All entry points already read the MSR so they can easily do
the right thing.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 contains an off core mmu called the nest mmu (NMMU). This is
used by other hardware units on the chip to translate virtual
addresses into real addresses. The unit attempting an address
translation provides the majority of the context required for the
translation request except for the base address of the partition table
(ie. the PTCR) which needs to be programmed into the NMMU.
This patch adds a call to OPAL to set the PTCR for the nest mmu in
opal_init().
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This defines real-mode versions of opal_int_get_xirr(), opal_int_eoi()
and opal_int_set_mfrr(), for use by KVM real-mode code.
It also exports opal_int_set_mfrr() so that the modular part of KVM
can use it to send IPIs.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When a guest has a PCI pass-through device with an interrupt, it
will direct the interrupt to a particular guest VCPU. In fact the
physical interrupt might arrive on any CPU, and then get
delivered to the target VCPU in the emulated XICS (guest interrupt
controller), and eventually delivered to the target VCPU.
Now that we have code to handle device interrupts in real mode
without exiting to the host kernel, there is an advantage to having
the device interrupt arrive on the same sub(core) as the target
VCPU is running on. In this situation, the interrupt can be
delivered to the target VCPU without any exit to the host kernel
(using a hypervisor doorbell interrupt between threads if
necessary).
This patch aims to get passed-through device interrupts arriving
on the correct core by setting the interrupt server in the real
hardware XICS for the interrupt to the first thread in the (sub)core
where its target VCPU is running. We do this in the real-mode H_EOI
code because the H_EOI handler already needs to look at the
emulated ICS state for the interrupt (whereas the H_XIRR handler
doesn't), and we know we are running in the target VCPU context
at that point.
We set the server CPU in hardware using an OPAL call, regardless of
what the IRQ affinity mask for the interrupt says, and without
updating the affinity mask. This amounts to saying that when an
interrupt is passed through to a guest, as a matter of policy we
allow the guest's affinity for the interrupt to override the host's.
This is inspired by an earlier patch from Suresh Warrier, although
none of this code came from that earlier patch.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The various calls to establish exception endianness and AIL are
now done from a single point using already established CPU and FW
feature bits to decide what to do.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Replace the old generic opal_call_realmode() with proper per-call
wrappers similar to the normal ones and convert callers.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
OPAL provides an emulated XICS interrupt controller to
use as a fallback on newer processors that don't have a
XICS. It's meant as a way to provide backward compatibility
with future processors. Add the corresponding interfaces.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On some environments (prototype machines, some simulators, etc...)
there is no functional interrupt source to signal completion, so
we rely on the fairly slow OPAL heartbeat.
In a number of cases, the calls complete very quickly or even
immediately. We've observed that it helps a lot to wakeup the OPAL
heartbeat thread before waiting for event in those cases, it will
call OPAL immediately to collect completions for anything that
finished fast enough.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-By: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Implement new character device driver to allow access from user space
to the operator panel display present on IBM Power Systems machines
with FSPs.
This will allow status information to be presented on the display which
is visible to a user.
The driver implements a character buffer which a user can read/write
by accessing the device (/dev/op_panel). This buffer is then displayed on
the operator panel display. Any attempt to write past the last character
position will have no effect and attempts to write more characters than
the size of the display will be truncated. The device may only be accessed
by a single process at a time.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
An opal_msg of type OPAL_MSG_ASYNC_COMP contains the return code in the
params[1] struct member. However this isn't intuitive or obvious when
reading the code and requires that a user look at the skiboot
documentation or opal-api.h to verify this.
Add an inline function to get the return code from an opal_msg and update
call sites accordingly.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This exports 4 functions, which base on the corresponding OPAL
APIs to get/set PCI slot status. Those functions are going to
be used by PowerNV PCI hotplug driver:
pnv_pci_get_device_tree() opal_get_device_tree()
pnv_pci_get_presence_state() opal_pci_get_presence_state()
pnv_pci_get_power_state() opal_pci_get_power_state()
pnv_pci_set_power_state() opal_pci_set_power_state()
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The reset and poll functionality from (OPAL) firmware supports
PHB and PCI slot at same time. They are identified by ID. This
supports PCI slot ID by:
* Rename the argument name for opal_pci_reset() and opal_pci_poll()
accordingly
* Rename pnv_eeh_phb_poll() to pnv_eeh_poll() and adjust its argument
name.
* One macro is added to produce PCI slot ID.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently, the OPAL msglog/console buffer is exposed as a sysfs file, with
the sysfs read handler responsible for retrieving the log from the OPAL
buffer. We'd like to be able to use it in xmon as well.
Refactor the OPAL msglog code to create a new function, opal_msglog_copy(),
that copies to an arbitrary buffer. Separate the initialisation code into
generic memcons init and sysfs file creation.
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The recently added OPAL API call, OPAL_CONSOLE_FLUSH, originally took no
parameters and returned nothing. The call was updated to accept the
terminal number to flush, and returned various values depending on the
state of the output buffer.
The prototype has been updated and its usage in the OPAL kmsg dumper has
been modified to support its new behaviour as an incremental flush.
Signed-off-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On BMC machines, console output is controlled by the OPAL firmware and is
only flushed when its pollers are called. When the kernel is in a panic
state, it no longer calls these pollers and thus console output does not
completely flush, causing some output from the panic to be lost.
Output is only actually lost when the kernel is configured to not power off
or reboot after panic (i.e. CONFIG_PANIC_TIMEOUT is set to 0) since OPAL
flushes the console buffer as part of its power down routines. Before this
patch, however, only partial output would be printed during the timeout wait.
This patch adds a new kmsg_dumper which gets called at panic time to ensure
panic output is not lost. It accomplishes this by calling OPAL_CONSOLE_FLUSH
in the OPAL API, and if that is not available, the pollers are called enough
times to (hopefully) completely flush the buffer.
The flushing mechanism will only affect output printed at and before the
kmsg_dump call in kernel/panic.c:panic(). As such, the "end Kernel panic"
message may still be truncated as follows:
>Call Trace:
>[c000000f1f603b00] [c0000000008e9458] dump_stack+0x90/0xbc (unreliable)
>[c000000f1f603b30] [c0000000008e7e78] panic+0xf8/0x2c4
>[c000000f1f603bc0] [c000000000be4860] mount_block_root+0x288/0x33c
>[c000000f1f603c80] [c000000000be4d14] prepare_namespace+0x1f4/0x254
>[c000000f1f603d00] [c000000000be43e8] kernel_init_freeable+0x318/0x350
>[c000000f1f603dc0] [c00000000000bd74] kernel_init+0x24/0x130
>[c000000f1f603e30] [c0000000000095b0] ret_from_kernel_thread+0x5c/0xac
>---[ end Kernel panic - not
This functionality is implemented as a kmsg_dumper as it seems to be the
most sensible way to introduce platform-specific functionality to the
panic function.
Signed-off-by: Russell Currey <ruscur@russell.cc>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch registers the following two new OPAL interfaces calls
for the platform LED subsystem. With the help of these new OPAL calls,
the kernel will be able to get or set the state of various individual
LEDs on the system at any given location code which is passed through
the LED specific device tree nodes.
(1) OPAL_LEDS_GET_INDICATOR opal_leds_get_ind
(2) OPAL_LEDS_SET_INDICATOR opal_leds_set_ind
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Acked-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Tested-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On non-recoverable MCE errors in kernel space, Linux kernel panics
and system reboots. On BMC based system opal-prd runs as a daemon
in the host. Hence, kernel crash may prevent opal-prd to detect and
analyze this MCE error. This may land us in a situation where the faulty
memory never gets de-configured and Linux would keep hitting same MCE error
again and again. If this happens in early stage of kernel initialization,
then Linux will keep crashing and rebooting in a loop.
This patch fixes this issue by invoking new opal_cec_reboot2() call with
reboot type OPAL_REBOOT_PLATFORM_ERROR to inform BMC/OCC about this
error, so that BMC can collect relevant data for error analysis and
decide what component to de-configure before rebooting.
This patch is dependent on OPAL patchset posted on skiboot mailing list
at https://lists.ozlabs.org/pipermail/skiboot/2015-July/001771.html that
introduces opal_cec_reboot2() opal call.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch adds support for OPAL EPOW (Environmental and Power Warnings)
and DPO (Delayed Power Off) events for the PowerNV platform. These events
are generated on FSP (Flexible Service Processor) based systems. EPOW
events are generated due to various critical system conditions that
require system shutdown. A few examples of these conditions are high
ambient temperature or system running on UPS power with low UPS battery.
DPO event is generated in response to admin initiated system shutdown
request. Upon receipt of EPOW and DPO events the host kernel invokes
orderly_poweroff() for performing graceful system shutdown.
Signed-off-by: Vipin K Parashar <vipin@linux.vnet.ibm.com>
Acked-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This change adds a char device to access the "PRD" (processor runtime
diagnostics) channel to OPAL firmware.
Includes contributions from Vaidyanathan Srinivasan, Neelesh Gupta &
Vishal Kulkarni.
Signed-off-by: Neelesh Gupta <neelegup@linux.vnet.ibm.com>
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Acked-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Whenever an interrupt is received for opal the linux kernel gets a
bitfield indicating certain events that have occurred and need handling
by the various device drivers. Currently this is handled using a
notifier interface where we call every device driver that has
registered to receive opal events.
This approach has several drawbacks. For example each driver has to do
its own checking to see if the event is relevant as well as event
masking. There is also no easy method of recording the number of times
we receive particular events.
This patch solves these issues by exposing opal events via the
standard interrupt APIs by adding a new interrupt chip and
domain. Drivers can then register for the appropriate events using
standard kernel calls such as irq_of_parse_and_map().
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Most of the OPAL subsystems are always compiled in for PowerNV and
many of them need to be initialised before or after other OPAL
subsystems. Rather than trying to control this ordering through
machine initcalls it is clearer and easier to control initialisation
order with explicit calls in opal_init.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Cc: Mahesh Jagannath Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Fastsleep is one of the idle state which cpuidle subsystem currently
uses on power8 machines. In this state L2 cache is brought down to a
threshold voltage. Therefore when the core is in fastsleep, the
communication between L2 and L3 needs to be fenced. But there is a bug
in the current power8 chips surrounding this fencing.
OPAL provides a workaround which precludes the possibility of hitting
this bug. But running with this workaround applied causes checkstop
if any correctable error in L2 cache directory is detected. Hence OPAL
also provides a way to undo the workaround.
In the existing implementation, workaround is applied by the last thread
of the core entering fastsleep and undone by the first thread waking up.
But this has a performance cost. These OPAL calls account for roughly
4000 cycles everytime the core has to enter or wakeup from fastsleep.
This patch introduces a sysfs attribute (fastsleep_workaround_applyonce)
to choose the behavior of this workaround.
By default, fastsleep_workaround_applyonce = 0. In this case, workaround
is applied/undone everytime the core enters/exits fastsleep.
fastsleep_workaround_applyonce = 1. In this case the workaround is
applied once on all the cores and never undone. This can be triggered by
echo 1 > /sys/devices/system/cpu/fastsleep_workaround_applyonce
For simplicity this attribute can be modified only once. Implying, once
fastsleep_workaround_applyonce is changed to 1, it cannot be reverted
to the default state.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This change adds the OPAL interface definitions to allow Linux to read,
write and erase from system flash devices. We register platform devices
for the flash devices exported by firmware.
We clash with the existing opal_flash_init function, which is really for
the FSP flash update functionality, so we rename that initcall to
opal_flash_update_init().
A future change will add an mtd driver that uses this interface.
Changes from Joel Stanley and Jeremy Kerr.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Joel Stanley <joel@jms.id.au>
Acked-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
OPAL has its own list of return codes. The patch provides a translation
of such codes in errnos for the opal_sensor_read call, and possibly
others if needed.
Signed-off-by: Cédric Le Goater <clg@fr.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Provide an unregister interface for the opal message notifiers
to be called when not needed like during driver unload/remove.
Signed-off-by: Neelesh Gupta <neelegup@linux.vnet.ibm.com>
Reviewed-by: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This commit gets opal-api.h to mostly match the version in Skiboot as of
commit ea7d806ab0ba.
The exceptions are things which are not (currently) used in Linux.
Most of this is just whitespace and a few things moving around. I think
the diff is readable.
Also OpalMessageType became opal_msg_type, requiring a change in the
Linux code.
Finally Skiboot and Linux disagree on CAPI vs CXL, because CAPI means
something else in Linux. To handle that we just point the Linux wrapper,
which is named "cxl" to the OPAL token OPAL_PCI_SET_PHB_CAPI_MODE.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Stewart Smith <stewart@linux.vnet.ibm.com>
We'd like to get to the stage where the OPAL API is defined in a header
that is identical between Linux and Skiboot.
As step one, split the bits that actually define the API into
opal-api.h. The Linux specific parts stay in opal.h.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Stewart Smith <stewart@linux.vnet.ibm.com>
Register a notifier for a OPAL message indicating that the machine
should prepare itself for a graceful power off.
OPAL will tell us if the power off is a reboot or shutdown, but for now
we perform the same orderly_poweroff action.
Signed-off-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Turning snoops on is the last step in CAPP recovery. Sapphire is expected to
have reinitialized the PHB and done the previous recovery steps.
Add mode argument to opal call to do this. Driver can turn snoops off although
it does not currently.
Signed-off-by: Ryan Grimm <grimm@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Winkle is a deep idle state supported in power8 chips. A core enters
winkle when all the threads of the core enter winkle. In this state
power supply to the entire chiplet i.e core, private L2 and private L3
is turned off. As a result it gives higher powersavings compared to
sleep.
But entering winkle results in a total hypervisor state loss. Hence the
hypervisor context has to be preserved before entering winkle and
restored upon wake up.
Power-on Reset Engine (PORE) is a dedicated engine which is responsible
for powering on the chiplet during wake up. It can be programmed to
restore the register contests of a few specific registers. This patch
uses PORE to restore register state wherever possible and uses stack to
save and restore rest of the necessary registers.
With hypervisor state restore things fall under three categories-
per-core state, per-subcore state and per-thread state. To manage this,
extend the infrastructure introduced for sleep. Mainly we add a paca
variable subcore_sibling_mask. Using this and the core_idle_state we can
distingush first thread in core and subcore.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Deep idle states like sleep and winkle are per core idle states. A core
enters these states only when all the threads enter either the
particular idle state or a deeper one. There are tasks like fastsleep
hardware bug workaround and hypervisor core state save which have to be
done only by the last thread of the core entering deep idle state and
similarly tasks like timebase resync, hypervisor core register restore
that have to be done only by the first thread waking up from these
state.
The current idle state management does not have a way to distinguish the
first/last thread of the core waking/entering idle states. Tasks like
timebase resync are done for all the threads. This is not only is
suboptimal, but can cause functionality issues when subcores and kvm is
involved.
This patch adds the necessary infrastructure to track idle states of
threads in a per-core structure. It uses this info to perform tasks like
fastsleep workaround and timebase resync only once per core.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Originally-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The secondary threads should enter deep idle states so as to gain maximum
powersavings when the entire core is offline. To do so the offline path
must be made aware of the available deepest idle state. Hence probe the
device tree for the possible idle states in powernv core code and
expose the deepest idle state through flags.
Since the device tree is probed by the cpuidle driver as well, move
the parameters required to discover the idle states into an appropriate
common place to both the driver and the powernv core code.
Another point is that fastsleep idle state may require workarounds in
the kernel to function properly. This workaround is introduced in the
subsequent patches. However neither the cpuidle driver or the hotplug
path need be bothered about this workaround.
They will be taken care of by the core powernv code.
Originally-by: Srivatsa S. Bhat <srivatsa@mit.edu>
Signed-off-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The patch exposes the available i2c busses on the PowerNV platform
to the kernel and implements the bus driver to support i2c and
smbus commands.
The driver uses the platform device infrastructure to probe the busses
on the platform and registers them with the i2c driver framework.
Signed-off-by: Neelesh Gupta <neelegup@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Wolfram Sang <wsa@the-dreams.de> (I2C part, excluding the bindings)
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Cleanup OpalMCE_* definitions/declarations and other related code which
is not used anymore.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Benjamin Herrrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch implements the OPAL rtc driver that binds with the rtc
driver subsystem. The driver uses the platform device infrastructure
to probe the rtc device and register it to rtc class framework. The
'wakeup' is supported depending upon the property 'has-tpo' present
in the OF node. It provides a way to load the generic rtc driver in
in the absence of an OPAL driver.
The patch also moves the existing OPAL rtc get/set time interfaces to the
new driver and exposes the necessary OPAL calls using EXPORT_SYMBOL_GPL.
Test results:
-------------
Host:
[root@tul169p1 ~]# ls -l /sys/class/rtc/
total 0
lrwxrwxrwx 1 root root 0 Oct 14 03:07 rtc0 -> ../../devices/opal-rtc/rtc/rtc0
[root@tul169p1 ~]# cat /sys/devices/opal-rtc/rtc/rtc0/time
08:10:07
[root@tul169p1 ~]# echo `date '+%s' -d '+ 2 minutes'` > /sys/class/rtc/rtc0/wakealarm
[root@tul169p1 ~]# cat /sys/class/rtc/rtc0/wakealarm
1413274345
[root@tul169p1 ~]#
FSP:
$ smgr mfgState
standby
$ rtim timeofday
System time is valid: 2014/10/14 08:12:04.225115
$ smgr mfgState
ipling
$
CC: devicetree@vger.kernel.org
CC: tglx@linutronix.de
CC: rtc-linux@googlegroups.com
CC: a.zummo@towertech.it
Signed-off-by: Neelesh Gupta <neelegup@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Recent OPAL firmare adds a couple of functions to send and receive IPMI
messages:
https://github.com/open-power/skiboot/commit/b2a374da
This change updates the token list and wrappers to suit, and adds the
platform devices for any IPMI interfaces.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds the OPAL call to change a PHB into cxl mode.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The names of PCI reset scopes aren't sychronized with firmware.
The patch fixes it.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently there is no way to generically check if an OPAL call exists or not
from the host kernel.
This adds an OPAL call opal_check_token() which tells you if the given token is
present in OPAL or not.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PowerNV platform is capable of capturing host memory region when system
crashes (because of host/firmware). We have new OPAL API to register/
unregister memory region to be captured when system crashes.
This patch adds support for new API. Also during boot time we register
kernel log buffer and unregister before doing kexec.
Signed-off-by: Vasant Hegde <hegdevasant@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
When we hit the HMI in Linux, invoke opal call to handle/recover from HMI
errors in real mode and then in virtual mode during check_irq_replay()
invoke opal_poll_events()/opal_do_notifier() to retrieve HMI event from
OPAL and act accordingly.
Now that we are ready to handle HMI interrupt directly in linux, remove
the HMI interrupt registration with firmware.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Handle Hypervisor Maintenance Interrupt (HMI) in Linux. This patch implements
basic infrastructure to handle HMI in Linux host. The design is to invoke
opal handle hmi in real mode for recovery and set irq_pending when we hit HMI.
During check_irq_replay pull opal hmi event and print hmi info on console.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The patch synchronizes header file with firmware to have new OPAL
API opal_pci_eeh_freeze_set(), which is used to freeze the specified
PE in order to support "compound" PE.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch enables M64 aperatus for PHB3.
We already had platform hook (ppc_md.pcibios_window_alignment) to affect
the PCI resource assignment done in PCI core so that each PE's M32 resource
was built on basis of M32 segment size. Similarly, we're using that for
M64 assignment on basis of M64 segment size.
* We're using last M64 BAR to cover M64 aperatus, and it's shared by all
256 PEs.
* We don't support P7IOC yet. However, some function callbacks are added
to (struct pnv_phb) so that we can reuse them on P7IOC in future.
* PE, corresponding to PCI bus with large M64 BAR device attached, might
span multiple M64 segments. We introduce "compound" PE to cover the case.
The compound PE is a list of PEs and the master PE is used as before.
The slave PEs are just for MMIO isolation.
Signed-off-by: Guo Chao <yan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
It's followup of commit ddf0322a ("powerpc/powernv: Fix endianness
problems in EEH"). The patch helps to get non-endian-dependent
diag-data.
Cc: Guo Chao <yan@linux.vnet.ibm.com>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
In commit 27f4488872 "Add OPAL takeover from PowerVM" we added support
for "takeover" on OPAL v1 machines.
This was a mode of operation where we would boot under pHyp, and query
for the presence of OPAL. If detected we would then do a special
sequence to take over the machine, and the kernel would end up running
in hypervisor mode.
OPAL v1 was never a supported product, and was never shipped outside
IBM. As far as we know no one is still using it.
Newer versions of OPAL do not use the takeover mechanism. Although the
query for OPAL should be harmless on machines with newer OPAL, we have
seen a machine where it causes a crash in Open Firmware.
The code in early_init_devtree() to copy boot_command_line into cmd_line
was added in commit 817c21ad9a "Get kernel command line accross OPAL
takeover", and AFAIK is only used by takeover, so should also be
removed.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
EEH information fetched from OPAL need fix before using in LE environment.
To be included in sparse's endian check, declare them as __beXX and
access them by accessors.
Cc: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Guo Chao <yan@linux.vnet.ibm.com>
Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>