.name, .match_table and .owner are duplicated in both of_platform_driver
and device_driver. This patch is a removes the extra copies from struct
of_platform_driver and converts all users to the device_driver members.
This patch is a pretty mechanical change. The usage model doesn't change
and if any drivers have been missed, or if anything has been fixed up
incorrectly, then it will fail with a compile time error, and the fixup
will be trivial. This patch looks big and scary because it touches so
many files, but it should be pretty safe.
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Acked-by: Sean MacLennan <smaclennan@pikatech.com>
By moving dma_mask into pdev_archdata, and adding archdata to
struct of_device, it makes it possible to substitute of_device
with struct platform_device, which is a stepping stone to
removing the of_platform bus entirely.
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
The following structure elements duplicate the information in
'struct device.of_node' and so are being eliminated. This patch
makes all readers of these elements use device.of_node instead.
(struct of_device *)->node
(struct dev_archdata *)->prom_node (sparc)
(struct dev_archdata *)->of_node (powerpc & microblaze)
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
In struct device_node, the phandle is named 'linux_phandle' for PowerPC
and MicroBlaze, and 'node' for SPARC. There is no good reason for the
difference, it is just an artifact of the code diverging over a couple
of years. This patch renames both to simply .phandle.
Note: the .node also existed in PowerPC/MicroBlaze, but the only user
seems to be arch/powerpc/platforms/powermac/pfunc_core.c. It doesn't
look like the assignment between .linux_phandle and .node is
significantly different enough to warrant the separate code paths
unless ibm,phandle properties actually appear in Apple device trees.
I think it is safe to eliminate the old .node property and use
phandle everywhere.
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Acked-by: David S. Miller <davem@davemloft.net>
Tested-by: Wolfram Sang <w.sang@pengutronix.de>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The two versions are doing almost exactly the same thing. No need to
maintain them as separate files. This patch also has the side effect
of making the PCI device tree scanning code available to 32 bit powerpc
machines, but no board ports actually make use of this feature at this
point.
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Replace all DMA_32BIT_MASK macro with DMA_BIT_MASK(32)
Signed-off-by: Yang Hongyang<yanghy@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is dma_mask in of_device upon of_platform_device_create()
but we don't actually set coherent_dma_mask. This may cause weird
behavior of USB subsystem using of_device USB host drivers.
Signed-off-by: Vitaly Bordug <vitb@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This splits cell io-workaround code into spider-pci dependent code and
a generic part, and also moves io-workarounds initialization into
cell_setup_phb.
Signed-off-by: Kou Ishizaki <kou.ishizaki@toshiba.co.jp>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Similar to of_find_compatible_node(), of_find_matching_node() and
for_each_matching_node() allow you to iterate over the device tree
looking for specific nodes, except that they take of_device_id
tables instead of strings.
This also moves of_match_node() from driver/of/device.c to
driver/of/base.c to colocate it with the of_find_matching_node which
depends on it.
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This will allow us to declare const all the statically declared arrrays
of these.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Also use of_unregister_driver to implement of_unregister_platform_driver.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Extract generic of_device allocation code from of_platform_device_create()
and move it into of_device.[ch], called of_device_alloc(). Also, there's now
of_device_free() which puts the device node.
This way, bus drivers that build on of_platform (like ibmebus will) can
build upon this code instead of reinventing the wheel.
Signed-off-by: Joachim Fenkes <fenkes@de.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The name field of of_platform_driver is just copied into the included
device_driver. By not overriding an already initialised device_driver
name, we can convert the drivers over time to stop using the
of_platform_driver name.
Also we were not copying the owner field from of_platform_driver, so do
the same with it.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
and populate it with the common parts from PowerPC and Sparc[64].
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Paul Mackerras <paulus@samba.org>
Acked-by: David S. Miller <davem@davemloft.net>
Transform some calls to kmalloc/memset to a single kzalloc (or kcalloc).
Here is a short excerpt of the semantic patch performing
this transformation:
@@
type T2;
expression x;
identifier f,fld;
expression E;
expression E1,E2;
expression e1,e2,e3,y;
statement S;
@@
x =
- kmalloc
+ kzalloc
(E1,E2)
... when != \(x->fld=E;\|y=f(...,x,...);\|f(...,x,...);\|x=E;\|while(...) S\|for(e1;e2;e3) S\)
- memset((T2)x,0,E1);
@@
expression E1,E2,E3;
@@
- kzalloc(E1 * E2,E3)
+ kcalloc(E1,E2,E3)
[akpm@linux-foundation.org: get kcalloc args the right way around]
Signed-off-by: Yoann Padioleau <padator@wanadoo.fr>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Acked-by: Russell King <rmk@arm.linux.org.uk>
Cc: Bryan Wu <bryan.wu@analog.com>
Acked-by: Jiri Slaby <jirislaby@gmail.com>
Cc: Dave Airlie <airlied@linux.ie>
Acked-by: Roland Dreier <rolandd@cisco.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Acked-by: Dmitry Torokhov <dtor@mail.ru>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Mauro Carvalho Chehab <mchehab@infradead.org>
Acked-by: Pierre Ossman <drzeus-list@drzeus.cx>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Greg KH <greg@kroah.com>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: "Antonino A. Daplas" <adaplas@pol.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This rewrites pretty much from scratch the handling of MMIO and PIO
space allocations on powerpc64. The main goals are:
- Get rid of imalloc and use more common code where possible
- Simplify the current mess so that PIO space is allocated and
mapped in a single place for PCI bridges
- Handle allocation constraints of PIO for all bridges including
hot plugged ones within the 2GB space reserved for IO ports,
so that devices on hotplugged busses will now work with drivers
that assume IO ports fit in an int.
- Cleanup and separate tracking of the ISA space in the reserved
low 64K of IO space. No ISA -> Nothing mapped there.
I booted a cell blade with IDE on PIO and MMIO and a dual G5 so
far, that's it :-)
With this patch, all allocations are done using the code in
mm/vmalloc.c, though we use the low level __get_vm_area with
explicit start/stop constraints in order to manage separate
areas for vmalloc/vmap, ioremap, and PCI IOs.
This greatly simplifies a lot of things, as you can see in the
diffstat of that patch :-)
A new pair of functions pcibios_map/unmap_io_space() now replace
all of the previous code that used to manipulate PCI IOs space.
The allocation is done at mapping time, which is now called from
scan_phb's, just before the devices are probed (instead of after,
which is by itself a bug fix). The only other caller is the PCI
hotplug code for hot adding PCI-PCI bridges (slots).
imalloc is gone, as is the "sub-allocation" thing, but I do beleive
that hotplug should still work in the sense that the space allocation
is always done by the PHB, but if you unmap a child bus of this PHB
(which seems to be possible), then the code should properly tear
down all the HPTE mappings for that area of the PHB allocated IO space.
I now always reserve the first 64K of IO space for the bridge with
the ISA bus on it. I have moved the code for tracking ISA in a separate
file which should also make it smarter if we ever are capable of
hot unplugging or re-plugging an ISA bridge.
This should have a side effect on platforms like powermac where VGA IOs
will no longer work. This is done on purpose though as they would have
worked semi-randomly before. The idea at this point is to isolate drivers
that might need to access those and fix them by providing a proper
function to obtain an offset to the legacy IOs of a given bus.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
We had a problem on a system with only dynamically allocated
PCI buses (using of_pci_phb_driver) in combination with libata.
This setup ended up having no "primary" phb, which means
that pci_io_base never got initialized and all IO port
numbers are 64 bit numbers, which is larger than the
PIO_MASK limit.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This changes the way of_platform_pci creates PCI host bridges such
that it uses request_phb_iospace() for mapping the IO ports, instead
of using the dynamic hotplug stuff. That guarantees the IO space
stays within the 2GB limit and thus doesn't break half of the legacy
drivers around.
Fixes a couple of warnings due to missing IO space while at it.
This patch is a temporary workaround for 2.6.22 before a more complete
rewrite of IO mappings is merged in 2.6.23
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds support for early serial debugging via the built in
port on IBM/AMCC PowerPC 44x CPUs. It uses a bolted TLB entry in
address space 1 for the UART's mapping, allowing robust debugging both
before and after the initialization of the MMU.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
arch/powerpc/kernel/of_platform.c:479: error: unknown field `multithread_probe' specified in initializer
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Adding this handler allow userspace to properly handle the module
autoloading. The generation of the uevent itself is now common to
all bus using of_device, so not much code here.
Signed-off-by: Sylvain Munaut <tnt@246tNt.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch add scanning of ebc bus to of_platform, which is needed
to recognize devices located on that bus.
Signed-off-by: Christian Krafft <krafft@de.ibm.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
of_platform_make_bus_id(): Kill a compiler warning which is a real
bug on PPC64 by changing `magic' to `int'.
Signed-off-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Devices with no "reg" nor "dcr-reg" property are given a bus_id which
is the node name alone. This means that if more than one such device
with the same names are present in the system, sysfs will have
collisions when creating the symlinks and will fail registering the
devices.
This works around that problem by assigning successive numbers to such
devices.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
When enabled in Kconfig, it will pick up any of_platform_device
matching it's match list (currently type "pci", "pcix", "pcie",
or "ht" and setup a PHB for it.
Platform must provide a ppc_md.pci_setup_phb() for it to work
(for doing the necessary initialisations specific to a given PHB
like setting up the config space ops).
It's currently only available on 64 bits as the 32 bits PCI code
can't quite cope with it in it's current form. I will fix that
later.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch completely refactors DMA operations for 64 bits powerpc. 32 bits
is untouched for now.
We use the new dev_archdata structure to add the dma operations pointer
and associated data to struct device. While at it, we also add the OF node
pointer and numa node. In the future, we might want to look into merging
that with pci_dn as well.
The old vio, pci-iommu and pci-direct DMA ops are gone. They are now replaced
by a set of generic iommu and direct DMA ops (non PCI specific) that can be
used by bus types. The toplevel implementation is now inline.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This patch first splits of_device.c and of_platform.c, the later containing
the bits relative to of_platform_device's. On the "breaks" side of things,
drivers uisng of_platform_device(s) need to include asm/of_platform.h now
and of_(un)register_driver is now of_(un)register_platform_driver.
In addition to a few utility functions to locate of_platform_device(s),
the main new addition is of_platform_bus_probe() which allows the platform
code to trigger an automatic creation of of_platform_devices for a whole
tree of devices.
The function acts based on the type of the various "parent" devices encountered
from a provided root, using either a default known list of bus types that can be
"probed" or a passed-in list. It will only register devices on busses matching
that list, which mean that typically, it will not register PCI devices, as
expected (since they will be picked up by the PCI layer).
This will be used by Cell platforms using 4xx-type IOs in the Axon bridge
and can be used by any embedded-type device as well.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>