracepoint here
so that we have the matching reserve for the release that will come later.  Also
add a comment to make clear what the intent of truncate_space_check is.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-18 11:22:24 +01:00
Filipe Manana
1636d1d77e Btrfs: fix direct IO requests not reporting IO error to user space
If a bio for a direct IO request fails, we were not setting the error in
the parent bio (the main DIO bio), making us not return the error to
user space in btrfs_direct_IO(), that is, it made __blockdev_direct_IO()
return the number of bytes issued for IO and not the error a bio created
and submitted by btrfs_submit_direct() got from the block layer.
This essentially happens because when we call:

   dio_end_io(dio_bio, bio->bi_error);

It does not set dio_bio->bi_error to the value of the second argument.
So just add this missing assignment in endio callbacks, just as we do in
the error path at btrfs_submit_direct() when we fail to clone the dio bio
or allocate its private object. This follows the convention of what is
done with other similar APIs such as bio_endio() where the caller is
responsible for setting the bi_error field in the bio it passes as an
argument to bio_endio().

This was detected by the new generic test cases in xfstests: 271, 272,
276 and 278. Which essentially setup a dm error target, then load the
error table, do a direct IO write and unload the error table. They
expect the write to fail with -EIO, which was not getting reported
when testing against btrfs.

Cc: stable@vger.kernel.org  # 4.3+
Fixes: 4246a0b63b ("block: add a bi_error field to struct bio")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
2016-02-16 03:41:26 +00:00
Linus Torvalds
27c9d772e5 Merge branch 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "This has a few fixes from Filipe, along with a readdir fix from Dave
  that we've been testing for some time"

* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: properly set the termination value of ctx->pos in readdir
  Btrfs: fix hang on extent buffer lock caused by the inode_paths ioctl
  Btrfs: remove no longer used function extent_read_full_page_nolock()
  Btrfs: fix page reading in extent_same ioctl leading to csum errors
  Btrfs: fix invalid page accesses in extent_same (dedup) ioctl
2016-02-12 09:21:28 -08:00
David Sterba
bc4ef7592f btrfs: properly set the termination value of ctx->pos in readdir
The value of ctx->pos in the last readdir call is supposed to be set to
INT_MAX due to 32bit compatibility, unless 'pos' is intentially set to a
larger value, then it's LLONG_MAX.

There's a report from PaX SIZE_OVERFLOW plugin that "ctx->pos++"
overflows (https://forums.grsecurity.net/viewtopic.php?f=1&t=4284), on a
64bit arch, where the value is 0x7fffffffffffffff ie. LLONG_MAX before
the increment.

We can get to that situation like that:

* emit all regular readdir entries
* still in the same call to readdir, bump the last pos to INT_MAX
* next call to readdir will not emit any entries, but will reach the
  bump code again, finds pos to be INT_MAX and sets it to LLONG_MAX

Normally this is not a problem, but if we call readdir again, we'll find
'pos' set to LLONG_MAX and the unconditional increment will overflow.

The report from Victor at
(http://thread.gmane.org/gmane.comp.file-systems.btrfs/49500) with debugging
print shows that pattern:

 Overflow: e
 Overflow: 7fffffff
 Overflow: 7fffffffffffffff
 PAX: size overflow detected in function btrfs_real_readdir
   fs/btrfs/inode.c:5760 cicus.935_282 max, count: 9, decl: pos; num: 0;
   context: dir_context;
 CPU: 0 PID: 2630 Comm: polkitd Not tainted 4.2.3-grsec #1
 Hardware name: Gigabyte Technology Co., Ltd. H81ND2H/H81ND2H, BIOS F3 08/11/2015
  ffffffff81901608 0000000000000000 ffffffff819015e6 ffffc90004973d48
  ffffffff81742f0f 0000000000000007 ffffffff81901608 ffffc90004973d78
  ffffffff811cb706 0000000000000000 ffff8800d47359e0 ffffc90004973ed8
 Call Trace:
  [<ffffffff81742f0f>] dump_stack+0x4c/0x7f
  [<ffffffff811cb706>] report_size_overflow+0x36/0x40
  [<ffffffff812ef0bc>] btrfs_real_readdir+0x69c/0x6d0
  [<ffffffff811dafc8>] iterate_dir+0xa8/0x150
  [<ffffffff811e6d8d>] ? __fget_light+0x2d/0x70
  [<ffffffff811dba3a>] SyS_getdents+0xba/0x1c0
 Overflow: 1a
  [<ffffffff811db070>] ? iterate_dir+0x150/0x150
  [<ffffffff81749b69>] entry_SYSCALL_64_fastpath+0x12/0x83

The jump from 7fffffff to 7fffffffffffffff happens when new dir entries
are not yet synced and are processed from the delayed list. Then the code
could go to the bump section again even though it might not emit any new
dir entries from the delayed list.

The fix avoids entering the "bump" section again once we've finished
emitting the entries, both for synced and delayed entries.

References: https://forums.grsecurity.net/viewtopic.php?f=1&t=4284
Reported-by: Victor <services@swwu.com>
CC: stable@vger.kernel.org
Signed-off-by: David Sterba <dsterba@suse.com>
Tested-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-02-11 07:01:59 -08:00
David Sterba
49e350a491 btrfs: readdir: use GFP_KERNEL
Readdir is initiated from userspace and is not on the critical
writeback path, we don't need to use GFP_NOFS for allocations.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-11 15:19:39 +01:00
Chandan Rajendra
27772b68f6 Btrfs: Clean pte corresponding to page straddling i_size
When extending a file by either "truncate up" or by writing beyond i_size, the
page which had i_size needs to be marked "read only" so that future writes to
the page via mmap interface causes btrfs_page_mkwrite() to be invoked. If not,
a write performed after extending the file via the mmap interface will find
the page to be writaeable and continue writing to the page without invoking
btrfs_page_mkwrite() i.e. we end up writing to a file without reserving disk
space.

Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-01 19:24:29 +01:00
Chandan Rajendra
5a2834f808 Btrfs: Fix block size returned to user space
btrfs_getattr() returns PAGE_CACHE_SIZE as the block size. Since
generic_fillattr() already does the right thing (by obtaining block size
from inode->i_blkbits), just remove the statement from btrfs_getattr.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-01 19:24:29 +01:00
Chandan Rajendra
0c29ba993e Btrfs: Limit inline extents to root->sectorsize
cow_file_range_inline() limits the size of an inline extent to
PAGE_CACHE_SIZE. This breaks in subpagesize-blocksize scenarios. Fix this by
comparing against root->sectorsize.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-01 19:24:29 +01:00
Chandan Rajendra
5f4dc8fc83 Btrfs: btrfs_submit_direct_hook: Handle map_length < bio vector length
In subpagesize-blocksize scenario, map_length can be less than the length of a
bio vector. Such a condition may cause btrfs_submit_direct_hook() to submit a
zero length bio. Fix this by comparing map_length against block size rather
than with bv_len.

Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-01 19:24:29 +01:00
Chandan Rajendra
dbfdb6d1b3 Btrfs: Search for all ordered extents that could span across a page
In subpagesize-blocksize scenario it is not sufficient to search using the
first byte of the page to make sure that there are no ordered extents
present across the page. Fix this.

Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-01 19:24:29 +01:00
Chandan Rajendra
d0b7da88f6 Btrfs: btrfs_page_mkwrite: Reserve space in sectorsized units
In subpagesize-blocksize scenario, if i_size occurs in a block which is not
the last block in the page, then the space to be reserved should be calculated
appropriately.

Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-01 19:24:29 +01:00
Chandan Rajendra
9703fefe0b Btrfs: fallocate: Work with sectorsized blocks
While at it, this commit changes btrfs_truncate_page() to truncate sectorsized
blocks instead of pages. Hence the function has been renamed to
btrfs_truncate_block().

Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-01 19:24:29 +01:00
Chandan Rajendra
2dabb32484 Btrfs: Direct I/O read: Work on sectorsized blocks
The direct I/O read's endio and corresponding repair functions work on
page sized blocks. This commit adds the ability for direct I/O read to work on
subpagesized blocks.

Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-02-01 19:23:47 +01:00
Linus Torvalds
d3f71ae711 Merge branch 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "Dave had a small collection of fixes to the new free space tree code,
  one of which was keeping our sysfs files more up to date with feature
  bits as different things get enabled (lzo, raid5/6, etc).

  I should have kept the sysfs stuff for rc3, since we always manage to
  trip over something.  This time it was GFP_KERNEL from somewhere that
  is NOFS only.  Instead of rebasing it out I've put a revert in, and
  we'll fix it properly for rc3.

  Otherwise, Filipe fixed a btrfs DIO race and Qu Wenruo fixed up a
  use-after-free in our tracepoints that Dave Jones reported"

* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Revert "btrfs: synchronize incompat feature bits with sysfs files"
  btrfs: don't use GFP_HIGHMEM for free-space-tree bitmap kzalloc
  btrfs: sysfs: check initialization state before updating features
  Revert "btrfs: clear PF_NOFREEZE in cleaner_kthread()"
  btrfs: async-thread: Fix a use-after-free error for trace
  Btrfs: fix race between fsync and lockless direct IO writes
  btrfs: add free space tree to the cow-only list
  btrfs: add free space tree to lockdep classes
  btrfs: tweak free space tree bitmap allocation
  btrfs: tests: switch to GFP_KERNEL
  btrfs: synchronize incompat feature bits with sysfs files
  btrfs: sysfs: introduce helper for syncing bits with sysfs files
  btrfs: sysfs: add free-space-tree bit attribute
  btrfs: sysfs: fix typo in compat_ro attribute definition
2016-01-29 15:46:49 -08:00
Filipe Manana
de0ee0edb2 Btrfs: fix race between fsync and lockless direct IO writes
An fsync, using the fast path, can race with a concurrent lockless direct
IO write and end up logging a file extent item that points to an extent
that wasn't written to yet. This is because the fast fsync path collects
ordered extents into a local list and then collects all the new extent
maps to log file extent items based on them, while the direct IO write
path creates the new extent map before it creates the corresponding
ordered extent (and submitting the respective bio(s)).

So fix this by making the direct IO write path create ordered extents
before the extent maps and make the fast fsync path collect any new
ordered extents after it collects the extent maps.
Note that making the fsync handler call inode_dio_wait() (after acquiring
the inode's i_mutex) would not work and lead to a deadlock when doing
AIO, as through AIO we end up in a path where the fsync handler is called
(through dio_aio_complete_work() -> dio_complete() -> vfs_fsync_range())
before the inode's dio counter is decremented (inode_dio_wait() waits
for this counter to have a value of zero).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-01-25 16:50:26 -08:00
Al Viro
5955102c99 wrappers for ->i_mutex access
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).

Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-22 18:04:28 -05:00
Linus Torvalds
2101ae4289 Merge branch 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull more btrfs updates from Chris Mason:
 "These are mostly fixes that we've been testing, but also we grabbed
  and tested a few small cleanups that had been on the list for a while.

  Zhao Lei's patchset also fixes some early ENOSPC buglets"

* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (21 commits)
  btrfs: raid56: Use raid_write_end_io for scrub
  btrfs: Remove unnecessary ClearPageUptodate for raid56
  btrfs: use rbio->nr_pages to reduce calculation
  btrfs: Use unified stripe_page's index calculation
  btrfs: Fix calculation of rbio->dbitmap's size calculation
  btrfs: Fix no_space in write and rm loop
  btrfs: merge functions for wait snapshot creation
  btrfs: delete unused argument in btrfs_copy_from_user
  btrfs: Use direct way to determine raid56 write/recover mode
  btrfs: Small cleanup for get index_srcdev loop
  btrfs: Enhance chunk validation check
  btrfs: Enhance super validation check
  Btrfs: fix deadlock running delayed iputs at transaction commit time
  Btrfs: fix typo in log message when starting a balance
  btrfs: remove duplicate const specifier
  btrfs: initialize the seq counter in struct btrfs_device
  Btrfs: clean up an error code in btrfs_init_space_info()
  btrfs: fix iterator with update error in backref.c
  Btrfs: fix output of compression message in btrfs_parse_options()
  Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume roots
  ...
2016-01-22 11:49:21 -08:00
Zhao Lei
0bc19f9031 btrfs: merge functions for wait snapshot creation
wait_for_snapshot_creation() is in same group with oher two:
 btrfs_start_write_no_snapshoting()
 btrfs_end_write_no_snapshoting()

Rename wait_for_snapshot_creation() and move it into same place
with other two.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-01-20 07:22:13 -08:00
Filipe Manana
c2d6cb1636 Btrfs: fix deadlock running delayed iputs at transaction commit time
While running a stress test I ran into a deadlock when running the delayed
iputs at transaction time, which produced the following report and trace:

[  886.399989] =============================================
[  886.400871] [ INFO: possible recursive locking detected ]
[  886.401663] 4.4.0-rc6-btrfs-next-18+ #1 Not tainted
[  886.402384] ---------------------------------------------
[  886.403182] fio/8277 is trying to acquire lock:
[  886.403568]  (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs]
[  886.403568]
[  886.403568] but task is already holding lock:
[  886.403568]  (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs]
[  886.403568]
[  886.403568] other info that might help us debug this:
[  886.403568]  Possible unsafe locking scenario:
[  886.403568]
[  886.403568]        CPU0
[  886.403568]        ----
[  886.403568]   lock(&fs_info->delayed_iput_sem);
[  886.403568]   lock(&fs_info->delayed_iput_sem);
[  886.403568]
[  886.403568]  *** DEADLOCK ***
[  886.403568]
[  886.403568]  May be due to missing lock nesting notation
[  886.403568]
[  886.403568] 3 locks held by fio/8277:
[  886.403568]  #0:  (sb_writers#11){.+.+.+}, at: [<ffffffff81174c4c>] __sb_start_write+0x5f/0xb0
[  886.403568]  #1:  (&sb->s_type->i_mutex_key#15){+.+.+.}, at: [<ffffffffa054620d>] btrfs_file_write_iter+0x73/0x408 [btrfs]
[  886.403568]  #2:  (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs]
[  886.403568]
[  886.403568] stack backtrace:
[  886.403568] CPU: 6 PID: 8277 Comm: fio Not tainted 4.4.0-rc6-btrfs-next-18+ #1
[  886.403568] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014
[  886.403568]  0000000000000000 ffff88009f80f770 ffffffff8125d4fd ffffffff82af1fc0
[  886.403568]  ffff88009f80f830 ffffffff8108e5f9 0000000200000000 ffff88009fd92290
[  886.403568]  0000000000000000 ffffffff82af1fc0 ffffffff829cfb01 00042b216d008804
[  886.403568] Call Trace:
[  886.403568]  [<ffffffff8125d4fd>] dump_stack+0x4e/0x79
[  886.403568]  [<ffffffff8108e5f9>] __lock_acquire+0xd42/0xf0b
[  886.403568]  [<ffffffff810c22db>] ? __module_address+0xdf/0x108
[  886.403568]  [<ffffffff8108eb77>] lock_acquire+0x10d/0x194
[  886.403568]  [<ffffffff8108eb77>] ? lock_acquire+0x10d/0x194
[  886.403568]  [<ffffffffa0538823>] ? btrfs_run_delayed_iputs+0x36/0xbf [btrfs]
[  886.489542]  [<ffffffff8148556b>] down_read+0x3e/0x4d
[  886.489542]  [<ffffffffa0538823>] ? btrfs_run_delayed_iputs+0x36/0xbf [btrfs]
[  886.489542]  [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs]
[  886.489542]  [<ffffffffa0533953>] btrfs_commit_transaction+0x8f5/0x96e [btrfs]
[  886.489542]  [<ffffffffa0521d7a>] flush_space+0x435/0x44a [btrfs]
[  886.489542]  [<ffffffffa052218b>] ? reserve_metadata_bytes+0x26a/0x384 [btrfs]
[  886.489542]  [<ffffffffa05221ae>] reserve_metadata_bytes+0x28d/0x384 [btrfs]
[  886.489542]  [<ffffffffa052256c>] ? btrfs_block_rsv_refill+0x58/0x96 [btrfs]
[  886.489542]  [<ffffffffa0522584>] btrfs_block_rsv_refill+0x70/0x96 [btrfs]
[  886.489542]  [<ffffffffa053d747>] btrfs_evict_inode+0x394/0x55a [btrfs]
[  886.489542]  [<ffffffff81188e31>] evict+0xa7/0x15c
[  886.489542]  [<ffffffff81189878>] iput+0x1d3/0x266
[  886.489542]  [<ffffffffa053887c>] btrfs_run_delayed_iputs+0x8f/0xbf [btrfs]
[  886.489542]  [<ffffffffa0533953>] btrfs_commit_transaction+0x8f5/0x96e [btrfs]
[  886.489542]  [<ffffffff81085096>] ? signal_pending_state+0x31/0x31
[  886.489542]  [<ffffffffa0521191>] btrfs_alloc_data_chunk_ondemand+0x1d7/0x288 [btrfs]
[  886.489542]  [<ffffffffa0521282>] btrfs_check_data_free_space+0x40/0x59 [btrfs]
[  886.489542]  [<ffffffffa05228f5>] btrfs_delalloc_reserve_space+0x1e/0x4e [btrfs]
[  886.489542]  [<ffffffffa053620a>] btrfs_direct_IO+0x10c/0x27e [btrfs]
[  886.489542]  [<ffffffff8111d9a1>] generic_file_direct_write+0xb3/0x128
[  886.489542]  [<ffffffffa05463c3>] btrfs_file_write_iter+0x229/0x408 [btrfs]
[  886.489542]  [<ffffffff8108ae38>] ? __lock_is_held+0x38/0x50
[  886.489542]  [<ffffffff8117279e>] __vfs_write+0x7c/0xa5
[  886.489542]  [<ffffffff81172cda>] vfs_write+0xa0/0xe4
[  886.489542]  [<ffffffff811734cc>] SyS_write+0x50/0x7e
[  886.489542]  [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f
[ 1081.852335] INFO: task fio:8244 blocked for more than 120 seconds.
[ 1081.854348]       Not tainted 4.4.0-rc6-btrfs-next-18+ #1
[ 1081.857560] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1081.863227] fio        D ffff880213f9bb28     0  8244   8240 0x00000000
[ 1081.868719]  ffff880213f9bb28 00ffffff810fc6b0 ffffffff0000000a ffff88023ed55240
[ 1081.872499]  ffff880206b5d400 ffff880213f9c000 ffff88020a4d5318 ffff880206b5d400
[ 1081.876834]  ffffffff00000001 ffff880206b5d400 ffff880213f9bb40 ffffffff81482ba4
[ 1081.880782] Call Trace:
[ 1081.881793]  [<ffffffff81482ba4>] schedule+0x7f/0x97
[ 1081.883340]  [<ffffffff81485eb5>] rwsem_down_write_failed+0x2d5/0x325
[ 1081.895525]  [<ffffffff8108d48d>] ? trace_hardirqs_on_caller+0x16/0x1ab
[ 1081.897419]  [<ffffffff81269723>] call_rwsem_down_write_failed+0x13/0x20
[ 1081.899251]  [<ffffffff81269723>] ? call_rwsem_down_write_failed+0x13/0x20
[ 1081.901063]  [<ffffffff81089fae>] ? __down_write_nested.isra.0+0x1f/0x21
[ 1081.902365]  [<ffffffff814855bd>] down_write+0x43/0x57
[ 1081.903846]  [<ffffffffa05211b0>] ? btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs]
[ 1081.906078]  [<ffffffffa05211b0>] btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs]
[ 1081.908846]  [<ffffffff8108d461>] ? mark_held_locks+0x56/0x6c
[ 1081.910409]  [<ffffffffa0521282>] btrfs_check_data_free_space+0x40/0x59 [btrfs]
[ 1081.912482]  [<ffffffffa05228f5>] btrfs_delalloc_reserve_space+0x1e/0x4e [btrfs]
[ 1081.914597]  [<ffffffffa053620a>] btrfs_direct_IO+0x10c/0x27e [btrfs]
[ 1081.919037]  [<ffffffff8111d9a1>] generic_file_direct_write+0xb3/0x128
[ 1081.920754]  [<ffffffffa05463c3>] btrfs_file_write_iter+0x229/0x408 [btrfs]
[ 1081.922496]  [<ffffffff8108ae38>] ? __lock_is_held+0x38/0x50
[ 1081.923922]  [<ffffffff8117279e>] __vfs_write+0x7c/0xa5
[ 1081.925275]  [<ffffffff81172cda>] vfs_write+0xa0/0xe4
[ 1081.926584]  [<ffffffff811734cc>] SyS_write+0x50/0x7e
[ 1081.927968]  [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f
[ 1081.985293] INFO: lockdep is turned off.
[ 1081.986132] INFO: task fio:8249 blocked for more than 120 seconds.
[ 1081.987434]       Not tainted 4.4.0-rc6-btrfs-next-18+ #1
[ 1081.988534] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1081.990147] fio        D ffff880218febbb8     0  8249   8240 0x00000000
[ 1081.991626]  ffff880218febbb8 00ffffff81486b8e ffff88020000000b ffff88023ed75240
[ 1081.993258]  ffff8802120a9a00 ffff880218fec000 ffff88020a4d5318 ffff8802120a9a00
[ 1081.994850]  ffffffff00000001 ffff8802120a9a00 ffff880218febbd0 ffffffff81482ba4
[ 1081.996485] Call Trace:
[ 1081.997037]  [<ffffffff81482ba4>] schedule+0x7f/0x97
[ 1081.998017]  [<ffffffff81485eb5>] rwsem_down_write_failed+0x2d5/0x325
[ 1081.999241]  [<ffffffff810852a5>] ? finish_wait+0x6d/0x76
[ 1082.000306]  [<ffffffff81269723>] call_rwsem_down_write_failed+0x13/0x20
[ 1082.001533]  [<ffffffff81269723>] ? call_rwsem_down_write_failed+0x13/0x20
[ 1082.002776]  [<ffffffff81089fae>] ? __down_write_nested.isra.0+0x1f/0x21
[ 1082.003995]  [<ffffffff814855bd>] down_write+0x43/0x57
[ 1082.005000]  [<ffffffffa05211b0>] ? btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs]
[ 1082.007403]  [<ffffffffa05211b0>] btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs]
[ 1082.008988]  [<ffffffffa0545064>] btrfs_fallocate+0x7c1/0xc2f [btrfs]
[ 1082.010193]  [<ffffffff8108a1ba>] ? percpu_down_read+0x4e/0x77
[ 1082.011280]  [<ffffffff81174c4c>] ? __sb_start_write+0x5f/0xb0
[ 1082.012265]  [<ffffffff81174c4c>] ? __sb_start_write+0x5f/0xb0
[ 1082.013021]  [<ffffffff811712e4>] vfs_fallocate+0x170/0x1ff
[ 1082.013738]  [<ffffffff81181ebb>] ioctl_preallocate+0x89/0x9b
[ 1082.014778]  [<ffffffff811822d7>] do_vfs_ioctl+0x40a/0x4ea
[ 1082.015778]  [<ffffffff81176ea7>] ? SYSC_newfstat+0x25/0x2e
[ 1082.016806]  [<ffffffff8118b4de>] ? __fget_light+0x4d/0x71
[ 1082.017789]  [<ffffffff8118240e>] SyS_ioctl+0x57/0x79
[ 1082.018706]  [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f

This happens because we can recursively acquire the semaphore
fs_info->delayed_iput_sem when attempting to allocate space to satisfy
a file write request as shown in the first trace above - when committing
a transaction we acquire (down_read) the semaphore before running the
delayed iputs, and when running a delayed iput() we can end up calling
an inode's eviction handler, which in turn commits another transaction
and attempts to acquire (down_read) again the semaphore to run more
delayed iput operations.
This results in a deadlock because if a task acquires multiple times a
semaphore it should invoke down_read_nested() with a different lockdep
class for each level of recursion.

Fix this by simplifying the implementation and use a mutex instead that
is acquired by the cleaner kthread before it runs the delayed iputs
instead of always acquiring a semaphore before delayed references are
run from anywhere.

Fixes: d7c151717a (btrfs: Fix NO_SPACE bug caused by delayed-iput)
Cc: stable@vger.kernel.org   # 4.1+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2016-01-19 18:21:41 -08:00
Linus Torvalds
c1a198d923 Merge branch 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This has our usual assortment of fixes and cleanups, but the biggest
  change included is Omar Sandoval's free space tree.  It's not the
  default yet, mounting -o space_cache=v2 enables it and sets a readonly
  compat bit.  The tree can actually be deleted and regenerated if there
  are any problems, but it has held up really well in testing so far.

  For very large filesystems (30T+) our existing free space caching code
  can end up taking a huge amount of time during commits.  The new tree
  based code is faster and less work overall to update as the commit
  progresses.

  Omar worked on this during the summer and we'll hammer on it in
  production here at FB over the next few months"

* 'for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (73 commits)
  Btrfs: fix fitrim discarding device area reserved for boot loader's use
  Btrfs: Check metadata redundancy on balance
  btrfs: statfs: report zero available if metadata are exhausted
  btrfs: preallocate path for snapshot creation at ioctl time
  btrfs: allocate root item at snapshot ioctl time
  btrfs: do an allocation earlier during snapshot creation
  btrfs: use smaller type for btrfs_path locks
  btrfs: use smaller type for btrfs_path lowest_level
  btrfs: use smaller type for btrfs_path reada
  btrfs: cleanup, use enum values for btrfs_path reada
  btrfs: constify static arrays
  btrfs: constify remaining structs with function pointers
  btrfs tests: replace whole ops structure for free space tests
  btrfs: use list_for_each_entry* in backref.c
  btrfs: use list_for_each_entry_safe in free-space-cache.c
  btrfs: use list_for_each_entry* in check-integrity.c
  Btrfs: use linux/sizes.h to represent constants
  btrfs: cleanup, remove stray return statements
  btrfs: zero out delayed node upon allocation
  btrfs: pass proper enum type to start_transaction()
  ...
2016-01-18 12:44:40 -08:00
Vladimir Davydov
5d097056c9 kmemcg: account certain kmem allocations to memcg
Mark those kmem allocations that are known to be easily triggered from
userspace as __GFP_ACCOUNT/SLAB_ACCOUNT, which makes them accounted to
memcg.  For the list, see below:

 - threadinfo
 - task_struct
 - task_delay_info
 - pid
 - cred
 - mm_struct
 - vm_area_struct and vm_region (nommu)
 - anon_vma and anon_vma_chain
 - signal_struct
 - sighand_struct
 - fs_struct
 - files_struct
 - fdtable and fdtable->full_fds_bits
 - dentry and external_name
 - inode for all filesystems. This is the most tedious part, because
   most filesystems overwrite the alloc_inode method.

The list is far from complete, so feel free to add more objects.
Nevertheless, it should be close to "account everything" approach and
keep most workloads within bounds.  Malevolent users will be able to
breach the limit, but this was possible even with the former "account
everything" approach (simply because it did not account everything in
fact).

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Linus Torvalds
ddf1d6238d Merge branch 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs xattr updates from Al Viro:
 "Andreas' xattr cleanup series.

  It's a followup to his xattr work that went in last cycle; -0.5KLoC"

* 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  xattr handlers: Simplify list operation
  ocfs2: Replace list xattr handler operations
  nfs: Move call to security_inode_listsecurity into nfs_listxattr
  xfs: Change how listxattr generates synthetic attributes
  tmpfs: listxattr should include POSIX ACL xattrs
  tmpfs: Use xattr handler infrastructure
  btrfs: Use xattr handler infrastructure
  vfs: Distinguish between full xattr names and proper prefixes
  posix acls: Remove duplicate xattr name definitions
  gfs2: Remove gfs2_xattr_acl_chmod
  vfs: Remove vfs_xattr_cmp
2016-01-11 13:32:10 -08:00
Chris Mason
988f1f576d Merge branch 'for-chris-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.5
Signed-off-by: Chris Mason <clm@fb.com>
2016-01-11 08:39:28 -08:00
Chris Mason
b28cf57246 Merge branch 'misc-cleanups-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.5
Signed-off-by: Chris Mason <clm@fb.com>
2016-01-11 06:08:37 -08:00
Chris Mason
a3058101c1 Merge branch 'misc-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.5 2016-01-11 05:59:32 -08:00
David Sterba
e4058b54d1 btrfs: cleanup, use enum values for btrfs_path reada
Replace the integers by enums for better readability. The value 2 does
not have any meaning since a717531942
"Btrfs: do less aggressive btree readahead" (2009-01-22).

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:01:15 +01:00
David Sterba
4d4ab6d6bc btrfs: constify static arrays
There are a few statically initialized arrays that can be made const.
The remaining (like file_system_type, sysfs attributes or prop handlers)
do not allow that due to type mismatch when passed to the APIs or
because the structures are modified through other members.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:01:15 +01:00
David Sterba
20e5506baf btrfs: constify remaining structs with function pointers
* struct extent_io_ops
* struct btrfs_free_space_op

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 15:01:14 +01:00
Byongho Lee
ee22184b53 Btrfs: use linux/sizes.h to represent constants
We use many constants to represent size and offset value.  And to make
code readable we use '256 * 1024 * 1024' instead of '268435456' to
represent '256MB'.  However we can make far more readable with 'SZ_256MB'
which is defined in the 'linux/sizes.h'.

So this patch replaces 'xxx * 1024 * 1024' kind of expression with
single 'SZ_xxxMB' if 'xxx' is a power of 2 then 'xxx * SZ_1M' if 'xxx' is
not a power of 2. And I haven't touched to '4096' & '8192' because it's
more intuitive than 'SZ_4KB' & 'SZ_8KB'.

Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:38:02 +01:00
David Sterba
7928d672ff btrfs: cleanup, remove stray return statements
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:30:52 +01:00
Byongho Lee
e40da0e58a btrfs: remove unused inode argument from uncompress_inline()
The inode argument is never used from the beginning, so remove it.

Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:29:02 +01:00
David Sterba
100d57025c btrfs: don't use slab cache for struct btrfs_delalloc_work
Although we prefer to use separate caches for various structs, it seems
better not to do that for struct btrfs_delalloc_work. Objects of this
type are allocated rarely, when transaction commit calls
btrfs_start_delalloc_roots, requesting delayed iputs.

The objects are temporary (with some IO involved) but still allocated
and freed within __start_delalloc_inodes. Memory allocation failure is
handled.

The slab cache is empty most of the time (observed on several systems),
so if we need to allocate a new slab object, the first one has to
allocate a full page. In a potential case of low memory conditions this
might fail with higher probability compared to using the generic slab
caches.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:58 +01:00
David Sterba
8089fe62c6 btrfs: put delayed item hook into inode
Inodes for delayed iput allocate a trivial helper structure, let's place
the list hook directly into the inode and save a kmalloc (killing a
__GFP_NOFAIL as a bonus) at the cost of increasing size of btrfs_inode.

The inode can be put into the delayed_iputs list more than once and we
have to keep the count. This means we can't use the list_splice to
process a bunch of inodes because we'd lost track of the count if the
inode is put into the delayed iputs again while it's processed.

Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:58 +01:00
Josef Bacik
be7bd73084 Btrfs: igrab inode in writepage
We hit this panic on a few of our boxes this week where we have an
ordered_extent with an NULL inode.  We do an igrab() of the inode in writepages,
but weren't doing it in writepage which can be called directly from the VM on
dirty pages.  If the inode has been unlinked then we could have I_FREEING set
which means igrab() would return NULL and we get this panic.  Fix this by trying
to igrab in btrfs_writepage, and if it returns NULL then just redirty the page
and return AOP_WRITEPAGE_ACTIVATE; so the VM knows it wasn't successful.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 14:26:58 +01:00
Filipe Manana
271dba4521 Btrfs: fix transaction handle leak on failure to create hard link
If we failed to create a hard link we were not always releasing the
the transaction handle we got before, resulting in a memory leak and
preventing any other tasks from being able to commit the current
transaction.
Fix this by always releasing our transaction handle.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2016-01-06 22:52:38 +00:00
Filipe Manana
9269d12b2d Btrfs: fix number of transaction units required to create symlink
We weren't accounting for the insertion of an inline extent item for the
symlink inode nor that we need to update the parent inode item (through
the call to btrfs_add_nondir()). So fix this by including two more
transaction units.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-31 18:18:40 +00:00
Filipe Manana
d50866d00f Btrfs: don't leave dangling dentry if symlink creation failed
When we are creating a symlink we might fail with an error after we
created its inode and added the corresponding directory indexes to its
parent inode. In this case we end up never removing the directory indexes
because the inode eviction handler, called for our symlink inode on the
final iput(), only removes items associated with the symlink inode and
not with the parent inode.

Example:

  $ mkfs.btrfs -f /dev/sdi
  $ mount /dev/sdi /mnt
  $ touch /mnt/foo
  $ ln -s /mnt/foo /mnt/bar
  ln: failed to create symbolic link ‘bar’: Cannot allocate memory
  $ umount /mnt
  $ btrfsck /dev/sdi
  Checking filesystem on /dev/sdi
  UUID: d5acb5ba-31bd-42da-b456-89dca2e716e1
  checking extents
  checking free space cache
  checking fs roots
  root 5 inode 258 errors 2001, no inode item, link count wrong
	unresolved ref dir 256 index 3 namelen 3 name bar filetype 7 errors 4, no inode ref
  found 131073 bytes used err is 1
  total csum bytes: 0
  total tree bytes: 131072
  total fs tree bytes: 32768
  total extent tree bytes: 16384
  btree space waste bytes: 124305
  file data blocks allocated: 262144
   referenced 262144
  btrfs-progs v4.2.3

So fix this by adding the directory index entries as the very last
step of symlink creation.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-31 18:10:56 +00:00
Al Viro
fceef393a5 switch ->get_link() to delayed_call, kill ->put_link()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-30 13:01:03 -05:00
Chris Mason
a53fe25769 Merge branch 'for-chris-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.5 2015-12-23 13:28:35 -08:00
Chris Mason
bb9d687618 Merge branch 'dev/simplify-set-bit' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.5
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-23 13:17:42 -08:00
Chris Mason
afa427cf9d Merge branch 'cleanup/misc-simplify' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.5 2015-12-23 13:10:26 -08:00
Filipe Manana
f28a492878 Btrfs: fix leaking of ordered extents after direct IO write error
When doing a direct IO write, __blockdev_direct_IO() can call the
btrfs_get_blocks_direct() callback one or more times before it calls the
btrfs_submit_direct() callback. However it can fail after calling the
first callback and before calling the second callback, which is a problem
because the first one creates ordered extents and the second one is the
one that submits bios that cover the ordered extents created by the first
one. That means the ordered extents will never complete nor have any of
the flags BTRFS_ORDERED_IO_DONE / BTRFS_ORDERED_IOERR set, resulting in
subsequent operations (such as other direct IO writes, buffered writes or
hole punching) that lock the same IO range and lookup for ordered extents
in the range to hang forever waiting for those ordered extents because
they can not complete ever, since no bio was submitted.

Fix this by tracking a range of created ordered extents that don't have
yet corresponding bios submitted and completing the ordered extents in
the range if __blockdev_direct_IO() fails with an error.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-17 10:59:51 +00:00
Filipe Manana
b850ae1427 Btrfs: fix deadlock between direct IO write and defrag/readpages
If readpages() (triggered by defrag or buffered reads) is called while a
direct IO write is in progress, we have a small time window where we can
deadlock, resulting in traces like the following being generated:

[84723.212993] INFO: task fio:2849 blocked for more than 120 seconds.
[84723.214310]       Tainted: G        W       4.3.0-rc5-btrfs-next-17+ #1
[84723.215640] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[84723.217313] fio        D ffff88023ec75218     0  2849   2835 0x00000000
[84723.218778]  ffff880122dfb6e8 0000000000000092 0000000000000000 ffff88023ec75200
[84723.220458]  ffff88000e05d2c0 ffff880122dfc000 ffff88023ec75200 7fffffffffffffff
[84723.230597]  0000000000000002 ffffffff8147891a ffff880122dfb700 ffffffff8147856a
[84723.232085] Call Trace:
[84723.232625]  [<ffffffff8147891a>] ? bit_wait+0x3c/0x3c
[84723.233529]  [<ffffffff8147856a>] schedule+0x7d/0x95
[84723.234398]  [<ffffffff8147baa3>] schedule_timeout+0x43/0x10b
[84723.235384]  [<ffffffff810f82eb>] ? time_hardirqs_on+0x15/0x28
[84723.236426]  [<ffffffff8108a23d>] ? trace_hardirqs_on+0xd/0xf
[84723.237502]  [<ffffffff810af8a3>] ? read_seqcount_begin.constprop.20+0x57/0x6d
[84723.238807]  [<ffffffff8108a09b>] ? trace_hardirqs_on_caller+0x16/0x1ab
[84723.242012]  [<ffffffff8108a23d>] ? trace_hardirqs_on+0xd/0xf
[84723.243064]  [<ffffffff810af2ad>] ? timekeeping_get_ns+0xe/0x33
[84723.244116]  [<ffffffff810afa2e>] ? ktime_get+0x41/0x52
[84723.245029]  [<ffffffff81477cff>] io_schedule_timeout+0xb7/0x12b
[84723.245942]  [<ffffffff81477cff>] ? io_schedule_timeout+0xb7/0x12b
[84723.246596]  [<ffffffff81478953>] bit_wait_io+0x39/0x45
[84723.247503]  [<ffffffff81478b93>] __wait_on_bit_lock+0x49/0x8d
[84723.248540]  [<ffffffff8111684f>] __lock_page+0x66/0x68
[84723.249558]  [<ffffffff81081c9b>] ? autoremove_wake_function+0x3a/0x3a
[84723.250844]  [<ffffffff81124a04>] lock_page+0x2c/0x2f
[84723.251871]  [<ffffffff81124afc>] invalidate_inode_pages2_range+0xf5/0x2aa
[84723.253274]  [<ffffffff81117c34>] ? filemap_fdatawait_range+0x12d/0x146
[84723.254757]  [<ffffffff81118191>] ? filemap_fdatawrite_range+0x13/0x15
[84723.256378]  [<ffffffffa05139a2>] btrfs_get_blocks_direct+0x1b0/0x664 [btrfs]
[84723.258556]  [<ffffffff8119e3f9>] ? submit_page_section+0x7b/0x111
[84723.260064]  [<ffffffff8119eb90>] do_blockdev_direct_IO+0x658/0xbdb
[84723.261479]  [<ffffffffa05137f2>] ? btrfs_page_exists_in_range+0x1a9/0x1a9 [btrfs]
[84723.262961]  [<ffffffffa050a8a6>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[84723.264449]  [<ffffffff8119f144>] __blockdev_direct_IO+0x31/0x33
[84723.265614]  [<ffffffff8119f144>] ? __blockdev_direct_IO+0x31/0x33
[84723.266769]  [<ffffffffa050a8a6>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[84723.268264]  [<ffffffffa050935d>] btrfs_direct_IO+0x1b9/0x259 [btrfs]
[84723.270954]  [<ffffffffa050a8a6>] ? btrfs_writepage_start_hook+0xce/0xce [btrfs]
[84723.272465]  [<ffffffff8111878c>] generic_file_direct_write+0xb3/0x128
[84723.273734]  [<ffffffffa051955c>] btrfs_file_write_iter+0x228/0x404 [btrfs]
[84723.275101]  [<ffffffff8116ca6f>] __vfs_write+0x7c/0xa5
[84723.276200]  [<ffffffff8116cfab>] vfs_write+0xa0/0xe4
[84723.277298]  [<ffffffff8116d79d>] SyS_write+0x50/0x7e
[84723.278327]  [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f
[84723.279595] INFO: lockdep is turned off.
[84723.379035] INFO: task btrfs:2923 blocked for more than 120 seconds.
[84723.380323]       Tainted: G        W       4.3.0-rc5-btrfs-next-17+ #1
[84723.381608] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[84723.383003] btrfs           D ffff88023ed75218     0  2923   2859 0x00000000
[84723.384277]  ffff88001311f860 0000000000000082 ffff88001311f840 ffff88023ed75200
[84723.385748]  ffff88012c6751c0 ffff880013120000 ffff88012042fe68 ffff88012042fe30
[84723.387152]  ffff880221571c88 0000000000000001 ffff88001311f878 ffffffff8147856a
[84723.388620] Call Trace:
[84723.389105]  [<ffffffff8147856a>] schedule+0x7d/0x95
[84723.391882]  [<ffffffffa051da32>] btrfs_start_ordered_extent+0x161/0x1fa [btrfs]
[84723.393718]  [<ffffffff81081c61>] ? signal_pending_state+0x31/0x31
[84723.395659]  [<ffffffffa0522c5b>] __do_contiguous_readpages.constprop.21+0x81/0xdc [btrfs]
[84723.397383]  [<ffffffffa050ac96>] ? btrfs_submit_direct+0x3f0/0x3f0 [btrfs]
[84723.398852]  [<ffffffffa0522da3>] __extent_readpages.constprop.20+0xed/0x100 [btrfs]
[84723.400561]  [<ffffffff81123f6c>] ? __lru_cache_add+0x5d/0x72
[84723.401787]  [<ffffffffa0523896>] extent_readpages+0x111/0x1a7 [btrfs]
[84723.403121]  [<ffffffffa050ac96>] ? btrfs_submit_direct+0x3f0/0x3f0 [btrfs]
[84723.404583]  [<ffffffffa05088fa>] btrfs_readpages+0x1f/0x21 [btrfs]
[84723.406007]  [<ffffffff811226df>] __do_page_cache_readahead+0x168/0x1f4
[84723.407502]  [<ffffffff81122988>] ondemand_readahead+0x21d/0x22e
[84723.408937]  [<ffffffff81122988>] ? ondemand_readahead+0x21d/0x22e
[84723.410487]  [<ffffffff81122af1>] page_cache_sync_readahead+0x3d/0x3f
[84723.411710]  [<ffffffffa0535388>] btrfs_defrag_file+0x419/0xaaf [btrfs]
[84723.413007]  [<ffffffffa0531db0>] ? kzalloc+0xf/0x11 [btrfs]
[84723.414085]  [<ffffffffa0535b43>] btrfs_ioctl_defrag+0x125/0x14e [btrfs]
[84723.415307]  [<ffffffffa0536753>] btrfs_ioctl+0x746/0x24c6 [btrfs]
[84723.416532]  [<ffffffff81087481>] ? arch_local_irq_save+0x9/0xc
[84723.417731]  [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7
[84723.418699]  [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7
[84723.421532]  [<ffffffff8113adba>] ? __might_fault+0xa5/0xa7
[84723.422629]  [<ffffffff81171139>] ? cp_new_stat+0x15d/0x174
[84723.423712]  [<ffffffff8117c610>] do_vfs_ioctl+0x427/0x4e6
[84723.424801]  [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e
[84723.425968]  [<ffffffff8118574d>] ? __fget_light+0x4d/0x71
[84723.427063]  [<ffffffff8117c726>] SyS_ioctl+0x57/0x79
[84723.428138]  [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f

Consider the following logical and physical file layout:

logical:    ... [ prealloc extent A ] [ prealloc extent B ] [ extent C ] ...
                4K                    8K                    16K

physical:   ... 12853248              12857344              1103101952   ...
                                      (= 12853248 + 4K)

Extents A and B are physically adjacent. The following diagram shows a
sequence of events that lead to the deadlock when we attempt to do a
direct IO write against the file range [4K, 16K[ and a defrag is triggered
simultaneously.

           CPU 1                                               CPU 2

 btrfs_direct_IO()

   btrfs_get_blocks_direct()
     creates ordered extent A, covering
     the 4k prealloc extent A (range [4K, 8K[)

                                                    btrfs_defrag_file()
                                                      page_cache_sync_readahead([0K, 1M[)
                                                        btrfs_readpages()
                                                          extent_readpages()

                                                            locks all pages in the file
                                                            range [0K, 128K[ through calls
                                                            to add_to_page_cache_lru()

                                                            __do_contiguous_readpages()

                                                               finds ordered extent A

                                                               waits for it to complete

   btrfs_get_blocks_direct() called again

     lock_extent_direct(range [8K, 16K[)

       finds a page in range [8K, 16K[ through
       btrfs_page_exists_in_range()

       invalidate_inode_pages2_range([8K, 16K[)

         --> tries to lock pages that are already
             locked by the task at CPU 2

         --> our task, running __blockdev_direct_IO(),
             hangs waiting to lock the pages and the
             submit bio callback, btrfs_submit_direct(),
             ends up never being called, resulting in the
             ordered extent A never completing (because a
             corresponding bio is never submitted) and
             CPU 2 will wait for it forever while holding
             the pages locked
              ---> deadlock!

Fix this by removing the page invalidation approach when attempting to
lock the range for IO from the callback btrfs_get_blocks_direct() and
falling back buffered IO. This was a rare case anyway and well behaved
applications do not mix concurrent direct IO writes with buffered reads
anyway, being a concurrent defrag the only normal case that could lead
to the deadlock.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-17 10:59:50 +00:00
Filipe Manana
14543774bd Btrfs: fix error path when failing to submit bio for direct IO write
Commit 61de718fce ("Btrfs: fix memory corruption on failure to submit
bio for direct IO") fixed problems with the error handling code after we
fail to submit a bio for direct IO. However there were 2 problems that it
did not address when the failure is due to memory allocation failures for
direct IO writes:

1) We considered that there could be only one ordered extent for the whole
   IO range, which is not always true, as we can have multiple;

2) It did not set the bit BTRFS_ORDERED_IO_DONE in the ordered extent,
   which can make other tasks running btrfs_wait_logged_extents() hang
   forever, since they wait for that bit to be set. The general assumption
   is that regardless of an error, the BTRFS_ORDERED_IO_DONE is always set
   and it precedes setting the bit BTRFS_ORDERED_COMPLETE.

Fix these issues by moving part of the btrfs_endio_direct_write() handler
into a new helper function and having that new helper function called when
we fail to allocate memory to submit the bio (and its private object) for
a direct IO write.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2015-12-17 10:59:49 +00:00
Al Viro
6b2553918d replace ->follow_link() with new method that could stay in RCU mode
new method: ->get_link(); replacement of ->follow_link().  The differences
are:
	* inode and dentry are passed separately
	* might be called both in RCU and non-RCU mode;
the former is indicated by passing it a NULL dentry.
	* when called that way it isn't allowed to block
and should return ERR_PTR(-ECHILD) if it needs to be called
in non-RCU mode.

It's a flagday change - the old method is gone, all in-tree instances
converted.  Conversion isn't hard; said that, so far very few instances
do not immediately bail out when called in RCU mode.  That'll change
in the next commits.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-08 22:41:54 -05:00
Al Viro
21fc61c73c don't put symlink bodies in pagecache into highmem
kmap() in page_follow_link_light() needed to go - allowing to hold
an arbitrary number of kmaps for long is a great way to deadlocking
the system.

new helper (inode_nohighmem(inode)) needs to be used for pagecache
symlinks inodes; done for all in-tree cases.  page_follow_link_light()
instrumented to yell about anything missed.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-08 22:41:36 -05:00
Andreas Gruenbacher
9172abbcd3 btrfs: Use xattr handler infrastructure
Use the VFS xattr handler infrastructure and get rid of similar code in
the filesystem.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-06 21:34:14 -05:00
Andreas Gruenbacher
97d7929922 posix acls: Remove duplicate xattr name definitions
Remove POSIX_ACL_XATTR_{ACCESS,DEFAULT} and GFS2_POSIX_ACL_{ACCESS,DEFAULT}
and replace them with the definitions in <include/uapi/linux/xattr.h>.

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-12-06 21:25:17 -05:00
David Sterba
3042460136 btrfs: remove wait from struct btrfs_delalloc_work
The value is 0 and never changes, we can propagate the value, remove
wait and the implied dead code.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 15:02:21 +01:00
David Sterba
651d494a67 btrfs: sink parameter wait to btrfs_alloc_delalloc_work
There's only one caller and single value, we can propagate it down to
the callee and remove the unused parameter.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 15:02:21 +01:00
David Sterba
ff13db41f1 btrfs: drop unused parameter from lock_extent_bits
We've always passed 0. Stack usage will slightly decrease.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-12-03 14:30:40 +01:00
Linus Torvalds
80e0c505b2 Merge branch 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "This has Mark Fasheh's patches to fix quota accounting during subvol
  deletion, which we've been working on for a while now.  The patch is
  pretty small but it's a key fix.

  Otherwise it's a random assortment"

* 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: fix balance range usage filters in 4.4-rc
  btrfs: qgroup: account shared subtree during snapshot delete
  Btrfs: use btrfs_get_fs_root in resolve_indirect_ref
  btrfs: qgroup: fix quota disable during rescan
  Btrfs: fix race between cleaner kthread and space cache writeout
  Btrfs: fix scrub preventing unused block groups from being deleted
  Btrfs: fix race between scrub and block group deletion
  btrfs: fix rcu warning during device replace
  btrfs: Continue replace when set_block_ro failed
  btrfs: fix clashing number of the enhanced balance usage filter
  Btrfs: fix the number of transaction units needed to remove a block group
  Btrfs: use global reserve when deleting unused block group after ENOSPC
  Btrfs: tests: checking for NULL instead of IS_ERR()
  btrfs: fix signed overflows in btrfs_sync_file
2015-11-27 15:45:45 -08:00
Filipe Manana
8eab77ff16 Btrfs: use global reserve when deleting unused block group after ENOSPC
It's possible to reach a state where the cleaner kthread isn't able to
start a transaction to delete an unused block group due to lack of enough
free metadata space and due to lack of unallocated device space to allocate
a new metadata block group as well. If this happens try to use space from
the global block group reserve just like we do for unlink operations, so
that we don't reach a permanent state where starting a transaction for
filesystem operations (file creation, renames, etc) keeps failing with
-ENOSPC. Such an unfortunate state was observed on a machine where over
a dozen unused data block groups existed and the cleaner kthread was
failing to delete them due to ENOSPC error when attempting to start a
transaction, and even running balance with a -dusage=0 filter failed with
ENOSPC as well. Also unmounting and mounting again the filesystem didn't
help. Allowing the cleaner kthread to use the global block reserve to
delete the unused data block groups fixed the problem.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-11-25 05:19:50 -08:00
Linus Torvalds
e75cdf9898 Merge branch 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes and cleanups from Chris Mason:
 "Some of this got cherry-picked from a github repo this week, but I
  verified the patches.

  We have three small scrub cleanups and a collection of fixes"

* 'for-linus-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: Use fs_info directly in btrfs_delete_unused_bgs
  btrfs: Fix lost-data-profile caused by balance bg
  btrfs: Fix lost-data-profile caused by auto removing bg
  btrfs: Remove len argument from scrub_find_csum
  btrfs: Reduce unnecessary arguments in scrub_recheck_block
  btrfs: Use scrub_checksum_data and scrub_checksum_tree_block for scrub_recheck_block_checksum
  btrfs: Reset sblock->xxx_error stats before calling scrub_recheck_block_checksum
  btrfs: scrub: setup all fields for sblock_to_check
  btrfs: scrub: set error stats when tree block spanning stripes
  Btrfs: fix race when listing an inode's xattrs
  Btrfs: fix race leading to BUG_ON when running delalloc for nodatacow
  Btrfs: fix race leading to incorrect item deletion when dropping extents
  Btrfs: fix sleeping inside atomic context in qgroup rescan worker
  Btrfs: fix race waiting for qgroup rescan worker
  btrfs: qgroup: exit the rescan worker during umount
  Btrfs: fix extent accounting for partial direct IO writes
2015-11-13 16:30:29 -08:00
Yaowei Bai
7cac0a8599 fs/btrfs/inode.c: remove unnecessary new_valid_dev() check
new_valid_dev() always returns 1, so the !new_valid_dev() check is not
needed.  Remove it.

Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-09 15:11:24 -08:00
Filipe Manana
1d512cb77b Btrfs: fix race leading to BUG_ON when running delalloc for nodatacow
If we are using the NO_HOLES feature, we have a tiny time window when
running delalloc for a nodatacow inode where we can race with a concurrent
link or xattr add operation leading to a BUG_ON.

This happens because at run_delalloc_nocow() we end up casting a leaf item
of type BTRFS_INODE_[REF|EXTREF]_KEY or of type BTRFS_XATTR_ITEM_KEY to a
file extent item (struct btrfs_file_extent_item) and then analyse its
extent type field, which won't match any of the expected extent types
(values BTRFS_FILE_EXTENT_[REG|PREALLOC|INLINE]) and therefore trigger an
explicit BUG_ON(1).

The following sequence diagram shows how the race happens when running a
no-cow dellaloc range [4K, 8K[ for inode 257 and we have the following
neighbour leafs:

             Leaf X (has N items)                    Leaf Y

 [ ... (257 INODE_ITEM 0) (257 INODE_REF 256) ]  [ (257 EXTENT_DATA 8192), ... ]
              slot N - 2         slot N - 1              slot 0

 (Note the implicit hole for inode 257 regarding the [0, 8K[ range)

       CPU 1                                         CPU 2

 run_dealloc_nocow()
   btrfs_lookup_file_extent()
     --> searches for a key with value
         (257 EXTENT_DATA 4096) in the
         fs/subvol tree
     --> returns us a path with
         path->nodes[0] == leaf X and
         path->slots[0] == N

   because path->slots[0] is >=
   btrfs_header_nritems(leaf X), it
   calls btrfs_next_leaf()

   btrfs_next_leaf()
     --> releases the path

                                              hard link added to our inode,
                                              with key (257 INODE_REF 500)
                                              added to the end of leaf X,
                                              so leaf X now has N + 1 keys

     --> searches for the key
         (257 INODE_REF 256), because
         it was the last key in leaf X
         before it released the path,
         with path->keep_locks set to 1

     --> ends up at leaf X again and
         it verifies that the key
         (257 INODE_REF 256) is no longer
         the last key in the leaf, so it
         returns with path->nodes[0] ==
         leaf X and path->slots[0] == N,
         pointing to the new item with
         key (257 INODE_REF 500)

   the loop iteration of run_dealloc_nocow()
   does not break out the loop and continues
   because the key referenced in the path
   at path->nodes[0] and path->slots[0] is
   for inode 257, its type is < BTRFS_EXTENT_DATA_KEY
   and its offset (500) is less then our delalloc
   range's end (8192)

   the item pointed by the path, an inode reference item,
   is (incorrectly) interpreted as a file extent item and
   we get an invalid extent type, leading to the BUG_ON(1):

   if (extent_type == BTRFS_FILE_EXTENT_REG ||
      extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
       (...)
   } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
       (...)
   } else {
       BUG_ON(1)
   }

The same can happen if a xattr is added concurrently and ends up having
a key with an offset smaller then the delalloc's range end.

So fix this by skipping keys with a type smaller than
BTRFS_EXTENT_DATA_KEY.

Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-11-09 11:29:14 +00:00
Filipe Manana
9c9464cc92 Btrfs: fix extent accounting for partial direct IO writes
When doing a write using direct IO we can end up not doing the whole write
operation using the direct IO path, in that case we fallback to a buffered
write to do the remaining IO. This happens for example if the range we are
writing to contains a compressed extent.
When we do a partial write and fallback to buffered IO, due to the
existence of a compressed extent for example, we end up not adjusting the
outstanding extents counter of our inode which ends up getting decremented
twice, once by the DIO ordered extent for the partial write and once again
by btrfs_direct_IO(), resulting in an arithmetic underflow at
extent-tree.c:drop_outstanding_extent(). For example if we have:

  extents        [ prealloc extent ] [ compressed extent ]
  offsets        A        B          C       D           E

and at the moment our inode's outstanding extents counter is 0, if we do a
direct IO write against the range [B, D[ (which has a length smaller than
128Mb), we end up bumping our inode's outstanding extents counter to 1, we
create a DIO ordered extent for the range [B, C[ and then fallback to a
buffered write for the range [C, D[. The direct IO handler
(inode.c:btrfs_direct_IO()) decrements the outstanding extents counter by
1, leaving it with a value of 0, through a call to
btrfs_delalloc_release_space() and then shortly after the DIO ordered
extent finishes and calls btrfs_delalloc_release_metadata() which ends
up to attempt to decrement the inode's outstanding extents counter by 1,
resulting in an assertion failure at drop_outstanding_extent() because
the operation would result in an arithmetic underflow (0 - 1). This
produces the following trace:

  [125471.336838] BTRFS: assertion failed: BTRFS_I(inode)->outstanding_extents >= num_extents, file: fs/btrfs/extent-tree.c, line: 5526
  [125471.338844] ------------[ cut here ]------------
  [125471.340745] kernel BUG at fs/btrfs/ctree.h:4173!
  [125471.340745] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
  [125471.340745] Modules linked in: btrfs f2fs xfs libcrc32c dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc acpi_cpufreq psmouse i2c_piix4 parport pcspkr serio_raw microcode processor evdev i2c_core button ext4 crc16 jbd2 mbcache sd_mod sg sr_mod cdrom ata_generic virtio_scsi ata_piix virtio_pci virtio_ring floppy libata virtio e1000 scsi_mod [last unloaded: btrfs]
  [125471.340745] CPU: 10 PID: 23649 Comm: kworker/u32:1 Tainted: G        W       4.3.0-rc5-btrfs-next-17+ #1
  [125471.340745] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
  [125471.340745] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
  [125471.340745] task: ffff8804244fcf80 ti: ffff88040a118000 task.ti: ffff88040a118000
  [125471.340745] RIP: 0010:[<ffffffffa0550da1>]  [<ffffffffa0550da1>] assfail.constprop.46+0x1e/0x20 [btrfs]
  [125471.340745] RSP: 0018:ffff88040a11bc78  EFLAGS: 00010296
  [125471.340745] RAX: 0000000000000075 RBX: 0000000000005000 RCX: 0000000000000000
  [125471.340745] RDX: ffffffff81098f93 RSI: ffffffff8147c619 RDI: 00000000ffffffff
  [125471.340745] RBP: ffff88040a11bc78 R08: 0000000000000001 R09: 0000000000000000
  [125471.340745] R10: ffff88040a11bc08 R11: ffffffff81651000 R12: ffff8803efb4a000
  [125471.340745] R13: ffff8803efb4a000 R14: 0000000000000000 R15: ffff8802f8e33c88
  [125471.340745] FS:  0000000000000000(0000) GS:ffff88043dd40000(0000) knlGS:0000000000000000
  [125471.340745] CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
  [125471.340745] CR2: 00007fae7ca86095 CR3: 0000000001a0b000 CR4: 00000000000006e0
  [125471.340745] Stack:
  [125471.340745]  ffff88040a11bc88 ffffffffa04ca0cd ffff88040a11bcc8 ffffffffa04ceeb1
  [125471.340745]  ffff8802f8e33940 ffff8802c93eadb0 ffff8802f8e0bf50 ffff8803efb4a000
  [125471.340745]  0000000000000000 ffff8802f8e33c88 ffff88040a11bd38 ffffffffa04eccfa
  [125471.340745] Call Trace:
  [125471.340745]  [<ffffffffa04ca0cd>] drop_outstanding_extent+0x3d/0x6d [btrfs]
  [125471.340745]  [<ffffffffa04ceeb1>] btrfs_delalloc_release_metadata+0x51/0xdd [btrfs]
  [125471.340745]  [<ffffffffa04eccfa>] btrfs_finish_ordered_io+0x420/0x4eb [btrfs]
  [125471.340745]  [<ffffffffa04ecdda>] finish_ordered_fn+0x15/0x17 [btrfs]
  [125471.340745]  [<ffffffffa050e6e8>] normal_work_helper+0x14c/0x32a [btrfs]
  [125471.340745]  [<ffffffffa050e9c8>] btrfs_endio_write_helper+0x12/0x14 [btrfs]
  [125471.340745]  [<ffffffff81063b23>] process_one_work+0x24a/0x4ac
  [125471.340745]  [<ffffffff81064285>] worker_thread+0x206/0x2c2
  [125471.340745]  [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb
  [125471.340745]  [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb
  [125471.340745]  [<ffffffff8106904d>] kthread+0xef/0xf7
  [125471.340745]  [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24
  [125471.340745]  [<ffffffff8147d10f>] ret_from_fork+0x3f/0x70
  [125471.340745]  [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24
  [125471.340745] Code: a5 55 a0 48 89 e5 e8 42 50 bc e0 0f 0b 55 89 f1 48 c7 c2 f0 a8 55 a0 48 89 fe 31 c0 48 c7 c7 14 aa 55 a0 48 89 e5 e8 22 50 bc e0 <0f> 0b 0f 1f 44 00 00 55 31 c9 ba 18 00 00 00 48 89 e5 41 56 41
  [125471.340745] RIP  [<ffffffffa0550da1>] assfail.constprop.46+0x1e/0x20 [btrfs]
  [125471.340745]  RSP <ffff88040a11bc78>
  [125471.539620] ---[ end trace 144259f7838b4aa4 ]---

So fix this by ensuring we adjust the outstanding extents counter when we
do the fallback just like we do for the case where the whole write can be
done through the direct IO path.

We were also adjusting the outstanding extents counter by a constant value
of 1, which is incorrect because we were ignorning that we account extents
in BTRFS_MAX_EXTENT_SIZE units, o fix that as well.

The following test case for fstests reproduces this issue:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter

  # real QA test starts here
  _need_to_be_root
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch
  _require_xfs_io_command "falloc"

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _scratch_mount "-o compress"

  # Create a compressed extent covering the range [700K, 800K[.
  $XFS_IO_PROG -f -s -c "pwrite -S 0xaa -b 100K 700K 100K" \
      $SCRATCH_MNT/foo | _filter_xfs_io

  # Create prealloc extent covering the range [600K, 700K[.
  $XFS_IO_PROG -c "falloc 600K 100K" $SCRATCH_MNT/foo

  # Write 80K of data to the range [640K, 720K[ using direct IO. This
  # range covers both the prealloc extent and the compressed extent.
  # Because there's a compressed extent in the range we are writing to,
  # the DIO write code path ends up only writing the first 60k of data,
  # which goes to the prealloc extent, and then falls back to buffered IO
  # for writing the remaining 20K of data - because that remaining data
  # maps to a file range containing a compressed extent.
  # When falling back to buffered IO, we used to trigger an assertion when
  # releasing reserved space due to bad accounting of the inode's
  # outstanding extents counter, which was set to 1 but we ended up
  # decrementing it by 1 twice, once through the ordered extent for the
  # 60K of data we wrote using direct IO, and once through the main direct
  # IO handler (inode.cbtrfs_direct_IO()) because the direct IO write
  # wrote less than 80K of data (60K).
  $XFS_IO_PROG -d -c "pwrite -S 0xbb -b 80K 640K 80K" \
      $SCRATCH_MNT/foo | _filter_xfs_io

  # Now similar test as above but for very large write operations. This
  # triggers special cases for an inode's outstanding extents accounting,
  # as internally btrfs logically splits extents into 128Mb units.
  $XFS_IO_PROG -f -s \
      -c "pwrite -S 0xaa -b 128M 258M 128M" \
      -c "falloc 0 258M" \
      $SCRATCH_MNT/bar | _filter_xfs_io
  $XFS_IO_PROG -d -c "pwrite -S 0xbb -b 256M 3M 256M" $SCRATCH_MNT/bar \
      | _filter_xfs_io

  # Now verify the file contents are correct and that they are the same
  # even after unmounting and mounting the fs again (or evicting the page
  # cache).
  #
  # For file foo, all bytes in the range [0, 640K[ must have a value of
  # 0x00, all bytes in the range [640K, 720K[ must have a value of 0xbb
  # and all bytes in the range [720K, 800K[ must have a value of 0xaa.
  #
  # For file bar, all bytes in the range [0, 3M[ must havea value of 0x00,
  # all bytes in the range [3M, 259M[ must have a value of 0xbb and all
  # bytes in the range [259M, 386M[ must have a value of 0xaa.
  #
  echo "File digests before remounting the file system:"
  md5sum $SCRATCH_MNT/foo | _filter_scratch
  md5sum $SCRATCH_MNT/bar | _filter_scratch
  _scratch_remount
  echo "File digests after remounting the file system:"
  md5sum $SCRATCH_MNT/foo | _filter_scratch
  md5sum $SCRATCH_MNT/bar | _filter_scratch

  status=0
  exit

Fixes: e1cbbfa5f5 ("Btrfs: fix outstanding_extents accounting in DIO")
Fixes: 3e05bde8c3 ("Btrfs: only adjust outstanding_extents when we do a short write")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-11-05 10:32:19 +00:00
Qu Wenruo
5846a3c268 btrfs: qgroup: Fix a race in delayed_ref which leads to abort trans
Between btrfs_allocerved_file_extent() and
btrfs_add_delayed_qgroup_reserve(), there is a window that delayed_refs
are run and delayed ref head maybe freed before
btrfs_add_delayed_qgroup_reserve().

This will cause btrfs_dad_delayed_qgroup_reserve() to return -ENOENT,
and cause transaction to be aborted.

This patch will record qgroup reserve space info into delayed_ref_head
at btrfs_add_delayed_ref(), to eliminate the race window.

Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-26 19:44:39 -07:00
Filipe Manana
b06c4bf5c8 Btrfs: fix regression running delayed references when using qgroups
In the kernel 4.2 merge window we had a big changes to the implementation
of delayed references and qgroups which made the no_quota field of delayed
references not used anymore. More specifically the no_quota field is not
used anymore as of:

  commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.")

Leaving the no_quota field actually prevents delayed references from
getting merged, which in turn cause the following BUG_ON(), at
fs/btrfs/extent-tree.c, to be hit when qgroups are enabled:

  static int run_delayed_tree_ref(...)
  {
     (...)
     BUG_ON(node->ref_mod != 1);
     (...)
  }

This happens on a scenario like the following:

  1) Ref1 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.

  2) Ref2 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
     It's not merged with Ref1 because Ref1->no_quota != Ref2->no_quota.

  3) Ref3 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
     It's not merged with the reference at the tail of the list of refs
     for bytenr X because the reference at the tail, Ref2 is incompatible
     due to Ref2->no_quota != Ref3->no_quota.

  4) Ref4 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
     It's not merged with the reference at the tail of the list of refs
     for bytenr X because the reference at the tail, Ref3 is incompatible
     due to Ref3->no_quota != Ref4->no_quota.

  5) We run delayed references, trigger merging of delayed references,
     through __btrfs_run_delayed_refs() -> btrfs_merge_delayed_refs().

  6) Ref1 and Ref3 are merged as Ref1->no_quota = Ref3->no_quota and
     all other conditions are satisfied too. So Ref1 gets a ref_mod
     value of 2.

  7) Ref2 and Ref4 are merged as Ref2->no_quota = Ref4->no_quota and
     all other conditions are satisfied too. So Ref2 gets a ref_mod
     value of 2.

  8) Ref1 and Ref2 aren't merged, because they have different values
     for their no_quota field.

  9) Delayed reference Ref1 is picked for running (select_delayed_ref()
     always prefers references with an action == BTRFS_ADD_DELAYED_REF).
     So run_delayed_tree_ref() is called for Ref1 which triggers the
     BUG_ON because Ref1->red_mod != 1 (equals 2).

So fix this by removing the no_quota field, as it's not used anymore as
of commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented
qgroup mechanism.").

The use of no_quota was also buggy in at least two places:

1) At delayed-refs.c:btrfs_add_delayed_tree_ref() - we were setting
   no_quota to 0 instead of 1 when the following condition was true:
   is_fstree(ref_root) || !fs_info->quota_enabled

2) At extent-tree.c:__btrfs_inc_extent_ref() - we were attempting to
   reset a node's no_quota when the condition "!is_fstree(root_objectid)
   || !root->fs_info->quota_enabled" was true but we did it only in
   an unused local stack variable, that is, we never reset the no_quota
   value in the node itself.

This fixes the remainder of problems several people have been having when
running delayed references, mostly while a balance is running in parallel,
on a 4.2+ kernel.

Very special thanks to Stéphane Lesimple for helping debugging this issue
and testing this fix on his multi terabyte filesystem (which took more
than one day to balance alone, plus fsck, etc).

Also, this fixes deadlock issue when using the clone ioctl with qgroups
enabled, as reported by Elias Probst in the mailing list. The deadlock
happens because after calling btrfs_insert_empty_item we have our path
holding a write lock on a leaf of the fs/subvol tree and then before
releasing the path we called check_ref() which did backref walking, when
qgroups are enabled, and tried to read lock the same leaf. The trace for
this case is the following:

  INFO: task systemd-nspawn:6095 blocked for more than 120 seconds.
  (...)
  Call Trace:
    [<ffffffff86999201>] schedule+0x74/0x83
    [<ffffffff863ef64c>] btrfs_tree_read_lock+0xc0/0xea
    [<ffffffff86137ed7>] ? wait_woken+0x74/0x74
    [<ffffffff8639f0a7>] btrfs_search_old_slot+0x51a/0x810
    [<ffffffff863a129b>] btrfs_next_old_leaf+0xdf/0x3ce
    [<ffffffff86413a00>] ? ulist_add_merge+0x1b/0x127
    [<ffffffff86411688>] __resolve_indirect_refs+0x62a/0x667
    [<ffffffff863ef546>] ? btrfs_clear_lock_blocking_rw+0x78/0xbe
    [<ffffffff864122d3>] find_parent_nodes+0xaf3/0xfc6
    [<ffffffff86412838>] __btrfs_find_all_roots+0x92/0xf0
    [<ffffffff864128f2>] btrfs_find_all_roots+0x45/0x65
    [<ffffffff8639a75b>] ? btrfs_get_tree_mod_seq+0x2b/0x88
    [<ffffffff863e852e>] check_ref+0x64/0xc4
    [<ffffffff863e9e01>] btrfs_clone+0x66e/0xb5d
    [<ffffffff863ea77f>] btrfs_ioctl_clone+0x48f/0x5bb
    [<ffffffff86048a68>] ? native_sched_clock+0x28/0x77
    [<ffffffff863ed9b0>] btrfs_ioctl+0xabc/0x25cb
  (...)

The problem goes away by eleminating check_ref(), which no longer is
needed as its purpose was to get a value for the no_quota field of
a delayed reference (this patch removes the no_quota field as mentioned
earlier).

Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Reported-by: Elias Probst <mail@eliasprobst.eu>
Reported-by: Peter Becker <floyd.net@gmail.com>
Reported-by: Malte Schröder <malte@tnxip.de>
Reported-by: Derek Dongray <derek@valedon.co.uk>
Reported-by: Erkki Seppala <flux-btrfs@inside.org>
Cc: stable@vger.kernel.org  # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
2015-10-25 19:53:26 +00:00
Chris Mason
a9e6d15356 Merge branch 'allocator-fixes' into for-linus-4.4
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 19:00:38 -07:00
Josef Bacik
0b670dc44c Btrfs: fix prealloc under heavy fragmentation conditions
If we are heavily fragmented we will continually try to prealloc the largest
extent size we can every time we call btrfs_reserve_extent.  This can be very
expensive when we are heavily fragmented, burning lots of CPU cycles and loops
through the allocator.  So instead notice when we get a smaller chunk from the
allocator than what we specified and use this as the new maximum size we try to
allocate.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:51:44 -07:00
Qu Wenruo
56fa9d0762 btrfs: qgroup: Check if qgroup reserved space leaked
Add check at btrfs_destroy_inode() time to detect qgroup reserved space
leak.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:41:10 -07:00
Qu Wenruo
51773bec7e btrfs: qgroup: Avoid calling btrfs_free_reserved_data_space in clear_bit_hook
In clear_bit_hook, qgroup reserved data is already handled quite well,
either released by finish_ordered_io or invalidatepage.

So calling btrfs_qgroup_free_data() here is completely meaningless, and
since btrfs_qgroup_free_data() will lock io_tree, so it can't be called
with io_tree lock hold.

This patch will add a new function
btrfs_free_reserved_data_space_noquota() for clear_bit_hook() to cease
the lockdep warning.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:41:09 -07:00
Qu Wenruo
b9d0b38928 btrfs: Add handler for invalidate page
For btrfs_invalidatepage() and its variant evict_inode_truncate_page(),
there will be pages don't reach disk.
In that case, their reserved space won't be release nor freed by
finish_ordered_io() nor delayed_ref handler.

So we must free their qgroup reserved space, or we will leaking reserved
space again.

So this will patch will call btrfs_qgroup_free_data() for
invalidatepage() and its variant evict_inode_truncate_page().

And due to the nature of new btrfs_qgroup_reserve/free_data() reserved
space will only be reserved or freed once, so for pages which are
already flushed to disk, their reserved space will be released and freed
by delayed_ref handler.

Double free won't be a problem.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:41:07 -07:00
Qu Wenruo
94ed938aba btrfs: qgroup: Add handler for NOCOW and inline
For NOCOW and inline case, there will be no delayed_ref created for
them, so we should free their reserved data space at proper
time(finish_ordered_io for NOCOW and cow_file_inline for inline).

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:41:07 -07:00
Qu Wenruo
7cf5b97650 btrfs: qgroup: Cleanup old inaccurate facilities
Cleanup the old facilities which use old btrfs_qgroup_reserve() function
call, replace them with the newer version, and remove the "__" prefix in
them.

Also, make btrfs_qgroup_reserve/free() functions private, as they are
now only used inside qgroup codes.

Now, the whole btrfs qgroup is swithed to use the new reserve facilities.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:41:06 -07:00
Qu Wenruo
df480633b8 btrfs: extent-tree: Switch to new delalloc space reserve and release
Use new __btrfs_delalloc_reserve_space() and
__btrfs_delalloc_release_space() to reserve and release space for
delalloc.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:41:05 -07:00
Qu Wenruo
297d750b9f btrfs: delayed_ref: release and free qgroup reserved at proper timing
Qgroup reserved space needs to be released from inode dirty map and get
freed at different timing:

1) Release when the metadata is written into tree
After corresponding metadata is written into tree, any newer write will
be COWed(don't include NOCOW case yet).
So we must release its range from inode dirty range map, or we will
forget to reserve needed range, causing accounting exceeding the limit.

2) Free reserved bytes when delayed ref is run
When delayed refs are run, qgroup accounting will follow soon and turn
the reserved bytes into rfer/excl numbers.
As run_delayed_refs and qgroup accounting are all done at
commit_transaction() time, we are safe to free reserved space in
run_delayed_ref time().

With these timing to release/free reserved space, we should be able to
resolve the long existing qgroup reserve space leak problem.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:37:47 -07:00
Chris Mason
a408365c62 Merge branch 'integration-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.4 2015-10-21 18:23:59 -07:00
Chris Mason
a0d58e48db Merge branch 'cleanups/for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.4 2015-10-21 18:21:40 -07:00
Byongho Lee
568b1c9cca btrfs: remove unnecessary list_del
We can safely iterate whole list items, without using list_del macro.
So remove the list_del call.

Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-21 18:28:48 +02:00
Chandan Rajendra
0d51e28a11 Btrfs: btrfs_submit_bio_hook: Use btrfs_wq_endio_type values instead of integer constants
btrfs_submit_bio_hook() uses integer constants instead of values from "enum
btrfs_wq_endio_type". Fix this.

Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-21 18:28:47 +02:00
Filipe Manana
0305cd5f7f Btrfs: fix truncation of compressed and inlined extents
When truncating a file to a smaller size which consists of an inline
extent that is compressed, we did not discard (or made unusable) the
data between the new file size and the old file size, wasting metadata
space and allowing for the truncated data to be leaked and the data
corruption/loss mentioned below.
We were also not correctly decrementing the number of bytes used by the
inode, we were setting it to zero, giving a wrong report for callers of
the stat(2) syscall. The fsck tool also reported an error about a mismatch
between the nbytes of the file versus the real space used by the file.

Now because we weren't discarding the truncated region of the file, it
was possible for a caller of the clone ioctl to actually read the data
that was truncated, allowing for a security breach without requiring root
access to the system, using only standard filesystem operations. The
scenario is the following:

   1) User A creates a file which consists of an inline and compressed
      extent with a size of 2000 bytes - the file is not accessible to
      any other users (no read, write or execution permission for anyone
      else);

   2) The user truncates the file to a size of 1000 bytes;

   3) User A makes the file world readable;

   4) User B creates a file consisting of an inline extent of 2000 bytes;

   5) User B issues a clone operation from user A's file into its own
      file (using a length argument of 0, clone the whole range);

   6) User B now gets to see the 1000 bytes that user A truncated from
      its file before it made its file world readbale. User B also lost
      the bytes in the range [1000, 2000[ bytes from its own file, but
      that might be ok if his/her intention was reading stale data from
      user A that was never supposed to be public.

Note that this contrasts with the case where we truncate a file from 2000
bytes to 1000 bytes and then truncate it back from 1000 to 2000 bytes. In
this case reading any byte from the range [1000, 2000[ will return a value
of 0x00, instead of the original data.

This problem exists since the clone ioctl was added and happens both with
and without my recent data loss and file corruption fixes for the clone
ioctl (patch "Btrfs: fix file corruption and data loss after cloning
inline extents").

So fix this by truncating the compressed inline extents as we do for the
non-compressed case, which involves decompressing, if the data isn't already
in the page cache, compressing the truncated version of the extent, writing
the compressed content into the inline extent and then truncate it.

The following test case for fstests reproduces the problem. In order for
the test to pass both this fix and my previous fix for the clone ioctl
that forbids cloning a smaller inline extent into a larger one,
which is titled "Btrfs: fix file corruption and data loss after cloning
inline extents", are needed. Without that other fix the test fails in a
different way that does not leak the truncated data, instead part of
destination file gets replaced with zeroes (because the destination file
has a larger inline extent than the source).

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter

  # real QA test starts here
  _need_to_be_root
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch
  _require_cloner

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _scratch_mount "-o compress"

  # Create our test files. File foo is going to be the source of a clone operation
  # and consists of a single inline extent with an uncompressed size of 512 bytes,
  # while file bar consists of a single inline extent with an uncompressed size of
  # 256 bytes. For our test's purpose, it's important that file bar has an inline
  # extent with a size smaller than foo's inline extent.
  $XFS_IO_PROG -f -c "pwrite -S 0xa1 0 128"   \
          -c "pwrite -S 0x2a 128 384" \
          $SCRATCH_MNT/foo | _filter_xfs_io
  $XFS_IO_PROG -f -c "pwrite -S 0xbb 0 256" $SCRATCH_MNT/bar | _filter_xfs_io

  # Now durably persist all metadata and data. We do this to make sure that we get
  # on disk an inline extent with a size of 512 bytes for file foo.
  sync

  # Now truncate our file foo to a smaller size. Because it consists of a
  # compressed and inline extent, btrfs did not shrink the inline extent to the
  # new size (if the extent was not compressed, btrfs would shrink it to 128
  # bytes), it only updates the inode's i_size to 128 bytes.
  $XFS_IO_PROG -c "truncate 128" $SCRATCH_MNT/foo

  # Now clone foo's inline extent into bar.
  # This clone operation should fail with errno EOPNOTSUPP because the source
  # file consists only of an inline extent and the file's size is smaller than
  # the inline extent of the destination (128 bytes < 256 bytes). However the
  # clone ioctl was not prepared to deal with a file that has a size smaller
  # than the size of its inline extent (something that happens only for compressed
  # inline extents), resulting in copying the full inline extent from the source
  # file into the destination file.
  #
  # Note that btrfs' clone operation for inline extents consists of removing the
  # inline extent from the destination inode and copy the inline extent from the
  # source inode into the destination inode, meaning that if the destination
  # inode's inline extent is larger (N bytes) than the source inode's inline
  # extent (M bytes), some bytes (N - M bytes) will be lost from the destination
  # file. Btrfs could copy the source inline extent's data into the destination's
  # inline extent so that we would not lose any data, but that's currently not
  # done due to the complexity that would be needed to deal with such cases
  # (specially when one or both extents are compressed), returning EOPNOTSUPP, as
  # it's normally not a very common case to clone very small files (only case
  # where we get inline extents) and copying inline extents does not save any
  # space (unlike for normal, non-inlined extents).
  $CLONER_PROG -s 0 -d 0 -l 0 $SCRATCH_MNT/foo $SCRATCH_MNT/bar

  # Now because the above clone operation used to succeed, and due to foo's inline
  # extent not being shinked by the truncate operation, our file bar got the whole
  # inline extent copied from foo, making us lose the last 128 bytes from bar
  # which got replaced by the bytes in range [128, 256[ from foo before foo was
  # truncated - in other words, data loss from bar and being able to read old and
  # stale data from foo that should not be possible to read anymore through normal
  # filesystem operations. Contrast with the case where we truncate a file from a
  # size N to a smaller size M, truncate it back to size N and then read the range
  # [M, N[, we should always get the value 0x00 for all the bytes in that range.

  # We expected the clone operation to fail with errno EOPNOTSUPP and therefore
  # not modify our file's bar data/metadata. So its content should be 256 bytes
  # long with all bytes having the value 0xbb.
  #
  # Without the btrfs bug fix, the clone operation succeeded and resulted in
  # leaking truncated data from foo, the bytes that belonged to its range
  # [128, 256[, and losing data from bar in that same range. So reading the
  # file gave us the following content:
  #
  # 0000000 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1
  # *
  # 0000200 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
  # *
  # 0000400
  echo "File bar's content after the clone operation:"
  od -t x1 $SCRATCH_MNT/bar

  # Also because the foo's inline extent was not shrunk by the truncate
  # operation, btrfs' fsck, which is run by the fstests framework everytime a
  # test completes, failed reporting the following error:
  #
  #  root 5 inode 257 errors 400, nbytes wrong

  status=0
  exit

Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-10-16 21:02:53 +01:00
Chris Mason
6db4a7335d Merge branch 'fix/waitqueue-barriers' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.4 2015-10-12 16:24:40 -07:00
David Sterba
ee86395458 btrfs: comment the rest of implicit barriers before waitqueue_active
There are atomic operations that imply the barrier for waitqueue_active
mixed in an if-condition.

Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-10 18:42:00 +02:00
David Sterba
9464732266 btrfs: switch message printers to ratelimited variants
Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-08 13:04:06 +02:00
Linus Torvalds
03e8f64486 Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "This is an assorted set I've been queuing up:

  Jeff Mahoney tracked down a tricky one where we ended up starting IO
  on the wrong mapping for special files in btrfs_evict_inode.  A few
  people reported this one on the list.

  Filipe found (and provided a test for) a difficult bug in reading
  compressed extents, and Josef fixed up some quota record keeping with
  snapshot deletion.  Chandan killed off an accounting bug during DIO
  that lead to WARN_ONs as we freed inodes"

* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: keep dropped roots in cache until transaction commit
  Btrfs: Direct I/O: Fix space accounting
  btrfs: skip waiting on ordered range for special files
  Btrfs: fix read corruption of compressed and shared extents
  Btrfs: remove unnecessary locking of cleaner_mutex to avoid deadlock
  Btrfs: don't initialize a space info as full to prevent ENOSPC
2015-09-25 12:08:41 -07:00
chandan
50745b0a7f Btrfs: Direct I/O: Fix space accounting
The following call trace is seen when generic/095 test is executed,

WARNING: CPU: 3 PID: 2769 at /home/chandan/code/repos/linux/fs/btrfs/inode.c:8967 btrfs_destroy_inode+0x284/0x2a0()
Modules linked in:
CPU: 3 PID: 2769 Comm: umount Not tainted 4.2.0-rc5+ #31
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20150306_163512-brownie 04/01/2014
 ffffffff81c08150 ffff8802ec9cbce8 ffffffff81984058 ffff8802ffd8feb0
 0000000000000000 ffff8802ec9cbd28 ffffffff81050385 ffff8802ec9cbd38
 ffff8802d12f8588 ffff8802d12f8588 ffff8802f15ab000 ffff8800bb96c0b0
Call Trace:
 [<ffffffff81984058>] dump_stack+0x45/0x57
 [<ffffffff81050385>] warn_slowpath_common+0x85/0xc0
 [<ffffffff81050465>] warn_slowpath_null+0x15/0x20
 [<ffffffff81340294>] btrfs_destroy_inode+0x284/0x2a0
 [<ffffffff8117ce07>] destroy_inode+0x37/0x60
 [<ffffffff8117cf39>] evict+0x109/0x170
 [<ffffffff8117cfd5>] dispose_list+0x35/0x50
 [<ffffffff8117dd3a>] evict_inodes+0xaa/0x100
 [<ffffffff81165667>] generic_shutdown_super+0x47/0xf0
 [<ffffffff81165951>] kill_anon_super+0x11/0x20
 [<ffffffff81302093>] btrfs_kill_super+0x13/0x110
 [<ffffffff81165c99>] deactivate_locked_super+0x39/0x70
 [<ffffffff811660cf>] deactivate_super+0x5f/0x70
 [<ffffffff81180e1e>] cleanup_mnt+0x3e/0x90
 [<ffffffff81180ebd>] __cleanup_mnt+0xd/0x10
 [<ffffffff81069c06>] task_work_run+0x96/0xb0
 [<ffffffff81003a3d>] do_notify_resume+0x3d/0x50
 [<ffffffff8198cbc2>] int_signal+0x12/0x17

This means that the inode had non-zero "outstanding extents" during
eviction. This occurs because, during direct I/O a task which successfully
used up its reserved data space would set BTRFS_INODE_DIO_READY bit and does
not clear the bit after finishing the DIO write. A future DIO write could
actually fail and the unused reserve space won't be freed because of the
previously set BTRFS_INODE_DIO_READY bit.

Clearing the BTRFS_INODE_DIO_READY bit in btrfs_direct_IO() caused the
following issue,
|-----------------------------------+-------------------------------------|
| Task A                            | Task B                              |
|-----------------------------------+-------------------------------------|
| Start direct i/o write on inode X.|                                     |
| reserve space                     |                                     |
| Allocate ordered extent           |                                     |
| release reserved space            |                                     |
| Set BTRFS_INODE_DIO_READY bit.    |                                     |
|                                   | splice()                            |
|                                   | Transfer data from pipe buffer to   |
|                                   | destination file.                   |
|                                   | - kmap(pipe buffer page)            |
|                                   | - Start direct i/o write on         |
|                                   |   inode X.                          |
|                                   |   - reserve space                   |
|                                   |   - dio_refill_pages()              |
|                                   |     - sdio->blocks_available == 0   |
|                                   |     - Since a kernel address is     |
|                                   |       being passed instead of a     |
|                                   |       user space address,           |
|                                   |       iov_iter_get_pages() returns  |
|                                   |       -EFAULT.                      |
|                                   |   - Since BTRFS_INODE_DIO_READY is  |
|                                   |     set, we don't release reserved  |
|                                   |     space.                          |
|                                   |   - Clear BTRFS_INODE_DIO_READY bit.|
| -EIOCBQUEUED is returned.         |                                     |
|-----------------------------------+-------------------------------------|

Hence this commit introduces "struct btrfs_dio_data" to track the usage of
reserved data space. The remaining unused "reserve space" can now be freed
reliably.

Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-09-21 13:47:55 -07:00
Jeff Mahoney
a30e577c96 btrfs: skip waiting on ordered range for special files
In btrfs_evict_inode, we properly truncate the page cache for evicted
inodes but then we call btrfs_wait_ordered_range for every inode as well.
It's the right thing to do for regular files but results in incorrect
behavior for device inodes for block devices.

filemap_fdatawrite_range gets called with inode->i_mapping which gets
resolved to the block device inode before getting passed to
wbc_attach_fdatawrite_inode and ultimately to inode_to_bdi.  What happens
next depends on whether there's an open file handle associated with the
inode.  If there is, we write to the block device, which is unexpected
behavior.  If there isn't, we through normally and inode->i_data is used.
We can also end up racing against open/close which can result in crashes
when i_mapping points to a block device inode that has been closed.

Since there can't be any page cache associated with special file inodes,
it's safe to skip the btrfs_wait_ordered_range call entirely and avoid
the problem.

Cc: <stable@vger.kernel.org>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=100911
Tested-by: Christoph Biedl <linux-kernel.bfrz@manchmal.in-ulm.de>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
2015-09-15 02:21:08 +01:00
Linus Torvalds
e91eb6204f Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs cleanups and fixes from Chris Mason:
 "These are small cleanups, and also some fixes for our async worker
  thread initialization.

  I was having some trouble testing these, but it ended up being a
  combination of changing around my test servers and a shiny new
  schedule while atomic from the new start/finish_plug in
  writeback_sb_inodes().

  That one only hits on btrfs raid5/6 or MD raid10, and if I wasn't
  changing a bunch of things in my test setup at once it would have been
  really clear.  Fix for writeback_sb_inodes() on the way as well"

* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: cleanup: remove unnecessary check before btrfs_free_path is called
  btrfs: async_thread: Fix workqueue 'max_active' value when initializing
  btrfs: Add raid56 support for updating  num_tolerated_disk_barrier_failures in btrfs_balance
  btrfs: Cleanup for btrfs_calc_num_tolerated_disk_barrier_failures
  btrfs: Remove noused chunk_tree and chunk_objectid from scrub_enumerate_chunks and scrub_chunk
  btrfs: Update out-of-date "skip parity stripe" comment
2015-09-11 12:38:25 -07:00
Linus Torvalds
22365979ab Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This has Jeff Mahoney's long standing trim patch that fixes corners
  where trims were missing.  Omar has some raid5/6 fixes, especially for
  using scrub and device replace when devices are missing.

  Zhao Lie continues cleaning and fixing things, this series fixes some
  really hard to hit corners in xfstests.  I had to pull it last merge
  window due to some deadlocks, but those are now resolved.

  I added support for Tejun's new blkio controllers.  It seems to work
  well for single devices, we'll expand to multi-device as well"

* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (47 commits)
  btrfs: fix compile when block cgroups are not enabled
  Btrfs: fix file read corruption after extent cloning and fsync
  Btrfs: check if previous transaction aborted to avoid fs corruption
  btrfs: use __GFP_NOFAIL in alloc_btrfs_bio
  btrfs: Prevent from early transaction abort
  btrfs: Remove unused arguments in tree-log.c
  btrfs: Remove useless condition in start_log_trans()
  Btrfs: add support for blkio controllers
  Btrfs: remove unused mutex from struct 'btrfs_fs_info'
  Btrfs: fix parity scrub of RAID 5/6 with missing device
  Btrfs: fix device replace of a missing RAID 5/6 device
  Btrfs: add RAID 5/6 BTRFS_RBIO_REBUILD_MISSING operation
  Btrfs: count devices correctly in readahead during RAID 5/6 replace
  Btrfs: remove misleading handling of missing device scrub
  btrfs: fix clone / extent-same deadlocks
  Btrfs: fix defrag to merge tail file extent
  Btrfs: fix warning in backref walking
  btrfs: Add WARN_ON() for double lock in btrfs_tree_lock()
  btrfs: Remove root argument in extent_data_ref_count()
  btrfs: Fix wrong comment of btrfs_alloc_tree_block()
  ...
2015-09-05 15:14:43 -07:00
Linus Torvalds
1081230b74 Merge branch 'for-4.3/core' of git://git.kernel.dk/linux-block
Pull core block updates from Jens Axboe:
 "This first core part of the block IO changes contains:

   - Cleanup of the bio IO error signaling from Christoph.  We used to
     rely on the uptodate bit and passing around of an error, now we
     store the error in the bio itself.

   - Improvement of the above from myself, by shrinking the bio size
     down again to fit in two cachelines on x86-64.

   - Revert of the max_hw_sectors cap removal from a revision again,
     from Jeff Moyer.  This caused performance regressions in various
     tests.  Reinstate the limit, bump it to a more reasonable size
     instead.

   - Make /sys/block/<dev>/queue/discard_max_bytes writeable, by me.
     Most devices have huge trim limits, which can cause nasty latencies
     when deleting files.  Enable the admin to configure the size down.
     We will look into having a more sane default instead of UINT_MAX
     sectors.

   - Improvement of the SGP gaps logic from Keith Busch.

   - Enable the block core to handle arbitrarily sized bios, which
     enables a nice simplification of bio_add_page() (which is an IO hot
     path).  From Kent.

   - Improvements to the partition io stats accounting, making it
     faster.  From Ming Lei.

   - Also from Ming Lei, a basic fixup for overflow of the sysfs pending
     file in blk-mq, as well as a fix for a blk-mq timeout race
     condition.

   - Ming Lin has been carrying Kents above mentioned patches forward
     for a while, and testing them.  Ming also did a few fixes around
     that.

   - Sasha Levin found and fixed a use-after-free problem introduced by
     the bio->bi_error changes from Christoph.

   - Small blk cgroup cleanup from Viresh Kumar"

* 'for-4.3/core' of git://git.kernel.dk/linux-block: (26 commits)
  blk: Fix bio_io_vec index when checking bvec gaps
  block: Replace SG_GAPS with new queue limits mask
  block: bump BLK_DEF_MAX_SECTORS to 2560
  Revert "block: remove artifical max_hw_sectors cap"
  blk-mq: fix race between timeout and freeing request
  blk-mq: fix buffer overflow when reading sysfs file of 'pending'
  Documentation: update notes in biovecs about arbitrarily sized bios
  block: remove bio_get_nr_vecs()
  fs: use helper bio_add_page() instead of open coding on bi_io_vec
  block: kill merge_bvec_fn() completely
  md/raid5: get rid of bio_fits_rdev()
  md/raid5: split bio for chunk_aligned_read
  block: remove split code in blkdev_issue_{discard,write_same}
  btrfs: remove bio splitting and merge_bvec_fn() calls
  bcache: remove driver private bio splitting code
  block: simplify bio_add_page()
  block: make generic_make_request handle arbitrarily sized bios
  blk-cgroup: Drop unlikely before IS_ERR(_OR_NULL)
  block: don't access bio->bi_error after bio_put()
  block: shrink struct bio down to 2 cache lines again
  ...
2015-09-02 13:10:25 -07:00
Tsutomu Itoh
527afb4493 Btrfs: cleanup: remove unnecessary check before btrfs_free_path is called
We need not check path before btrfs_free_path() is called because
path is checked in btrfs_free_path().

Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-31 11:46:41 -07:00
Kent Overstreet
b54ffb73ca block: remove bio_get_nr_vecs()
We can always fill up the bio now, no need to estimate the possible
size based on queue parameters.

Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
[hch: rebased and wrote a changelog]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lin <ming.l@ssi.samsung.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-13 12:32:04 -06:00
Chris Mason
da2f0f74cf Btrfs: add support for blkio controllers
This attaches accounting information to bios as we submit them so the
new blkio controllers can throttle on btrfs filesystems.

Not much is required, we're just associating bios with blkcgs during clone,
calling wbc_init_bio()/wbc_account_io() during writepages submission,
and attaching the bios to the current context during direct IO.

Finally if we are splitting bios during btrfs_map_bio, this attaches
accounting information to the split.

The end result is able to throttle nicely on single disk filesystems.  A
little more work is required for multi-device filesystems.

Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 07:35:06 -07:00
Filipe Manana
bde6c24202 Btrfs: fix stale dir entries after unlink, inode eviction and fsync
If we remove a hard link from an inode, the inode gets evicted, then
we fsync the inode and then power fail/crash, when the log tree is
replayed, the parent directory inode still has entries pointing to
the name that no longer exists, while our inode no longer has the
BTRFS_INODE_REF_KEY item matching the deleted hard link (as expected),
leaving the filesystem in an inconsistent state. The stale directory
entries can not be deleted (an attempt to delete them causes -ESTALE
errors), which makes it impossible to delete the parent directory.

This happens because we track the id of the transaction where the last
unlink operation for the inode happened (last_unlink_trans) in an
in-memory only field of the inode, that is, a value that is never
persisted in the inode item stored on the fs/subvol btree. So if an
inode is evicted and loaded again, the value for last_unlink_trans is
set to 0, which prevents the fsync from logging the parent directory
at btrfs_log_inode_parent(). So fix this by setting last_unlink_trans
to the id of the transaction that last modified the inode when we
load the inode. This is a pessimistic approach but it always ensures
correctness with the trade off of ocassional full transaction commits
when an fsync is done against the inode in the same transaction where
it was evicted and reloaded when our inode is a directory and often
logging its parent unnecessarily when our inode is not a directory.

The following test case for fstests triggers the problem:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      _cleanup_flakey
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _need_to_be_root
  _supported_fs generic
  _supported_os Linux
  _require_scratch
  _require_dm_flakey
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test file with 2 hard links.
  mkdir $SCRATCH_MNT/testdir
  touch $SCRATCH_MNT/testdir/foo
  ln $SCRATCH_MNT/testdir/foo $SCRATCH_MNT/testdir/bar

  # Make sure everything done so far is durably persisted.
  sync

  # Now remove one of the links, trigger inode eviction and then fsync
  # our inode.
  unlink $SCRATCH_MNT/testdir/bar
  echo 2 > /proc/sys/vm/drop_caches
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir/foo

  # Silently drop all writes on our scratch device to simulate a power failure.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again and mount the fs to trigger log/journal replay.
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  # Now verify our directory entries.
  echo "Entries in testdir:"
  ls -1 $SCRATCH_MNT/testdir

  # If we remove our inode, its parent should become empty and therefore we should
  # be able to remove the parent.
  rm -f $SCRATCH_MNT/testdir/*
  rmdir $SCRATCH_MNT/testdir

  _unmount_flakey

  # The fstests framework will call fsck against our filesystem which will verify
  # that all metadata is in a consistent state.

  status=0
  exit

The test failed on btrfs with:

  generic/098 4s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//generic/098.out.bad)
    --- tests/generic/098.out	2015-07-23 18:01:12.616175932 +0100
    +++ /home/fdmanana/git/hub/xfstests/results//generic/098.out.bad	2015-07-23 18:04:58.924138308 +0100
    @@ -1,3 +1,6 @@
     QA output created by 098
     Entries in testdir:
    +bar
     foo
    +rm: cannot remove '/home/fdmanana/btrfs-tests/scratch_1/testdir/foo': Stale file handle
    +rmdir: failed to remove '/home/fdmanana/btrfs-tests/scratch_1/testdir': Directory not empty
    ...
    (Run 'diff -u tests/generic/098.out /home/fdmanana/git/hub/xfstests/results//generic/098.out.bad'  to see the entire diff)
  _check_btrfs_filesystem: filesystem on /dev/sdc is inconsistent (see /home/fdmanana/git/hub/xfstests/results//generic/098.full)

  $ cat /home/fdmanana/git/hub/xfstests/results//generic/098.full
  (...)
  checking fs roots
  root 5 inode 258 errors 2001, no inode item, link count wrong
     unresolved ref dir 257 index 0 namelen 3 name foo filetype 1 errors 6, no dir index, no inode ref
     unresolved ref dir 257 index 3 namelen 3 name bar filetype 1 errors 5, no dir item, no inode ref
  Checking filesystem on /dev/sdc
  (...)

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 06:16:58 -07:00
Christoph Hellwig
4246a0b63b block: add a bi_error field to struct bio
Currently we have two different ways to signal an I/O error on a BIO:

 (1) by clearing the BIO_UPTODATE flag
 (2) by returning a Linux errno value to the bi_end_io callback

The first one has the drawback of only communicating a single possible
error (-EIO), and the second one has the drawback of not beeing persistent
when bios are queued up, and are not passed along from child to parent
bio in the ever more popular chaining scenario.  Having both mechanisms
available has the additional drawback of utterly confusing driver authors
and introducing bugs where various I/O submitters only deal with one of
them, and the others have to add boilerplate code to deal with both kinds
of error returns.

So add a new bi_error field to store an errno value directly in struct
bio and remove the existing mechanisms to clean all this up.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-07-29 08:55:15 -06:00
Filipe Manana
c1aa45759e Btrfs: fix shrinking truncate when the no_holes feature is enabled
If the no_holes feature is enabled, we attempt to shrink a file to a size
that ends up in the middle of a hole and we don't have any file extent
items in the fs/subvol tree that go beyond the new file size (or any
ordered extents that will insert such file extent items), we end up not
updating the inode's disk_i_size, we only update the inode's i_size.

This means that after unmounting and mounting the filesystem, or after
the inode is evicted and reloaded, its i_size ends up being incorrect
(an inode's i_size is set to the disk_i_size field when an inode is
loaded). This happens when btrfs_truncate_inode_items() doesn't find
any file extent items to drop - in this case it never makes a call to
btrfs_ordered_update_i_size() in order to update the inode's disk_i_size.

Example reproducer:

  $ mkfs.btrfs -O no-holes -f /dev/sdd
  $ mount /dev/sdd /mnt

  # Create our test file with some data and durably persist it.
  $ xfs_io -f -c "pwrite -S 0xaa 0 128K" /mnt/foo
  $ sync

  # Append some data to the file, increasing its size, and leave a hole
  # between the old size and the start offset if the following write. So
  # our file gets a hole in the range [128Kb, 256Kb[.
  $ xfs_io -c "truncate 160K" /mnt/foo

  # We expect to see our file with a size of 160Kb, with the first 128Kb
  # of data all having the value 0xaa and the remaining 32Kb of data all
  # having the value 0x00.
  $ od -t x1 /mnt/foo
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0400000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  *
  0500000

  # Now cleanly unmount and mount again the filesystem.
  $ umount /mnt
  $ mount /dev/sdd /mnt

  # We expect to get the same result as before, a file with a size of
  # 160Kb, with the first 128Kb of data all having the value 0xaa and the
  # remaining 32Kb of data all having the value 0x00.
  $ od -t x1 /mnt/foo
  0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa
  *
  0400000

In the example above the file size/data do not match what they were before
the remount.

Fix this by always calling btrfs_ordered_update_i_size() with a size
matching the size the file was truncated to if btrfs_truncate_inode_items()
is not called for a log tree and no file extent items were dropped. This
ensures the same behaviour as when the no_holes feature is not enabled.

A test case for fstests follows soon.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-07-11 22:33:14 +01:00
Liu Bo
ddba1bfc23 Btrfs: fix warning of bytes_may_use
While running generic/019, dmesg got several warnings from
btrfs_free_reserved_data_space().

Test generic/019 produces some disk failures so sumbit dio will get errors,
in which case, btrfs_direct_IO() goes to the error handling and free
bytes_may_use, but the problem is that bytes_may_use has been free'd
during get_block().

This adds a runtime flag to show if we've gone through get_block(), if so,
don't do the cleanup work.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-07-01 17:17:21 -07:00
Liu Bo
ad9ee2053f Btrfs: fix hang when failing to submit bio of directIO
The hang is uncoverd by generic/019.

btrfs_endio_direct_write() skips the "finish_ordered_fn" part when it hits
an error, thus those added ordered extents will never get processed, which
block processes that waiting for them via btrfs_start_ordered_extent().

This fixes the above, and meanwhile finish_ordered_fn will do the space
accounting work.

Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-07-01 17:17:20 -07:00
Filipe Manana
9c6429d96d Btrfs: fix a comment in inode.c:evict_inode_truncate_pages()
The comment was not correct about the part where it says the endio
callback of the bio might have not yet been called - update it
to mention that by that time the endio callback execution might
still be in progress only.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-07-01 17:17:19 -07:00
Filipe Manana
61de718fce Btrfs: fix memory corruption on failure to submit bio for direct IO
If we fail to submit a bio for a direct IO request, we were grabbing the
corresponding ordered extent and decrementing its reference count twice,
once for our lookup reference and once for the ordered tree reference.
This was a problem because it caused the ordered extent to be freed
without removing it from the ordered tree and any lists it might be
attached to, leaving dangling pointers to the ordered extent around.
Example trace with CONFIG_DEBUG_PAGEALLOC=y:

[161779.858707] BUG: unable to handle kernel paging request at 0000000087654330
[161779.859983] IP: [<ffffffff8124ca68>] rb_prev+0x22/0x3b
[161779.860636] PGD 34d818067 PUD 0
[161779.860636] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
(...)
[161779.860636] Call Trace:
[161779.860636]  [<ffffffffa06b36a6>] __tree_search+0xd9/0xf9 [btrfs]
[161779.860636]  [<ffffffffa06b3708>] tree_search+0x42/0x63 [btrfs]
[161779.860636]  [<ffffffffa06b4868>] ? btrfs_lookup_ordered_range+0x2d/0xa5 [btrfs]
[161779.860636]  [<ffffffffa06b4873>] btrfs_lookup_ordered_range+0x38/0xa5 [btrfs]
[161779.860636]  [<ffffffffa06aab8e>] btrfs_get_blocks_direct+0x11b/0x615 [btrfs]
[161779.860636]  [<ffffffff8119727f>] do_blockdev_direct_IO+0x5ff/0xb43
[161779.860636]  [<ffffffffa06aaa73>] ? btrfs_page_exists_in_range+0x1ad/0x1ad [btrfs]
[161779.860636]  [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636]  [<ffffffff811977f5>] __blockdev_direct_IO+0x32/0x34
[161779.860636]  [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636]  [<ffffffffa06a10ae>] btrfs_direct_IO+0x198/0x21f [btrfs]
[161779.860636]  [<ffffffffa06a2c9a>] ? btrfs_get_extent_fiemap+0x1bc/0x1bc [btrfs]
[161779.860636]  [<ffffffff81112ca1>] generic_file_direct_write+0xb3/0x128
[161779.860636]  [<ffffffffa06affaa>] ? btrfs_file_write_iter+0x15f/0x3e0 [btrfs]
[161779.860636]  [<ffffffffa06b004c>] btrfs_file_write_iter+0x201/0x3e0 [btrfs]
(...)

We were also not freeing the btrfs_dio_private we allocated previously,
which kmemleak reported with the following trace in its sysfs file:

unreferenced object 0xffff8803f553bf80 (size 96):
  comm "xfs_io", pid 4501, jiffies 4295039588 (age 173.936s)
  hex dump (first 32 bytes):
    88 6c 9b f5 02 88 ff ff 00 00 00 00 00 00 00 00  .l..............
    00 00 00 00 00 00 00 00 00 00 c4 00 00 00 00 00  ................
  backtrace:
    [<ffffffff81161ffe>] create_object+0x172/0x29a
    [<ffffffff8145870f>] kmemleak_alloc+0x25/0x41
    [<ffffffff81154e64>] kmemleak_alloc_recursive.constprop.40+0x16/0x18
    [<ffffffff811579ed>] kmem_cache_alloc_trace+0xfb/0x148
    [<ffffffffa03d8cff>] btrfs_submit_direct+0x65/0x16a [btrfs]
    [<ffffffff811968dc>] dio_bio_submit+0x62/0x8f
    [<ffffffff811975fe>] do_blockdev_direct_IO+0x97e/0xb43
    [<ffffffff811977f5>] __blockdev_direct_IO+0x32/0x34
    [<ffffffffa03d70ae>] btrfs_direct_IO+0x198/0x21f [btrfs]
    [<ffffffff81112ca1>] generic_file_direct_write+0xb3/0x128
    [<ffffffffa03e604d>] btrfs_file_write_iter+0x201/0x3e0 [btrfs]
    [<ffffffff8116586a>] __vfs_write+0x7c/0xa5
    [<ffffffff81165da9>] vfs_write+0xa0/0xe4
    [<ffffffff81166675>] SyS_pwrite64+0x64/0x82
    [<ffffffff81464fd7>] system_call_fastpath+0x12/0x6f
    [<ffffffffffffffff>] 0xffffffffffffffff

For read requests we weren't doing any cleanup either (none of the work
done by btrfs_endio_direct_read()), so a failure submitting a bio for a
read request would leave a range in the inode's io_tree locked forever,
blocking any future operations (both reads and writes) against that range.

So fix this by making sure we do the same cleanup that we do for the case
where the bio submission succeeds.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-07-01 17:17:18 -07:00
Filipe Manana
6ca0709756 Btrfs: fix hang during inode eviction due to concurrent readahead
Zygo Blaxell and other users have reported occasional hangs while an
inode is being evicted, leading to traces like the following:

[ 5281.972322] INFO: task rm:20488 blocked for more than 120 seconds.
[ 5281.973836]       Not tainted 4.0.0-rc5-btrfs-next-9+ #2
[ 5281.974818] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 5281.976364] rm              D ffff8800724cfc38     0 20488   7747 0x00000000
[ 5281.977506]  ffff8800724cfc38 ffff8800724cfc38 ffff880065da5c50 0000000000000001
[ 5281.978461]  ffff8800724cffd8 ffff8801540a5f50 0000000000000008 ffff8801540a5f78
[ 5281.979541]  ffff8801540a5f50 ffff8800724cfc58 ffffffff8143107e 0000000000000123
[ 5281.981396] Call Trace:
[ 5281.982066]  [<ffffffff8143107e>] schedule+0x74/0x83
[ 5281.983341]  [<ffffffffa03b33cf>] wait_on_state+0xac/0xcd [btrfs]
[ 5281.985127]  [<ffffffff81075cd6>] ? signal_pending_state+0x31/0x31
[ 5281.986715]  [<ffffffffa03b4b71>] wait_extent_bit.constprop.32+0x7c/0xde [btrfs]
[ 5281.988680]  [<ffffffffa03b540b>] lock_extent_bits+0x5d/0x88 [btrfs]
[ 5281.990200]  [<ffffffffa03a621d>] btrfs_evict_inode+0x24e/0x5be [btrfs]
[ 5281.991781]  [<ffffffff8116964d>] evict+0xa0/0x148
[ 5281.992735]  [<ffffffff8116a43d>] iput+0x18f/0x1e5
[ 5281.993796]  [<ffffffff81160d4a>] do_unlinkat+0x15b/0x1fa
[ 5281.994806]  [<ffffffff81435b54>] ? ret_from_sys_call+0x1d/0x58
[ 5281.996120]  [<ffffffff8107d314>] ? trace_hardirqs_on_caller+0x18f/0x1ab
[ 5281.997562]  [<ffffffff8123960b>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 5281.998815]  [<ffffffff81161a16>] SyS_unlinkat+0x29/0x2b
[ 5281.999920]  [<ffffffff81435b32>] system_call_fastpath+0x12/0x17
[ 5282.001299] 1 lock held by rm/20488:
[ 5282.002066]  #0:  (sb_writers#12){.+.+.+}, at: [<ffffffff8116dd81>] mnt_want_write+0x24/0x4b

This happens when we have readahead, which calls readpages(), happening
right before the inode eviction handler is invoked. So the reason is
essentially:

1) readpages() is called while a reference on the inode is held, so
   eviction can not be triggered before readpages() returns. It also
   locks one or more ranges in the inode's io_tree (which is done at
   extent_io.c:__do_contiguous_readpages());

2) readpages() submits several read bios, all with an end io callback
   that runs extent_io.c:end_bio_extent_readpage() and that is executed
   by other task when a bio finishes, corresponding to a work queue
   (fs_info->end_io_workers) worker kthread. This callback unlocks
   the ranges in the inode's io_tree that were previously locked in
   step 1;

3) readpages() returns, the reference on the inode is dropped;

4) One or more of the read bios previously submitted are still not
   complete (their end io callback was not yet invoked or has not
   yet finished execution);

5) Inode eviction is triggered (through an unlink call for example).
   The inode reference count was not incremented before submitting
   the read bios, therefore this is possible;

6) The eviction handler starts executing and enters the loop that
   iterates over all extent states in the inode's io_tree;

7) The loop picks one extent state record and uses its ->start and
   ->end fields, after releasing the inode's io_tree spinlock, to
   call lock_extent_bits() and clear_extent_bit(). The call to lock
   the range [state->start, state->end] blocks because the whole
   range or a part of it was locked by the previous call to
   readpages() and the corresponding end io callback, which unlocks
   the range was not yet executed;

8) The end io callback for the read bio is executed and unlocks the
   range [state->start, state->end] (or a superset of that range).
   And at clear_extent_bit() the extent_state record state is used
   as a second argument to split_state(), which sets state->start to
   a larger value;

9) The task executing the eviction handler is woken up by the task
   executing the bio's end io callback (through clear_state_bit) and
   the eviction handler locks the range
   [old value for state->start, state->end]. Shortly after, when
   calling clear_extent_bit(), it unlocks the range
   [new value for state->start, state->end], so it ends up unlocking
   only part of the range that it locked, leaving an extent state
   record in the io_tree that represents the unlocked subrange;

10) The eviction handler loop, in its next iteration, gets the
    extent_state record for the subrange that it did not unlock in the
    previous step and then tries to lock it, resulting in an hang.

So fix this by not using the ->start and ->end fields of an existing
extent_state record. This is a simple solution, and an alternative
could be to bump the inode's reference count before submitting each
read bio and having it dropped in the bio's end io callback. But that
would be a more invasive/complex change and would not protect against
other possible places that are not holding a reference on the inode
as well. Something to consider in the future.

Many thanks to Zygo Blaxell for reporting, in the mailing list, the
issue, a set of scripts to trigger it and testing this fix.

Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Tested-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-06-03 04:03:09 -07:00
Linus Torvalds
64887b6882 Merge branch 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "A few more btrfs fixes.

  These range from corners Filipe found in the new free space cache
  writeback to a grab bag of fixes from the list"

* 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: btrfs_release_extent_buffer_page didn't free pages of dummy extent
  Btrfs: fill ->last_trans for delayed inode in btrfs_fill_inode.
  btrfs: unlock i_mutex after attempting to delete subvolume during send
  btrfs: check io_ctl_prepare_pages return in __btrfs_write_out_cache
  btrfs: fix race on ENOMEM in alloc_extent_buffer
  btrfs: handle ENOMEM in btrfs_alloc_tree_block
  Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
  Btrfs: don't check for delalloc_bytes in cache_save_setup
  Btrfs: fix deadlock when starting writeback of bg caches
  Btrfs: fix race between start dirty bg cache writeout and bg deletion
2015-05-01 07:46:21 -07:00
Linus Torvalds
9ec3a646fe Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull fourth vfs update from Al Viro:
 "d_inode() annotations from David Howells (sat in for-next since before
  the beginning of merge window) + four assorted fixes"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  RCU pathwalk breakage when running into a symlink overmounting something
  fix I_DIO_WAKEUP definition
  direct-io: only inc/dec inode->i_dio_count for file systems
  fs/9p: fix readdir()
  VFS: assorted d_backing_inode() annotations
  VFS: fs/inode.c helpers: d_inode() annotations
  VFS: fs/cachefiles: d_backing_inode() annotations
  VFS: fs library helpers: d_inode() annotations
  VFS: assorted weird filesystems: d_inode() annotations
  VFS: normal filesystems (and lustre): d_inode() annotations
  VFS: security/: d_inode() annotations
  VFS: security/: d_backing_inode() annotations
  VFS: net/: d_inode() annotations
  VFS: net/unix: d_backing_inode() annotations
  VFS: kernel/: d_inode() annotations
  VFS: audit: d_backing_inode() annotations
  VFS: Fix up some ->d_inode accesses in the chelsio driver
  VFS: Cachefiles should perform fs modifications on the top layer only
  VFS: AF_UNIX sockets should call mknod on the top layer only
2015-04-26 17:22:07 -07:00
Yang Dongsheng
6e17d30bfa Btrfs: fill ->last_trans for delayed inode in btrfs_fill_inode.
We need to fill inode when we found a node for it in delayed_nodes_tree.
But we did not fill the ->last_trans currently, it will cause the test
of xfstest/generic/311 fail. Scenario of the 311 is shown as below:

Problem:
	(1). test_fd = open(fname, O_RDWR|O_DIRECT)
	(2). pwrite(test_fd, buf, 4096, 0)
	(3). close(test_fd)
	(4). drop_all_caches()	<-------- "echo 3 > /proc/sys/vm/drop_caches"
	(5). test_fd = open(fname, O_RDWR|O_DIRECT)
	(6). fsync(test_fd);
				<-------- we did not get the correct log entry for the file
Reason:
	When we re-open this file in (5), we would find a node
in delayed_nodes_tree and fill the inode we are lookup with the
information. But the ->last_trans is not filled, then the fsync()
will check the ->last_trans and found it's 0 then say this inode
is already in our tree which is commited, not recording the extents
for it.

Fix:
	This patch fill the ->last_trans properly and set the
runtime_flags if needed in this situation. Then we can get the
log entries we expected after (6) and generic/311 passed.

Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaoxie@huawei.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-04-26 06:27:03 -07:00
Jens Axboe
fe0f07d08e direct-io: only inc/dec inode->i_dio_count for file systems
do_blockdev_direct_IO() increments and decrements the inode
->i_dio_count for each IO operation. It does this to protect against
truncate of a file. Block devices don't need this sort of protection.

For a capable multiqueue setup, this atomic int is the only shared
state between applications accessing the device for O_DIRECT, and it
presents a scaling wall for that. In my testing, as much as 30% of
system time is spent incrementing and decrementing this value. A mixed
read/write workload improved from ~2.5M IOPS to ~9.6M IOPS, with
better latencies too. Before:

clat percentiles (usec):
 |  1.00th=[   33],  5.00th=[   34], 10.00th=[   34], 20.00th=[   34],
 | 30.00th=[   34], 40.00th=[   34], 50.00th=[   35], 60.00th=[   35],
 | 70.00th=[   35], 80.00th=[   35], 90.00th=[   37], 95.00th=[   80],
 | 99.00th=[   98], 99.50th=[  151], 99.90th=[  155], 99.95th=[  155],
 | 99.99th=[  165]

After:

clat percentiles (usec):
 |  1.00th=[   95],  5.00th=[  108], 10.00th=[  129], 20.00th=[  149],
 | 30.00th=[  155], 40.00th=[  161], 50.00th=[  167], 60.00th=[  171],
 | 70.00th=[  177], 80.00th=[  185], 90.00th=[  201], 95.00th=[  270],
 | 99.00th=[  390], 99.50th=[  398], 99.90th=[  418], 99.95th=[  422],
 | 99.99th=[  438]

In other setups, Robert Elliott reported seeing good performance
improvements:

https://lkml.org/lkml/2015/4/3/557

The more applications accessing the device, the worse it gets.

Add a new direct-io flags, DIO_SKIP_DIO_COUNT, which tells
do_blockdev_direct_IO() that it need not worry about incrementing
or decrementing the inode i_dio_count for this caller.

Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Elliott, Robert (Server Storage) <elliott@hp.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-04-24 15:45:28 -04:00
Linus Torvalds
ba0e4ae88f Merge branch 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "I've been running these through a longer set of load tests because my
  commits change the free space cache writeout.  It fixes commit stalls
  on large filesystems (~20T space used and up) that we have been
  triggering here.  We were seeing new writers blocked for 10 seconds or
  more during commits, which is far from good.

  Josef and I fixed up ENOSPC aborts when deleting huge files (3T or
  more), that are triggered because our metadata reservations were not
  properly accounting for crcs and were not replenishing during the
  truncate.

  Also in this series, a number of qgroup fixes from Fujitsu and Dave
  Sterba collected most of the pending cleanups from the list"

* 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (93 commits)
  btrfs: quota: Update quota tree after qgroup relationship change.
  btrfs: quota: Automatically update related qgroups or mark INCONSISTENT flags when assigning/deleting a qgroup relations.
  btrfs: qgroup: clear STATUS_FLAG_ON in disabling quota.
  btrfs: Update btrfs qgroup status item when rescan is done.
  btrfs: qgroup: Fix dead judgement on qgroup_rescan_leaf() return value.
  btrfs: Don't allow subvolid >= (1 << BTRFS_QGROUP_LEVEL_SHIFT) to be created
  btrfs: Check qgroup level in kernel qgroup assign.
  btrfs: qgroup: allow to remove qgroup which has parent but no child.
  btrfs: qgroup: return EINVAL if level of parent is not higher than child's.
  btrfs: qgroup: do a reservation in a higher level.
  Btrfs: qgroup, Account data space in more proper timings.
  Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.
  Btrfs: qgroup: free reserved in exceeding quota.
  Btrfs: qgroup: cleanup, remove an unsued parameter in btrfs_create_qgroup().
  btrfs: qgroup: fix limit args override whole limit struct
  btrfs: qgroup: update limit info in function btrfs_run_qgroups().
  btrfs: qgroup: consolidate the parameter of fucntion update_qgroup_limit_item().
  btrfs: qgroup: update qgroup in memory at the same time when we update it in btree.
  btrfs: qgroup: inherit limit info from srcgroup in creating snapshot.
  btrfs: Support busy loop of write and delete
  ...
2015-04-24 07:40:02 -07:00
David Howells
2b0143b5c9 VFS: normal filesystems (and lustre): d_inode() annotations
that's the bulk of filesystem drivers dealing with inodes of their own

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-04-15 15:06:57 -04:00
Dongsheng Yang
e2d1f92399 btrfs: qgroup: do a reservation in a higher level.
There are two problems in qgroup:

a). The PAGE_CACHE is 4K, even when we are writing a data of 1K,
qgroup will reserve a 4K size. It will cause the last 3K in a qgroup
is not available to user.

b). When user is writing a inline data, qgroup will not reserve it,
it means this is a window we can exceed the limit of a qgroup.

The main idea of this patch is reserving the data size of write_bytes
rather than the reserve_bytes. It means qgroup will not care about
the data size btrfs will reserve for user, but only care about the
data size user is going to write. Then reserve it when user want to
write and release it in transaction committed.

In this way, qgroup can be released from the complex procedure in
btrfs and only do the reserve when user want to write and account
when the data is written in commit_transaction().

Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-04-13 07:52:50 -07:00
Dongsheng Yang
31193213f1 Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.
Currently, for pre_alloc or delay_alloc, the bytes will be accounted
in space_info by the three guys.
space_info->bytes_may_use --- space_info->reserved --- space_info->used.
But on the other hand, in qgroup, there are only two counters to account the
bytes, qgroup->reserved and qgroup->excl. And qg->reserved accounts
bytes in space_info->bytes_may_use and qg->excl accounts bytes in
space_info->used. So the bytes in space_info->reserved is not accounted
in qgroup. If so, there is a window we can exceed the quota limit when
bytes is in space_info->reserved.

Example:
	# btrfs quota enable /mnt
	# btrfs qgroup limit -e 10M /mnt
	# for((i=0;i<20;i++));do fallocate -l 1M /mnt/data$i; done
	# sync
	# btrfs qgroup show -pcre /mnt
qgroupid rfer     excl     max_rfer max_excl parent  child
-------- ----     ----     -------- -------- ------  -----
0/5      20987904 20987904 0        10485760 ---     ---

qg->excl is 20987904 larger than max_excl 10485760.

This patch introduce a new counter named may_use to qgroup, then
there are three counters in qgroup to account bytes in space_info
as below.
space_info->bytes_may_use --- space_info->reserved --- space_info->used.
qgroup->may_use           --- qgroup->reserved     --- qgroup->excl

With this patch applied:
	# btrfs quota enable /mnt
	# btrfs qgroup limit -e 10M /mnt
	# for((i=0;i<20;i++));do fallocate -l 1M /mnt/data$i; done
fallocate: /mnt/data9: fallocate failed: Disk quota exceeded
fallocate: /mnt/data10: fallocate failed: Disk quota exceeded
fallocate: /mnt/data11: fallocate failed: Disk quota exceeded
fallocate: /mnt/data12: fallocate failed: Disk quota exceeded
fallocate: /mnt/data13: fallocate failed: Disk quota exceeded
fallocate: /mnt/data14: fallocate failed: Disk quota exceeded
fallocate: /mnt/data15: fallocate failed: Disk quota exceeded
fallocate: /mnt/data16: fallocate failed: Disk quota exceeded
fallocate: /mnt/data17: fallocate failed: Disk quota exceeded
fallocate: /mnt/data18: fallocate failed: Disk quota exceeded
fallocate: /mnt/data19: fallocate failed: Disk quota exceeded
	# sync
	# btrfs qgroup show -pcre /mnt
qgroupid rfer    excl    max_rfer max_excl parent  child
-------- ----    ----    -------- -------- ------  -----
0/5      9453568 9453568 0        10485760 ---     ---

Reported-by: Cyril SCETBON <cyril.scetbon@free.fr>
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-04-13 07:52:47 -07:00
Zhao Lei
d7c151717a btrfs: Fix NO_SPACE bug caused by delayed-iput
Steps to reproduce:
  while true; do
    dd if=/dev/zero of=/btrfs_dir/file count=[fs_size * 75%]
    rm /btrfs_dir/file
    sync
  done

  And we'll see dd failed because btrfs return NO_SPACE.

Reason:
  Normally, btrfs_commit_transaction() call btrfs_run_delayed_iputs()
  in end to free fs space for next write, but sometimes it hadn't
  done work on time, because btrfs-cleaner thread get delayed-iputs
  from list before, but do iput() after next write.

  This is log:
  [ 2569.050776] comm=btrfs-cleaner func=btrfs_evict_inode() begin

  [ 2569.084280] comm=sync func=btrfs_commit_transaction() call btrfs_run_delayed_iputs()
  [ 2569.085418] comm=sync func=btrfs_commit_transaction() done btrfs_run_delayed_iputs()
  [ 2569.087554] comm=sync func=btrfs_commit_transaction() end

  [ 2569.191081] comm=dd begin
  [ 2569.790112] comm=dd func=__btrfs_buffered_write() ret=-28

  [ 2569.847479] comm=btrfs-cleaner func=add_pinned_bytes() 0 + 32677888 = 32677888
  [ 2569.849530] comm=btrfs-cleaner func=add_pinned_bytes() 32677888 + 23834624 = 56512512
  ...
  [ 2569.903893] comm=btrfs-cleaner func=add_pinned_bytes() 943976448 + 21762048 = 965738496
  [ 2569.908270] comm=btrfs-cleaner func=btrfs_evict_inode() end

Fix:
  Make btrfs_commit_transaction() wait current running btrfs-cleaner's
  delayed-iputs() done in end.

Test:
  Use script similar to above(more complex),
  before patch:
    7 failed in 100 * 20 loop.
  after patch:
    0 failed in 100 * 20 loop.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-04-13 07:27:41 -07:00
Omar Sandoval
22c6186ece direct_IO: remove rw from a_ops->direct_IO()
Now that no one is using rw, remove it completely.

Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-04-11 22:29:45 -04:00
Omar Sandoval
6f67376318 direct_IO: use iov_iter_rw() instead of rw everywhere
The rw parameter to direct_IO is redundant with iov_iter->type, and
treated slightly differently just about everywhere it's used: some users
do rw & WRITE, and others do rw == WRITE where they should be doing a
bitwise check. Simplify this with the new iov_iter_rw() helper, which
always returns either READ or WRITE.

Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-04-11 22:29:45 -04:00
Omar Sandoval
17f8c842d2 Remove rw from {,__,do_}blockdev_direct_IO()
Most filesystems call through to these at some point, so we'll start
here.

Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-04-11 22:29:44 -04:00
Al Viro
c0fec3a98b Merge branch 'iocb' into for-next 2015-04-11 22:24:41 -04:00
Josef Bacik
3bce876fd5 Btrfs: don't steal from the global reserve if we don't have the space
btrfs_evict_inode() needs to be more careful about stealing from the
global_rsv.  We dont' want to end up aborting commit with ENOSPC just
because the evict_inode code was too greedy.

Signed-off-by: Chris Mason <clm@fb.com>
2015-04-10 14:06:59 -07:00
Chris Mason
28f75a0e6c Btrfs: refill block reserves during truncate
When truncate starts, it allocates some space in the block reserves so
that we'll have enough to update metadata along the way.

For very large files, we can easily go through all of that space as we
loop through the extents.  This changes truncate to refill the space
reservation as it progresses through the file.

Signed-off-by: Chris Mason <clm@fb.com>
2015-04-10 14:06:34 -07:00
Josef Bacik
1262133b8d Btrfs: account for crcs in delayed ref processing
As we delete large extents, we end up doing huge amounts of COW in order
to delete the corresponding crcs.  This adds accounting so that we keep
track of that space and flushing of delayed refs so that we don't build
up too much delayed crc work.

This helps limit the delayed work that must be done at commit time and
tries to avoid ENOSPC aborts because the crcs eat all the global
reserves.

Signed-off-by: Chris Mason <clm@fb.com>
2015-04-10 14:04:47 -07:00
Chris Mason
28ed1345a5 btrfs: actively run the delayed refs while deleting large files
When we are deleting large files with large extents, we are building up
a huge set of delayed refs for processing.  Truncate isn't checking
often enough to see if we need to back off and process those, or let
a commit proceed.

The end result is long stalls after the rm, and very long commit times.
During the commits, other processes back up waiting to start new
transactions and we get into trouble.

Signed-off-by: Chris Mason <clm@fb.com>
2015-04-10 14:00:14 -07:00
Guenter Roeck
4a3d1caf8a fs: btrfs: Add missing include file
Building alpha:allmodconfig fails with

fs/btrfs/inode.c: In function 'check_direct_IO':
fs/btrfs/inode.c:8050:2: error: implicit declaration of function 'iov_iter_alignment'

due to a missing include file.

Fixes: 3737c63e1fb0 ("fs: move struct kiocb to fs.h")
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-04-01 12:32:07 -07:00
Christoph Hellwig
e2e40f2c1e fs: move struct kiocb to fs.h
struct kiocb now is a generic I/O container, so move it to fs.h.
Also do a #include diet for aio.h while we're at it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-03-25 20:28:11 -04:00
Chris Mason
9deed229fa Merge branch 'cleanups-for-4.1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.1 2015-03-25 10:43:16 -07:00
Linus Torvalds
521d474631 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "Most of these are fixing extent reservation accounting, or corners
  with tree writeback during commit.

  Josef's set does add a test, which isn't strictly a fix, but it'll
  keep us from making this same mistake again"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: fix outstanding_extents accounting in DIO
  Btrfs: add sanity test for outstanding_extents accounting
  Btrfs: just free dummy extent buffers
  Btrfs: account merges/splits properly
  Btrfs: prepare block group cache before writing
  Btrfs: fix ASSERT(list_empty(&cur_trans->dirty_bgs_list)
  Btrfs: account for the correct number of extents for delalloc reservations
  Btrfs: fix merge delalloc logic
  Btrfs: fix comp_oper to get right order
  Btrfs: catch transaction abortion after waiting for it
  btrfs: fix sizeof format specifier in btrfs_check_super_valid()
2015-03-21 10:53:37 -07:00
Josef Bacik
e1cbbfa5f5 Btrfs: fix outstanding_extents accounting in DIO
We are keeping track of how many extents we need to reserve properly based on
the amount we want to write, but we were still incrementing outstanding_extents
if we wrote less than what we requested.  This isn't quite right since we will
be limited to our max extent size.  So instead lets do something horrible!  Keep
track of how many outstanding_extents we reserved, and decrement each time we
allocate an extent.  If we use our entire reserve make sure to jack up
outstanding_extents on the inode so the accounting works out properly.  Thanks,

Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
2015-03-17 16:36:35 -04:00
Josef Bacik
6a3891c551 Btrfs: add sanity test for outstanding_extents accounting
I introduced a regression wrt outstanding_extents accounting.  These are tricky
areas that aren't easily covered by xfstests as we could change MAX_EXTENT_SIZE
at any time.  So add sanity tests to cover the various conditions that are
tricky in order to make sure we don't introduce regressions in the future.
Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
2015-03-17 16:36:31 -04:00
Josef Bacik
ba11721355 Btrfs: account merges/splits properly
My fix

Btrfs: fix merge delalloc logic

only fixed half of the problems, it didn't fix the case where we have two large
extents on either side and then join them together with a new small extent.  We
need to instead keep track of how many extents we have accounted for with each
side of the new extent, and then see how many extents we need for the new large
extent.  If they match then we know we need to keep our reservation, otherwise
we need to drop our reservation.  This shows up with a case like this

[BTRFS_MAX_EXTENT_SIZE+4K][4K HOLE][BTRFS_MAX_EXTENT_SIZE+4K]

Previously the logic would have said that the number extents required for the
new size (3) is larger than the number of extents required for the largest side
(2) therefore we need to keep our reservation.  But this isn't the case, since
both sides require a reservation of 2 which leads to 4 for the whole range
currently reserved, but we only need 3, so we need to drop one of the
reservations.  The same problem existed for splits, we'd think we only need 3
extents when creating the hole but in reality we need 4.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
2015-03-17 16:28:21 -04:00
Josef Bacik
8461a3de77 Btrfs: fix merge delalloc logic
My patch to properly count outstanding extents wrt MAX_EXTENT_SIZE introduced a
regression when re-dirtying already dirty areas.  We have logic in split to make
sure we are taking the largest space into account but didn't have it for merge,
so it was sometimes making us think we were turning a tiny extent into a huge
extent, when in reality we already had a huge extent and needed to use the other
side in our logic.  This fixes the regression that was reported by a user on
list.  Thanks,

Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-13 13:46:59 -07:00
Linus Torvalds
84399bb075 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "Outside of misc fixes, Filipe has a few fsync corners and we're
  pulling in one more of Josef's fixes from production use here"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref.
  Btrfs: fix data loss in the fast fsync path
  Btrfs: remove extra run_delayed_refs in update_cowonly_root
  Btrfs: incremental send, don't rename a directory too soon
  btrfs: fix lost return value due to variable shadowing
  Btrfs: do not ignore errors from btrfs_lookup_xattr in do_setxattr
  Btrfs: fix off-by-one logic error in btrfs_realloc_node
  Btrfs: add missing inode update when punching hole
  Btrfs: abort the transaction if we fail to update the free space cache inode
  Btrfs: fix fsync race leading to ordered extent memory leaks
2015-03-06 13:52:54 -08:00
David Sterba
31e818fe73 btrfs: cleanup, use kmalloc_array/kcalloc array helpers
Convert kmalloc(nr * size, ..) to kmalloc_array that does additional
overflow checks, the zeroing variant is kcalloc.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-03-03 17:23:58 +01:00
David Sterba
1932b7be97 btrfs: fix lost return value due to variable shadowing
A block-local variable stores error code but btrfs_get_blocks_direct may
not return it in the end as there's a ret defined in the function scope.

CC: <stable@vger.kernel.org>	# 3.6+
Fixes: d187663ef2 ("Btrfs: lock extents as we map them in DIO")
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-03-02 14:04:45 -08:00
Linus Torvalds
2b9fb532d4 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This pull is mostly cleanups and fixes:

   - The raid5/6 cleanups from Zhao Lei fixup some long standing warts
     in the code and add improvements on top of the scrubbing support
     from 3.19.

   - Josef has round one of our ENOSPC fixes coming from large btrfs
     clusters here at FB.

   - Dave Sterba continues a long series of cleanups (thanks Dave), and
     Filipe continues hammering on corner cases in fsync and others

  This all was held up a little trying to track down a use-after-free in
  btrfs raid5/6.  It's not clear yet if this is just made easier to
  trigger with this pull or if its a new bug from the raid5/6 cleanups.
  Dave Sterba is the only one to trigger it so far, but he has a
  consistent way to reproduce, so we'll get it nailed shortly"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (68 commits)
  Btrfs: don't remove extents and xattrs when logging new names
  Btrfs: fix fsync data loss after adding hard link to inode
  Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group
  Btrfs: account for large extents with enospc
  Btrfs: don't set and clear delalloc for O_DIRECT writes
  Btrfs: only adjust outstanding_extents when we do a short write
  btrfs: Fix out-of-space bug
  Btrfs: scrub, fix sleep in atomic context
  Btrfs: fix scheduler warning when syncing log
  Btrfs: Remove unnecessary placeholder in btrfs_err_code
  btrfs: cleanup init for list in free-space-cache
  btrfs: delete chunk allocation attemp when setting block group ro
  btrfs: clear bio reference after submit_one_bio()
  Btrfs: fix scrub race leading to use-after-free
  Btrfs: add missing cleanup on sysfs init failure
  Btrfs: fix race between transaction commit and empty block group removal
  btrfs: add more checks to btrfs_read_sys_array
  btrfs: cleanup, rename a few variables in btrfs_read_sys_array
  btrfs: add checks for sys_chunk_array sizes
  btrfs: more superblock checks, lower bounds on devices and sectorsize/nodesize
  ...
2015-02-19 14:36:00 -08:00
Josef Bacik
dcab6a3b2a Btrfs: account for large extents with enospc
On our gluster boxes we stream large tar balls of backups onto our fses.  With
160gb of ram this means we get really large contiguous ranges of dirty data, but
the way our ENOSPC stuff works is that as long as it's contiguous we only hold
metadata reservation for one extent.  The problem is we limit our extents to
128mb, so we'll end up with at least 800 extents so our enospc accounting is
quite a bit lower than what we need.  To keep track of this make sure we
increase outstanding_extents for every multiple of the max extent size so we can
be sure to have enough reserved metadata space.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:22:48 -08:00
Josef Bacik
3266789f9d Btrfs: don't set and clear delalloc for O_DIRECT writes
We do this to get the space accounting, but this is just needless churn on the
io_tree, so just drop setting/clearing delalloc and just drop the reserved data
space when we have a successfull allocation.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:19:14 -08:00
Josef Bacik
3e05bde8c3 Btrfs: only adjust outstanding_extents when we do a short write
We have this weird dance where we always inc outstanding_extents when we do a
O_DIRECT write, even if we allocate the entire range.  To get around this we
also drop the metadata space if we successfully write.  This is an unnecessary
dance, we only need to jack up outstanding_extents if we don't satisfy the
entire range request in get_blocks_direct, otherwise we are good using our
original reservation.  So drop the unconditional inc and the drop of the
metadata space that we have for the unconditional inc.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-14 08:19:14 -08:00
chandan r
9cc97d6462 Btrfs: Add code to support file creation time
This patch adds a new member to the 'struct btrfs_inode' structure to hold
the file creation time.

Signed-off-by: chandan <chandanrmail@gmail.com>
[refreshed, removed btrfs_inode_otime]
Signed-off-by: David Sterba <dsterba@suse.cz>

Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 18:39:16 -08:00
David Sterba
a937b9791e btrfs: kill btrfs_inode_*time helpers
They just opencode taking address of the timespec member.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-02-02 18:39:07 -08:00
Zhao Lei
ffe2d2034b Btrfs: Introduce BTRFS_BLOCK_GROUP_RAID56_MASK to check raid56 simply
So we can check raid56 with:
 (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
instead of long:
 (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:06:49 -08:00
David Sterba
9ee49a047d btrfs: switch extent_state state to unsigned
Currently there's a 4B hole in the structure between refs and state and there
are only 16 bits used so we can make it unsigned. This will get a better
packing and may save some stack space for local variables.

The size of extent_state gets reduced by 8B and there are usually a lot
of slab objects.

struct extent_state {
	u64                        start;                /*     0     8 */
	u64                        end;                  /*     8     8 */
	struct rb_node             rb_node;              /*    16    24 */
	wait_queue_head_t          wq;                   /*    40    24 */
	/* --- cacheline 1 boundary (64 bytes) --- */
	atomic_t                   refs;                 /*    64     4 */

	/* XXX 4 bytes hole, try to pack */

	long unsigned int          state;                /*    72     8 */
	u64                        private;              /*    80     8 */

	/* size: 88, cachelines: 2, members: 7 */
	/* sum members: 84, holes: 1, sum holes: 4 */
	/* last cacheline: 24 bytes */
};

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:04 -08:00
David Sterba
f0954c6637 btrfs: update message levels after checksum errors
The errors are worth noting and might get missed with INFO level.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:03 -08:00
David Sterba
68b663d13c btrfs: update message levels for errors
Several messages that point to some internal problem, level INFO is
wrong here.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-21 18:02:03 -08:00
Christoph Hellwig
b83ae6d421 fs: remove mapping->backing_dev_info
Now that we never use the backing_dev_info pointer in struct address_space
we can simply remove it and save 4 to 8 bytes in every inode.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-01-20 14:03:05 -07:00
David Sterba
1d4c08e0a6 btrfs: expand btrfs_find_item if found_key is NULL
If the found_key is NULL, then btrfs_find_item becomes a verbose wrapper
for simple btrfs_search_slot.

After we've removed all such callers, passing a NULL key is not valid
anymore.

Signed-off-by: David Sterba <dsterba@suse.cz>
2015-01-14 19:23:48 +01:00
Linus Torvalds
03c751a5e1 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "None of these are huge, but my commit does fix a regression from 3.18
  that could cause lost files during log replay.

  This also adds Dave Sterba to the list of Btrfs maintainers.  It
  doesn't mean we're doing things differently, but Dave has really been
  helping with the maintainer workload for years"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: don't delay inode ref updates during log replay
  Btrfs: correctly get tree level in tree_backref_for_extent
  Btrfs: call inode_dec_link_count() on mkdir error path
  Btrfs: abort transaction if we don't find the block group
  Btrfs, scrub: uninitialized variable in scrub_extent_for_parity()
  Btrfs: add more maintainers
2015-01-09 17:46:07 -08:00
Wang Shilong
c7cfb8a540 Btrfs: call inode_dec_link_count() on mkdir error path
In btrfs_mkdir(), if it fails to create dir, we should
clean up existed items, setting inode's link properly
to make sure it could be cleaned up properly.

Signed-off-by: Wang Shilong <wangshilong1991@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-01-02 14:47:55 -05:00
Linus Torvalds
bdeb03cada Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs update from Chris Mason:
 "From a feature point of view, most of the code here comes from Miao
  Xie and others at Fujitsu to implement scrubbing and replacing devices
  on raid56.  This has been in development for a while, and it's a big
  improvement.

  Filipe and Josef have a great assortment of fixes, many of which solve
  problems corruptions either after a crash or in error conditions.  I
  still have a round two from Filipe for next week that solves
  corruptions with discard and block group removal"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (62 commits)
  Btrfs: make get_caching_control unconditionally return the ctl
  Btrfs: fix unprotected deletion from pending_chunks list
  Btrfs: fix fs mapping extent map leak
  Btrfs: fix memory leak after block remove + trimming
  Btrfs: make btrfs_abort_transaction consider existence of new block groups
  Btrfs: fix race between writing free space cache and trimming
  Btrfs: fix race between fs trimming and block group remove/allocation
  Btrfs, replace: enable dev-replace for raid56
  Btrfs: fix freeing used extents after removing empty block group
  Btrfs: fix crash caused by block group removal
  Btrfs: fix invalid block group rbtree access after bg is removed
  Btrfs, raid56: fix use-after-free problem in the final device replace procedure on raid56
  Btrfs, replace: write raid56 parity into the replace target device
  Btrfs, replace: write dirty pages into the replace target device
  Btrfs, raid56: support parity scrub on raid56
  Btrfs, raid56: use a variant to record the operation type
  Btrfs, scrub: repair the common data on RAID5/6 if it is corrupted
  Btrfs, raid56: don't change bbio and raid_map
  Btrfs: remove unnecessary code of stripe_index assignment in __btrfs_map_block
  Btrfs: remove noused bbio_ret in __btrfs_map_block in condition
  ...
2014-12-12 11:15:23 -08:00
Filipe Manana
9ea24bbe17 Btrfs: fix snapshot inconsistency after a file write followed by truncate
If right after starting the snapshot creation ioctl we perform a write against a
file followed by a truncate, with both operations increasing the file's size, we
can get a snapshot tree that reflects a state of the source subvolume's tree where
the file truncation happened but the write operation didn't. This leaves a gap
between 2 file extent items of the inode, which makes btrfs' fsck complain about it.

For example, if we perform the following file operations:

    $ mkfs.btrfs -f /dev/vdd
    $ mount /dev/vdd /mnt
    $ xfs_io -f \
          -c "pwrite -S 0xaa -b 32K 0 32K" \
          -c "fsync" \
          -c "pwrite -S 0xbb -b 32770 16K 32770" \
          -c "truncate 90123" \
          /mnt/foobar

and the snapshot creation ioctl was just called before the second write, we often
can get the following inode items in the snapshot's btree:

        item 120 key (257 INODE_ITEM 0) itemoff 7987 itemsize 160
                inode generation 146 transid 7 size 90123 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 flags 0x0
        item 121 key (257 INODE_REF 256) itemoff 7967 itemsize 20
                inode ref index 282 namelen 10 name: foobar
        item 122 key (257 EXTENT_DATA 0) itemoff 7914 itemsize 53
                extent data disk byte 1104855040 nr 32768
                extent data offset 0 nr 32768 ram 32768
                extent compression 0
        item 123 key (257 EXTENT_DATA 53248) itemoff 7861 itemsize 53
                extent data disk byte 0 nr 0
                extent data offset 0 nr 40960 ram 40960
                extent compression 0

There's a file range, corresponding to the interval [32K; ALIGN(16K + 32770, 4096)[
for which there's no file extent item covering it. This is because the file write
and file truncate operations happened both right after the snapshot creation ioctl
called btrfs_start_delalloc_inodes(), which means we didn't start and wait for the
ordered extent that matches the write and, in btrfs_setsize(), we were able to call
btrfs_cont_expand() before being able to commit the current transaction in the
snapshot creation ioctl. So this made it possibe to insert the hole file extent
item in the source subvolume (which represents the region added by the truncate)
right before the transaction commit from the snapshot creation ioctl.

Btrfs' fsck tool complains about such cases with a message like the following:

    "root 331 inode 257 errors 100, file extent discount"

>From a user perspective, the expectation when a snapshot is created while those
file operations are being performed is that the snapshot will have a file that
either:

1) is empty
2) only the first write was captured
3) only the 2 writes were captured
4) both writes and the truncation were captured

But never capture a state where only the first write and the truncation were
captured (since the second write was performed before the truncation).

A test case for xfstests follows.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2014-11-25 07:41:23 -08:00