Convert #MC to IDTENTRY_MCE:
- Implement the C entry points with DEFINE_IDTENTRY_MCE
- Emit the ASM stub with DECLARE_IDTENTRY_MCE
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the error code from *machine_check_vector() as
it is always 0 and not used by any of the functions
it can point to. Fixup all the functions as well.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.334980426@linutronix.de
When a nested VM with a VMX-preemption timer is migrated, verify that the
nested VM and its parent VM observe the VMX-preemption timer exit close to
the original expiration deadline.
Signed-off-by: Makarand Sonare <makarandsonare@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200526215107.205814-3-makarandsonare@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add new field to hold preemption timer expiration deadline
appended to struct kvm_vmx_nested_state_hdr. This is to prevent
the first VM-Enter after migration from incorrectly restarting the timer
with the full timer value instead of partially decayed timer value.
KVM_SET_NESTED_STATE restarts timer using migrated state regardless
of whether L1 sets VM_EXIT_SAVE_VMX_PREEMPTION_TIMER.
Fixes: cf8b84f48a ("kvm: nVMX: Prepare for checkpointing L2 state")
Signed-off-by: Peter Shier <pshier@google.com>
Signed-off-by: Makarand Sonare <makarandsonare@google.com>
Message-Id: <20200526215107.205814-2-makarandsonare@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel CPUs have a new alternative MSR range (starting from MSR_IA32_PMC0)
for GP counters that allows writing the full counter width. Enable this
range from a new capability bit (IA32_PERF_CAPABILITIES.FW_WRITE[bit 13]).
The guest would query CPUID to get the counter width, and sign extends
the counter values as needed. The traditional MSRs always limit to 32bit,
even though the counter internally is larger (48 or 57 bits).
When the new capability is set, use the alternative range which do not
have these restrictions. This lowers the overhead of perf stat slightly
because it has to do less interrupts to accumulate the counter value.
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20200529074347.124619-3-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change kvm_pmu_get_msr() to get the msr_data struct, as the host_initiated
field from the struct could be used by get_msr. This also makes this API
consistent with kvm_pmu_set_msr. No functional changes.
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Message-Id: <20200529074347.124619-2-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, APF mechanism relies on the #PF abuse where the token is being
passed through CR2. If we switch to using interrupts to deliver page-ready
notifications we need a different way to pass the data. Extent the existing
'struct kvm_vcpu_pv_apf_data' with token information for page-ready
notifications.
While on it, rename 'reason' to 'flags'. This doesn't change the semantics
as we only have reasons '1' and '2' and these can be treated as bit flags
but KVM_PV_REASON_PAGE_READY is going away with interrupt based delivery
making 'reason' name misleading.
The newly introduced apf_put_user_ready() temporary puts both flags and
token information, this will be changed to put token only when we switch
to interrupt based notifications.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200525144125.143875-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Message-Id: <20200507185618.GA14831@embeddedor>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to VMX, the state that is captured through the currently available
IOCTLs is a mix of L1 and L2 state, dependent on whether the L2 guest was
running at the moment when the process was interrupted to save its state.
In particular, the SVM-specific state for nested virtualization includes
the L1 saved state (including the interrupt flag), the cached L2 controls,
and the GIF.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_load_mmu_pgd is delaying the write of GUEST_CR3 to prepare_vmcs02 as
an optimization, but this is only correct before the nested vmentry.
If userspace is modifying CR3 with KVM_SET_SREGS after the VM has
already been put in guest mode, the value of CR3 will not be updated.
Remove the optimization, which almost never triggers anyway.
Fixes: 04f11ef458 ("KVM: nVMX: Always write vmcs02.GUEST_CR3 during nested VM-Enter")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case an interrupt arrives after nested.check_events but before the
call to kvm_cpu_has_injectable_intr, we could end up enabling the interrupt
window even if the interrupt is actually going to be a vmexit. This is
useless rather than harmful, but it really complicates reasoning about
SVM's handling of the VINTR intercept. We'd like to never bother with
the VINTR intercept if V_INTR_MASKING=1 && INTERCEPT_INTR=1, because in
that case there is no interrupt window and we can just exit the nested
guest whenever we want.
This patch moves the opening of the interrupt window inside
inject_pending_event. This consolidates the check for pending
interrupt/NMI/SMI in one place, and makes KVM's usage of immediate
exits more consistent, extending it beyond just nested virtualization.
There are two functional changes here. They only affect corner cases,
but overall they simplify the inject_pending_event.
- re-injection of still-pending events will also use req_immediate_exit
instead of using interrupt-window intercepts. This should have no impact
on performance on Intel since it simply replaces an interrupt-window
or NMI-window exit for a preemption-timer exit. On AMD, which has no
equivalent of the preemption time, it may incur some overhead but an
actual effect on performance should only be visible in pathological cases.
- kvm_arch_interrupt_allowed and kvm_vcpu_has_events will return true
if an interrupt, NMI or SMI is blocked by nested_run_pending. This
makes sense because entering the VM will allow it to make progress
and deliver the event.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The second "/* fall through */" in rmode_exception() makes code harder to
read. Replace it with "return" to indicate they are different cases, only
the #DB and #BP check vcpu->guest_debug, while others don't care. And this
also improves the readability.
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Message-Id: <1582080348-20827-1-git-send-email-linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Take a u32 for the index in has_emulated_msr() to match hardware, which
treats MSR indices as unsigned 32-bit values. Functionally, taking a
signed int doesn't cause problems with the current code base, but could
theoretically cause problems with 32-bit KVM, e.g. if the index were
checked via a less-than statement, which would evaluate incorrectly for
MSR indices with bit 31 set.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200218234012.7110-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We can simply look at bits 52-53 to identify MMIO entries in KVM's page
tables. Therefore, there is no need to pass a mask to kvm_mmu_set_mmio_spte_mask.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even though we might not allow the guest to use WAITPKG's new
instructions, we should tell KVM that the feature is supported by the
host CPU.
Note that vmx_waitpkg_supported checks that WAITPKG _can_ be set in
secondary execution controls as specified by VMX capability MSR, rather
that we actually enable it for a guest.
Cc: stable@vger.kernel.org
Fixes: e69e72faa3 ("KVM: x86: Add support for user wait instructions")
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20200523161455.3940-2-mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hrtimer used to emulate the VMX-preemption timer must be pinned to
the same logical processor as the vCPU thread to be interrupted if we
want to have any hope of adhering to the architectural specification
of the VMX-preemption timer. Even with this change, the emulated
VMX-preemption timer VM-exit occasionally arrives too late.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20200508203643.85477-4-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare for migration of this hrtimer, by changing it from relative to
absolute. (I couldn't get migration to work with a relative timer.)
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20200508203643.85477-3-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The PINNED bit is ignored by hrtimer_init. It is only considered when
starting the timer.
When the hrtimer isn't pinned to the same logical processor as the
vCPU thread to be interrupted, the emulated VMX-preemption timer
often fails to adhere to the architectural specification.
Fixes: f15a75eedc ("KVM: nVMX: make emulated nested preemption timer pinned")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20200508203643.85477-2-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove a 'struct kvm_x86_ops' param that got left behind when the nested
ops were moved to their own struct.
Fixes: 33b2217245 ("KVM: x86: move nested-related kvm_x86_ops to a separate struct")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200506204653.14683-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch implements a fastpath for the preemption timer vmexit. The vmexit
can be handled quickly so it can be performed with interrupts off and going
back directly to the guest.
Testing on SKX Server.
cyclictest in guest(w/o mwait exposed, adaptive advance lapic timer is default -1):
5540.5ns -> 4602ns 17%
kvm-unit-test/vmexit.flat:
w/o avanced timer:
tscdeadline_immed: 3028.5 -> 2494.75 17.6%
tscdeadline: 5765.7 -> 5285 8.3%
w/ adaptive advance timer default -1:
tscdeadline_immed: 3123.75 -> 2583 17.3%
tscdeadline: 4663.75 -> 4537 2.7%
Tested-by: Haiwei Li <lihaiwei@tencent.com>
Cc: Haiwei Li <lihaiwei@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1588055009-12677-8-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the ad hoc test in vmx_set_hv_timer with a test in the caller,
start_hv_timer. This test is not Intel-specific and would be duplicated
when introducing the fast path for the TSC deadline MSR.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
While optimizing posted-interrupt delivery especially for the timer
fastpath scenario, I measured kvm_x86_ops.deliver_posted_interrupt()
to introduce substantial latency because the processor has to perform
all vmentry tasks, ack the posted interrupt notification vector,
read the posted-interrupt descriptor etc.
This is not only slow, it is also unnecessary when delivering an
interrupt to the current CPU (as is the case for the LAPIC timer) because
PIR->IRR and IRR->RVI synchronization is already performed on vmentry
Therefore skip kvm_vcpu_trigger_posted_interrupt in this case, and
instead do vmx_sync_pir_to_irr() on the EXIT_FASTPATH_REENTER_GUEST
fastpath as well.
Tested-by: Haiwei Li <lihaiwei@tencent.com>
Cc: Haiwei Li <lihaiwei@tencent.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1588055009-12677-6-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Adds a fastpath_t typedef since enum lines are a bit long, and replace
EXIT_FASTPATH_SKIP_EMUL_INS with two new exit_fastpath_completion enum values.
- EXIT_FASTPATH_EXIT_HANDLED kvm will still go through it's full run loop,
but it would skip invoking the exit handler.
- EXIT_FASTPATH_REENTER_GUEST complete fastpath, guest can be re-entered
without invoking the exit handler or going
back to vcpu_run
Tested-by: Haiwei Li <lihaiwei@tencent.com>
Cc: Haiwei Li <lihaiwei@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1588055009-12677-4-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce generic fastpath handler to handle MSR fastpath, VMX-preemption
timer fastpath etc; move it after vmx_complete_interrupts() in order to
catch events delivered to the guest, and abort the fast path in later
patches. While at it, move the kvm_exit tracepoint so that it is printed
for fastpath vmexits as well.
There is no observed performance effect for the IPI fastpath after this patch.
Tested-by: Haiwei Li <lihaiwei@tencent.com>
Cc: Haiwei Li <lihaiwei@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <1588055009-12677-2-git-send-email-wanpengli@tencent.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't propagate GUEST_SYSENTER_* from vmcs02 to vmcs12 on nested VM-Exit
as the vmcs12 fields are updated in vmx_set_msr(), and writes to the
corresponding MSRs are always intercepted by KVM when running L2.
Dropping the propagation was intended to be done in the same commit that
added vmcs12 writes in vmx_set_msr()[1], but for reasons unknown was
only shuffled around[2][3].
[1] https://patchwork.kernel.org/patch/10933215
[2] https://patchwork.kernel.org/patch/10933215/#22682289
[3] https://lore.kernel.org/patchwork/patch/1088643
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200428231025.12766-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly truncate the data written to vmcs.SYSENTER_EIP/ESP on WRMSR
if the virtual CPU doesn't support 64-bit mode. The SYSENTER address
fields in the VMCS are natural width, i.e. bits 63:32 are dropped if the
CPU doesn't support Intel 64 architectures. This behavior is visible to
the guest after a VM-Exit/VM-Exit roundtrip, e.g. if the guest sets bits
63:32 in the actual MSR.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200428231025.12766-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Improve handle_external_interrupt_irqoff inline assembly in several ways:
- remove unneeded %c operand modifiers and "$" prefixes
- use %rsp instead of _ASM_SP, since we are in CONFIG_X86_64 part
- use $-16 immediate to align %rsp
- remove unneeded use of __ASM_SIZE macro
- define "ss" named operand only for X86_64
The patch introduces no functional changes.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Message-Id: <20200504155706.2516956-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
POP [mem] defaults to the word size, and the only legal non-default
size is 16 bits, e.g. a 32-bit POP will #UD in 64-bit mode and vice
versa, no need to use __ASM_SIZE macro to force operating mode.
Changes since v1:
- Fix commit message.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Message-Id: <20200427205035.1594232-1-ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace KVM's PT_PAGE_TABLE_LEVEL, PT_DIRECTORY_LEVEL and PT_PDPE_LEVEL
with the kernel's PG_LEVEL_4K, PG_LEVEL_2M and PG_LEVEL_1G. KVM's
enums are borderline impossible to remember and result in code that is
visually difficult to audit, e.g.
if (!enable_ept)
ept_lpage_level = 0;
else if (cpu_has_vmx_ept_1g_page())
ept_lpage_level = PT_PDPE_LEVEL;
else if (cpu_has_vmx_ept_2m_page())
ept_lpage_level = PT_DIRECTORY_LEVEL;
else
ept_lpage_level = PT_PAGE_TABLE_LEVEL;
versus
if (!enable_ept)
ept_lpage_level = 0;
else if (cpu_has_vmx_ept_1g_page())
ept_lpage_level = PG_LEVEL_1G;
else if (cpu_has_vmx_ept_2m_page())
ept_lpage_level = PG_LEVEL_2M;
else
ept_lpage_level = PG_LEVEL_4K;
No functional change intended.
Suggested-by: Barret Rhoden <brho@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200428005422.4235-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use an enum for passing around the failure code for a failed VM-Enter
that results in VM-Exit to provide a level of indirection from the final
resting place of the failure code, vmcs.EXIT_QUALIFICATION. The exit
qualification field is an unsigned long, e.g. passing around
'u32 exit_qual' throws up red flags as it suggests KVM may be dropping
bits when reporting errors to L1. This is a red herring because the
only defined failure codes are 0, 2, 3, and 4, i.e. don't come remotely
close to overflowing a u32.
Setting vmcs.EXIT_QUALIFICATION on entry failure is further complicated
by the MSR load list, which returns the (1-based) entry that failed, and
the number of MSRs to load is a 32-bit VMCS field. At first blush, it
would appear that overflowing a u32 is possible, but the number of MSRs
that can be loaded is hardcapped at 4096 (limited by MSR_IA32_VMX_MISC).
In other words, there are two completely disparate types of data that
eventually get stuffed into vmcs.EXIT_QUALIFICATION, neither of which is
an 'unsigned long' in nature. This was presumably the reasoning for
switching to 'u32' when the related code was refactored in commit
ca0bde28f2 ("kvm: nVMX: Split VMCS checks from nested_vmx_run()").
Using an enum for the failure code addresses the technically-possible-
but-will-never-happen scenario where Intel defines a failure code that
doesn't fit in a 32-bit integer. The enum variables and values will
either be automatically sized (gcc 5.4 behavior) or be subjected to some
combination of truncation. The former case will simply work, while the
latter will trigger a compile-time warning unless the compiler is being
particularly unhelpful.
Separating the failure code from the failed MSR entry allows for
disassociating both from vmcs.EXIT_QUALIFICATION, which avoids the
conundrum where KVM has to choose between 'u32 exit_qual' and tracking
values as 'unsigned long' that have no business being tracked as such.
To cement the split, set vmcs12->exit_qualification directly from the
entry error code or failed MSR index instead of bouncing through a local
variable.
Opportunistically rename the variables in load_vmcs12_host_state() and
vmx_set_nested_state() to call out that they're ignored, set exit_reason
on demand on nested VM-Enter failure, and add a comment in
nested_vmx_load_msr() to call out that returning 'i + 1' can't wrap.
No functional change intended.
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200511220529.11402-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Snapshot the TDP level now that it's invariant (SVM) or dependent only
on host capabilities and guest CPUID (VMX). This avoids having to call
kvm_x86_ops.get_tdp_level() when initializing a TDP MMU and/or
calculating the page role, and thus avoids the associated retpoline.
Drop the WARN in vmx_get_tdp_level() as updating CPUID while L2 is
active is legal, if dodgy.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-11-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the "core" TDP level handling from the nested EPT path to make
it clear that kvm_x86_ops.get_tdp_level() is used if and only if nested
EPT is not in use (kvm_init_shadow_ept_mmu() calculates the level from
the passed in vmcs12->eptp). Add a WARN_ON() to enforce that the
kvm_x86_ops hook is not called for nested EPT.
This sets the stage for snapshotting the non-"nested EPT" TDP page level
during kvm_cpuid_update() to avoid the retpoline associated with
kvm_x86_ops.get_tdp_level() when resetting the MMU, a relatively
frequent operation when running a nested guest.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-10-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move CR0 caching into the standard register caching mechanism in order
to take advantage of the availability checks provided by regs_avail.
This avoids multiple VMREADs in the (uncommon) case where kvm_read_cr0()
is called multiple times in a single VM-Exit, and more importantly
eliminates a kvm_x86_ops hook, saves a retpoline on SVM when reading
CR0, and squashes the confusing naming discrepancy of "cache_reg" vs.
"decache_cr0_guest_bits".
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move CR4 caching into the standard register caching mechanism in order
to take advantage of the availability checks provided by regs_avail.
This avoids multiple VMREADs and retpolines (when configured) during
nested VMX transitions as kvm_read_cr4_bits() is invoked multiple times
on each transition, e.g. when stuffing CR0 and CR3.
As an added bonus, this eliminates a kvm_x86_ops hook, saves a retpoline
on SVM when reading CR4, and squashes the confusing naming discrepancy
of "cache_reg" vs. "decache_cr4_guest_bits".
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-7-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unconditionally check the validity of the incoming CR3 during nested
VM-Enter/VM-Exit to avoid invoking kvm_read_cr3() in the common case
where the guest isn't using PAE paging. If vmcs.GUEST_CR3 hasn't yet
been cached (common case), kvm_read_cr3() will trigger a VMREAD. The
VMREAD (~30 cycles) alone is likely slower than nested_cr3_valid()
(~5 cycles if vcpu->arch.maxphyaddr gets a cache hit), and the poor
exchange only gets worse when retpolines are enabled as the call to
kvm_x86_ops.cache_reg() will incur a retpoline (60+ cycles).
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Save L1's TSC offset in 'struct kvm_vcpu_arch' and drop the kvm_x86_ops
hook read_l1_tsc_offset(). This avoids a retpoline (when configured)
when reading L1's effective TSC, which is done at least once on every
VM-Exit.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the Indirect Branch Prediction Barrier that is triggered on a VMCS
switch when temporarily loading vmcs02 to synchronize it to vmcs12, i.e.
give copy_vmcs02_to_vmcs12_rare() the same treatment as
vmx_switch_vmcs().
Make vmx_vcpu_load() static now that it's only referenced within vmx.c.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200506235850.22600-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the Indirect Branch Prediction Barrier that is triggered on a VMCS
switch when running with spectre_v2_user=on/auto if the switch is
between two VMCSes in the same guest, i.e. between vmcs01 and vmcs02.
The IBPB is intended to prevent one guest from attacking another, which
is unnecessary in the nested case as it's the same guest from KVM's
perspective.
This all but eliminates the overhead observed for nested VMX transitions
when running with CONFIG_RETPOLINE=y and spectre_v2_user=on/auto, which
can be significant, e.g. roughly 3x on current systems.
Reported-by: Alexander Graf <graf@amazon.com>
Cc: KarimAllah Raslan <karahmed@amazon.de>
Cc: stable@vger.kernel.org
Fixes: 15d4507152 ("KVM/x86: Add IBPB support")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200501163117.4655-1-sean.j.christopherson@intel.com>
[Invert direction of bool argument. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use vmx_get_intr_info() when grabbing the cached vmcs.INTR_INFO in
handle_exception_nmi() to ensure the cache isn't stale. Bypassing the
caching accessor doesn't cause any known issues as the cache is always
refreshed by handle_exception_nmi_irqoff(), but the whole point of
adding the proper caching mechanism was to avoid such dependencies.
Fixes: 8791585837 ("KVM: VMX: Cache vmcs.EXIT_INTR_INFO using arch avail_reg flags")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200427171837.22613-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM is not handling the case where EIP wraps around the 32-bit address
space (that is, outside long mode). This is needed both in vmx.c
and in emulate.c. SVM with NRIPS is okay, but it can still print
an error to dmesg due to integer overflow.
Reported-by: Nick Peterson <everdox@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an argument to interrupt_allowed and nmi_allowed, to checking if
interrupt injection is blocked. Use the hook to handle the case where
an interrupt arrives between check_nested_events() and the injection
logic. Drop the retry of check_nested_events() that hack-a-fixed the
same condition.
Blocking injection is also a bit of a hack, e.g. KVM should do exiting
and non-exiting interrupt processing in a single pass, but it's a more
precise hack. The old comment is also misleading, e.g. KVM_REQ_EVENT is
purely an optimization, setting it on every run loop (which KVM doesn't
do) should not affect functionality, only performance.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-13-sean.j.christopherson@intel.com>
[Extend to SVM, add SMI and NMI. Even though NMI and SMI cannot come
asynchronously right now, making the fix generic is easy and removes a
special case. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use vmx_get_rflags() instead of manually reading vmcs.GUEST_RFLAGS when
querying RFLAGS.IF so that multiple checks against interrupt blocking in
a single run loop only require a single VMREAD.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-14-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use vmx_interrupt_blocked() instead of bouncing through
vmx_interrupt_allowed() when handling edge cases in vmx_handle_exit().
The nested_run_pending check in vmx_interrupt_allowed() should never
evaluate true in the VM-Exit path.
Hoist the WARN in handle_invalid_guest_state() up to vmx_handle_exit()
to enforce the above assumption for the !enable_vnmi case, and to detect
any other potential bugs with nested VM-Enter.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-12-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check for an unblocked SMI in vmx_check_nested_events() so that pending
SMIs are correctly prioritized over IRQs and NMIs when the latter events
will trigger VM-Exit. This also fixes an issue where an SMI that was
marked pending while processing a nested VM-Enter wouldn't trigger an
immediate exit, i.e. would be incorrectly delayed until L2 happened to
take a VM-Exit.
Fixes: 64d6067057 ("KVM: x86: stubs for SMM support")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-10-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Short circuit vmx_check_nested_events() if an unblocked IRQ/NMI is
pending and needs to be injected into L2, priority between coincident
events is not dependent on exiting behavior.
Fixes: b6b8a1451f ("KVM: nVMX: Rework interception of IRQs and NMIs")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-9-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the architectural (non-KVM specific) interrupt/NMI blocking checks
to a separate helper so that they can be used in a future patch by
vmx_check_nested_events().
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Report NMIs as allowed when the vCPU is in L2 and L2 is being run with
Exit-on-NMI enabled, as NMIs are always unblocked from L1's perspective
in this case.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-7-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not hardcode is_smm so that all the architectural conditions for
blocking SMIs are listed in a single place. Well, in two places because
this introduces some code duplication between Intel and AMD.
This ensures that nested SVM obeys GIF in kvm_vcpu_has_events.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return an actual bool for kvm_x86_ops' {interrupt_nmi}_allowed() hook to
better reflect the return semantics, and to avoid creating an even
bigger mess when the related VMX code is refactored in upcoming patches.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a kvm_x86_ops hook to detect a nested pending "hypervisor timer" and
use it to effectively open a window for servicing the expired timer.
Like pending SMIs on VMX, opening a window simply means requesting an
immediate exit.
This fixes a bug where an expired VMX preemption timer (for L2) will be
delayed and/or lost if a pending exception is injected into L2. The
pending exception is rightly prioritized by vmx_check_nested_events()
and injected into L2, with the preemption timer left pending. Because
no window opened, L2 is free to run uninterrupted.
Fixes: f4124500c2 ("KVM: nVMX: Fully emulate preemption timer")
Reported-by: Jim Mattson <jmattson@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Peter Shier <pshier@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-3-sean.j.christopherson@intel.com>
[Check it in kvm_vcpu_has_events too, to ensure that the preemption
timer is serviced promptly even if the vCPU is halted and L1 is not
intercepting HLT. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>