Commit Graph

1625 Commits

Author SHA1 Message Date
Filipe Manana
888dd18339 btrfs: use the new bit BTRFS_FS_TREE_MOD_LOG_USERS at btrfs_free_tree_block()
Instead of exposing implementation details of the tree mod log to check
if there are active tree mod log users at btrfs_free_tree_block(), use
the new bit BTRFS_FS_TREE_MOD_LOG_USERS for fs_info->flags instead. This
way extent-tree.c does not need to known about any of the internals of
the tree mod log and avoids taking a lock unnecessarily as well.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:16 +02:00
Anand Jain
05947ae186 btrfs: unexport btrfs_extent_readonly() and make it static
btrfs_extent_readonly() is used by can_nocow_extent() in inode.c. So
move it from extent-tree.c to inode.c and declare it as static.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:14 +02:00
Filipe Manana
485df75554 btrfs: always pin deleted leaves when there are active tree mod log users
When freeing a tree block we may end up adding its extent back to the
free space cache/tree, as long as there are no more references for it,
it was created in the current transaction and writeback for it never
happened. This is generally fine, however when we have tree mod log
operations it can result in inconsistent versions of a btree after
unwinding extent buffers with the recorded tree mod log operations.

This is because:

* We only log operations for nodes (adding and removing key/pointers),
  for leaves we don't do anything;

* This means that we can log a MOD_LOG_KEY_REMOVE_WHILE_FREEING operation
  for a node that points to a leaf that was deleted;

* Before we apply the logged operation to unwind a node, we can have
  that leaf's extent allocated again, either as a node or as a leaf, and
  possibly for another btree. This is possible if the leaf was created in
  the current transaction and writeback for it never started, in which
  case btrfs_free_tree_block() returns its extent back to the free space
  cache/tree;

* Then, before applying the tree mod log operation, some task allocates
  the metadata extent just freed before, and uses it either as a leaf or
  as a node for some btree (can be the same or another one, it does not
  matter);

* After applying the MOD_LOG_KEY_REMOVE_WHILE_FREEING operation we now
  get the target node with an item pointing to the metadata extent that
  now has content different from what it had before the leaf was deleted.
  It might now belong to a different btree and be a node and not a leaf
  anymore.

  As a consequence, the results of searches after the unwinding can be
  unpredictable and produce unexpected results.

So make sure we pin extent buffers corresponding to leaves when there
are tree mod log users.

CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-03-16 20:32:22 +01:00
Naohiro Aota
40ab3be102 btrfs: zoned: extend zoned allocator to use dedicated tree-log block group
This is the 1/3 patch to enable tree log on zoned filesystems.

The tree-log feature does not work on a zoned filesystem as is. Blocks for
a tree-log tree are allocated mixed with other metadata blocks and btrfs
writes and syncs the tree-log blocks to devices at the time of fsync(),
which has a different timing than a global transaction commit. As a
result, both writing tree-log blocks and writing other metadata blocks
become non-sequential writes that zoned filesystems must avoid.

Introduce a dedicated block group for tree-log blocks, so that tree-log
blocks and other metadata blocks can be separate write streams.  As a
result, each write stream can now be written to devices separately.
"fs_info->treelog_bg" tracks the dedicated block group and assigns
"treelog_bg" on-demand on tree-log block allocation time.

This commit extends the zoned block allocator to use the block group.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:08 +01:00
Naohiro Aota
6143c23ccc btrfs: zoned: implement cloning for zoned device-replace
This is 2/4 patch to implement device replace for zoned filesystems.

In zoned mode, a block group must be either copied (from the source
device to the target device) or cloned (to both devices).

Implement the cloning part. If a block group targeted by an IO is marked
to copy, we should not clone the IO to the destination device, because
the block group is eventually copied by the replace process.

This commit also handles cloning of device reset.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:07 +01:00
Naohiro Aota
dcba6e48b5 btrfs: zoned: reset zones of unused block groups
We must reset the zones of a deleted unused block group to rewind the
zones' write pointers to the zones' start.

To do this, we can use the DISCARD_SYNC code to do the reset when the
filesystem is running on zoned devices.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:04 +01:00
Naohiro Aota
d3575156f6 btrfs: zoned: redirty released extent buffers
Tree manipulating operations like merging nodes often release
once-allocated tree nodes. Such nodes are cleaned so that pages in the
node are not uselessly written out. On zoned volumes, however, such
optimization blocks the following IOs as the cancellation of the write
out of the freed blocks breaks the sequential write sequence expected by
the device.

Introduce a list of clean and unwritten extent buffers that have been
released in a transaction. Redirty the buffers so that
btree_write_cache_pages() can send proper bios to the devices.

Besides it clears the entire content of the extent buffer not to confuse
raw block scanners e.g. 'btrfs check'. By clearing the content,
csum_dirty_buffer() complains about bytenr mismatch, so avoid the
checking and checksum using newly introduced buffer flag
EXTENT_BUFFER_NO_CHECK.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:04 +01:00
Naohiro Aota
2eda57089e btrfs: zoned: implement sequential extent allocation
Implement a sequential extent allocator for zoned filesystems. This
allocator only needs to check if there is enough space in the block group
after the allocation pointer to satisfy the extent allocation request.
Therefore the allocator never manages bitmaps or clusters. Also, add
assertions to the corresponding functions.

As zone append writing is used, it would be unnecessary to track the
allocation offset, as the allocator only needs to check available space.
But by tracking and returning the offset as an allocated region, we can
skip modification of ordered extents and checksum information when there
is no IO reordering.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:03 +01:00
Naohiro Aota
169e0da91a btrfs: zoned: track unusable bytes for zones
In a zoned filesystem a once written then freed region is not usable
until the underlying zone has been reset. So we need to distinguish such
unusable space from usable free space.

Therefore we need to introduce the "zone_unusable" field to the block
group structure, and "bytes_zone_unusable" to the space_info structure
to track the unusable space.

Pinned bytes are always reclaimed to the unusable space. But, when an
allocated region is returned before using e.g., the block group becomes
read-only between allocation time and reservation time, we can safely
return the region to the block group. For the situation, this commit
introduces "btrfs_add_free_space_unused". This behaves the same as
btrfs_add_free_space() on regular filesystem. On zoned filesystems, it
rewinds the allocation offset.

Because the read-only bytes tracks free but unusable bytes when the block
group is read-only, we need to migrate the zone_unusable bytes to
read-only bytes when a block group is marked read-only.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09 02:46:03 +01:00
Josef Bacik
b7774425e0 btrfs: remove bogus BUG_ON in alloc_reserved_tree_block
The fix 361048f586 ("Btrfs: fix full backref problem when inserting
shared block reference") added a delayed ref flushing at subvolume
creation time in order to avoid hitting this particular BUG_ON().

Before this fix, we were tripping the BUG_ON() by

1. Modify snapshot A, which creates blocks with a normal reference for
   snapshot A, as A is the owner of these blocks.  We now have delayed
   refs for these blocks.
2. Create a snapshot of A named B, which pushes references for the
   children blocks of the root node for the new root B, thus creating
   more delayed refs for newly allocated blocks.
3. A is modified, and because the metadata blocks can now be shared, it
   must push FULL_BACKREF references to the children of any block that A
   COWs down it's path to its target key.
4. Delayed refs are run.  Because these are newly allocated blocks, we
   have ->must_insert_reserved reserved set on the delayed ref head, we
   call into alloc_reserved_tree_block() to add the extent item, and
   then add our ref.  At the time of this fix, we were ordering
   FULL_BACKREF delayed ref operations first, so we'd go to add this
   reference and then BUG_ON() because we didn't have the FULL_BACKREF
   flag set.

The patch fixed this problem by making sure we ran the delayed refs
before we had the chance to modify A.  This meant that any *new* blocks
would have had their extent items created _before_ we would ever
actually COW down and generate FULL_BACKREF entries.  Thus the problem
went away.

However this BUG_ON() is actually completely bogus.  The existence of a
full backref doesn't necessarily mean that FULL_BACKREF must be set on
that block, it must only be set on the actual parent itself.  Consider
the example provided above.  If we COW down one path from A, any nodes
are going to have a FULL_BACKREF ref pushed down to _all_ of their
children, but not all of the children are going to have FULL_BACKREF
set.  It is completely valid to have an extent item with normal and full
backrefs without FULL_BACKREF actually set on the block itself.

As a final note, I have been testing with the patch (applied after this
one)

  btrfs: stop running all delayed refs during snapshot

which removed this flushing.  My test was a torture test which did a lot
of operations while snapshotting and deleting snapshots as well as
relocation, and I never tripped this BUG_ON().  This is actually because
at the time of 361048f586, we ordered SHARED keys _before_ normal
references, and thus they would get run first.  However currently they
are ordered _after_ normal references, so we'd do the initial creation
without having a shared reference, and thus not hit this BUG_ON(), which
explains why I didn't start hitting this problem during my testing with
my other patch applied.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:57 +01:00
Josef Bacik
61a56a992f btrfs: delayed refs pre-flushing should only run the heads we have
Previously our delayed ref running used the total number of items as the
items to run.  However we changed that to number of heads to run with
the delayed_refs_rsv, as generally we want to run all of the operations
for one bytenr.

But with btrfs_run_delayed_refs(trans, 0) we set our count to 2x the
number of items that we have.  This is generally fine, but if we have
some operation generation loads of delayed refs while we're doing this
pre-flushing in the transaction commit, we'll just spin forever doing
delayed refs.

Fix this to simply pick the number of delayed refs we currently have,
that way we do not end up doing a lot of extra work that's being
generated in other threads.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:56 +01:00
Josef Bacik
81e75ac74e btrfs: account for new extents being deleted in total_bytes_pinned
My recent patch set "A variety of lock contention fixes", found here

https://lore.kernel.org/linux-btrfs/cover.1608319304.git.josef@toxicpanda.com/
(Tracked in https://github.com/btrfs/linux/issues/86)

that reduce lock contention on the extent root by running delayed refs
less often resulted in a regression in generic/371.  This test
fallocate()'s the fs until it's full, deletes all the files, and then
tries to fallocate() until full again.

Before these patches we would run all of the delayed refs during
flushing, and then would commit the transaction because we had plenty of
pinned space to recover in order to allocate.  However my patches made
it so we weren't running the delayed refs as aggressively, which meant
that we appeared to have less pinned space when we were deciding to
commit the transaction.

We use the space_info->total_bytes_pinned to approximate how much space
we have pinned.  It's approximate because if we remove a reference to an
extent we may free it, but there may be more references to it than we
know of at that point, but we account it as pinned at the creation time,
and then it's properly accounted when the delayed ref runs.

The way we account for pinned space is if the
delayed_ref_head->total_ref_mod is < 0, because that is clearly a
freeing option.  However there is another case, and that is where
->total_ref_mod == 0 && ->must_insert_reserved == 1.

When we allocate a new extent, we have ->total_ref_mod == 1 and we have
->must_insert_reserved == 1.  This is used to indicate that it is a
brand new extent and will need to have its extent entry added before we
modify any references on the delayed ref head.  But if we subsequently
remove that extent reference, our ->total_ref_mod will be 0, and that
space will be pinned and freed.  Accounting for this case properly
allows for generic/371 to pass with my delayed refs patches applied.

It's important to note that this problem exists without the referenced
patches, it just was uncovered by them.

CC: stable@vger.kernel.org # 5.10
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:55 +01:00
Josef Bacik
2187374f35 btrfs: handle space_info::total_bytes_pinned inside the delayed ref itself
Currently we pass things around to figure out if we maybe freeing data
based on the state of the delayed refs head.  This makes the accounting
sort of confusing and hard to follow, as it's distinctly separate from
the delayed ref heads stuff, but also depends on it entirely.

Fix this by explicitly adjusting the space_info->total_bytes_pinned in
the delayed refs code.  We now have two places where we modify this
counter, once where we create the delayed and destroy the delayed refs,
and once when we pin and unpin the extents.  This means there is a
slight overlap between delayed refs and the pin/unpin mechanisms, but
this is simply used by the ENOSPC infrastructure to determine if we need
to commit the transaction, so there's no adverse affect from this, we
might simply commit thinking it will give us enough space when it might
not.

CC: stable@vger.kernel.org # 5.10
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-08 22:58:55 +01:00
Filipe Manana
9ad6d91f05 btrfs: fix log replay failure due to race with space cache rebuild
After a sudden power failure we may end up with a space cache on disk that
is not valid and needs to be rebuilt from scratch.

If that happens, during log replay when we attempt to pin an extent buffer
from a log tree, at btrfs_pin_extent_for_log_replay(), we do not wait for
the space cache to be rebuilt through the call to:

    btrfs_cache_block_group(cache, 1);

That is because that only waits for the task (work queue job) that loads
the space cache to change the cache state from BTRFS_CACHE_FAST to any
other value. That is ok when the space cache on disk exists and is valid,
but when the cache is not valid and needs to be rebuilt, it ends up
returning as soon as the cache state changes to BTRFS_CACHE_STARTED (done
at caching_thread()).

So this means that we can end up trying to unpin a range which is not yet
marked as free in the block group. This results in the call to
btrfs_remove_free_space() to return -EINVAL to
btrfs_pin_extent_for_log_replay(), which in turn makes the log replay fail
as well as mounting the filesystem. More specifically the -EINVAL comes
from free_space_cache.c:remove_from_bitmap(), because the requested range
is not marked as free space (ones in the bitmap), we have the following
condition triggered:

static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
(...)
       if (ret < 0 || search_start != *offset)
            return -EINVAL;
(...)

It's the "search_start != *offset" that results in the condition being
evaluated to true.

When this happens we got the following in dmesg/syslog:

[72383.415114] BTRFS: device fsid 32b95b69-0ea9-496a-9f02-3f5a56dc9322 devid 1 transid 1432 /dev/sdb scanned by mount (3816007)
[72383.417837] BTRFS info (device sdb): disk space caching is enabled
[72383.418536] BTRFS info (device sdb): has skinny extents
[72383.423846] BTRFS info (device sdb): start tree-log replay
[72383.426416] BTRFS warning (device sdb): block group 30408704 has wrong amount of free space
[72383.427686] BTRFS warning (device sdb): failed to load free space cache for block group 30408704, rebuilding it now
[72383.454291] BTRFS: error (device sdb) in btrfs_recover_log_trees:6203: errno=-22 unknown (Failed to pin buffers while recovering log root tree.)
[72383.456725] BTRFS: error (device sdb) in btrfs_replay_log:2253: errno=-22 unknown (Failed to recover log tree)
[72383.460241] BTRFS error (device sdb): open_ctree failed

We also mark the range for the extent buffer in the excluded extents io
tree. That is fine when the space cache is valid on disk and we can load
it, in which case it causes no problems.

However, for the case where we need to rebuild the space cache, because it
is either invalid or it is missing, having the extent buffer range marked
in the excluded extents io tree leads to a -EINVAL failure from the call
to btrfs_remove_free_space(), resulting in the log replay and mount to
fail. This is because by having the range marked in the excluded extents
io tree, the caching thread ends up never adding the range of the extent
buffer as free space in the block group since the calls to
add_new_free_space(), called from load_extent_tree_free(), filter out any
ranges that are marked as excluded extents.

So fix this by making sure that during log replay we wait for the caching
task to finish completely when we need to rebuild a space cache, and also
drop the need to mark the extent buffer range in the excluded extents io
tree, as well as clearing ranges from that tree at
btrfs_finish_extent_commit().

This started to happen with some frequency on large filesystems having
block groups with a lot of fragmentation since the recent commit
e747853cae ("btrfs: load free space cache asynchronously"), but in
fact the issue has been there for years, it was just much less likely
to happen.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-25 18:44:53 +01:00
Josef Bacik
18d3bff411 btrfs: don't get an EINTR during drop_snapshot for reloc
This was partially fixed by f3e3d9cc35 ("btrfs: avoid possible signal
interruption of btrfs_drop_snapshot() on relocation tree"), however it
missed a spot when we restart a trans handle because we need to end the
transaction.  The fix is the same, simply use btrfs_join_transaction()
instead of btrfs_start_transaction() when deleting reloc roots.

Fixes: f3e3d9cc35 ("btrfs: avoid possible signal interruption of btrfs_drop_snapshot() on relocation tree")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-18 15:44:47 +01:00
ethanwu
9a66497156 btrfs: correctly calculate item size used when item key collision happens
Item key collision is allowed for some item types, like dir item and
inode refs, but the overall item size is limited by the nodesize.

item size(ins_len) passed from btrfs_insert_empty_items to
btrfs_search_slot already contains size of btrfs_item.

When btrfs_search_slot reaches leaf, we'll see if we need to split leaf.
The check incorrectly reports that split leaf is required, because
it treats the space required by the newly inserted item as
btrfs_item + item data. But in item key collision case, only item data
is actually needed, the newly inserted item could merge into the existing
one. No new btrfs_item will be inserted.

And split_leaf return EOVERFLOW from following code:

  if (extend && data_size + btrfs_item_size_nr(l, slot) +
      sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
      return -EOVERFLOW;

In most cases, when callers receive EOVERFLOW, they either return
this error or handle in different ways. For example, in normal dir item
creation the userspace will get errno EOVERFLOW; in inode ref case
INODE_EXTREF is used instead.

However, this is not the case for rename. To avoid the unrecoverable
situation in rename, btrfs_check_dir_item_collision is called in
early phase of rename. In this function, when item key collision is
detected leaf space is checked:

  data_size = sizeof(*di) + name_len;
  if (data_size + btrfs_item_size_nr(leaf, slot) +
      sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root->fs_info))

the sizeof(struct btrfs_item) + btrfs_item_size_nr(leaf, slot) here
refers to existing item size, the condition here correctly calculates
the needed size for collision case rather than the wrong case above.

The consequence of inconsistent condition check between
btrfs_check_dir_item_collision and btrfs_search_slot when item key
collision happens is that we might pass check here but fail
later at btrfs_search_slot. Rename fails and volume is forced readonly

  [436149.586170] ------------[ cut here ]------------
  [436149.586173] BTRFS: Transaction aborted (error -75)
  [436149.586196] WARNING: CPU: 0 PID: 16733 at fs/btrfs/inode.c:9870 btrfs_rename2+0x1938/0x1b70 [btrfs]
  [436149.586227] CPU: 0 PID: 16733 Comm: python Tainted: G      D           4.18.0-rc5+ #1
  [436149.586228] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/05/2016
  [436149.586238] RIP: 0010:btrfs_rename2+0x1938/0x1b70 [btrfs]
  [436149.586254] RSP: 0018:ffffa327043a7ce0 EFLAGS: 00010286
  [436149.586255] RAX: 0000000000000000 RBX: ffff8d8a17d13340 RCX: 0000000000000006
  [436149.586256] RDX: 0000000000000007 RSI: 0000000000000096 RDI: ffff8d8a7fc164b0
  [436149.586257] RBP: ffffa327043a7da0 R08: 0000000000000560 R09: 7265282064657472
  [436149.586258] R10: 0000000000000000 R11: 6361736e61725420 R12: ffff8d8a0d4c8b08
  [436149.586258] R13: ffff8d8a17d13340 R14: ffff8d8a33e0a540 R15: 00000000000001fe
  [436149.586260] FS:  00007fa313933740(0000) GS:ffff8d8a7fc00000(0000) knlGS:0000000000000000
  [436149.586261] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [436149.586262] CR2: 000055d8d9c9a720 CR3: 000000007aae0003 CR4: 00000000003606f0
  [436149.586295] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [436149.586296] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [436149.586296] Call Trace:
  [436149.586311]  vfs_rename+0x383/0x920
  [436149.586313]  ? vfs_rename+0x383/0x920
  [436149.586315]  do_renameat2+0x4ca/0x590
  [436149.586317]  __x64_sys_rename+0x20/0x30
  [436149.586324]  do_syscall_64+0x5a/0x120
  [436149.586330]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [436149.586332] RIP: 0033:0x7fa3133b1d37
  [436149.586348] RSP: 002b:00007fffd3e43908 EFLAGS: 00000246 ORIG_RAX: 0000000000000052
  [436149.586349] RAX: ffffffffffffffda RBX: 00007fa3133b1d30 RCX: 00007fa3133b1d37
  [436149.586350] RDX: 000055d8da06b5e0 RSI: 000055d8da225d60 RDI: 000055d8da2c4da0
  [436149.586351] RBP: 000055d8da2252f0 R08: 00007fa313782000 R09: 00000000000177e0
  [436149.586351] R10: 000055d8da010680 R11: 0000000000000246 R12: 00007fa313840b00

Thanks to Hans van Kranenburg for information about crc32 hash collision
tools, I was able to reproduce the dir item collision with following
python script.
https://github.com/wutzuchieh/misc_tools/blob/master/crc32_forge.py Run
it under a btrfs volume will trigger the abort transaction.  It simply
creates files and rename them to forged names that leads to
hash collision.

There are two ways to fix this. One is to simply revert the patch
878f2d2cb3 ("Btrfs: fix max dir item size calculation") to make the
condition consistent although that patch is correct about the size.

The other way is to handle the leaf space check correctly when
collision happens. I prefer the second one since it correct leaf
space check in collision case. This fix will not account
sizeof(struct btrfs_item) when the item already exists.
There are two places where ins_len doesn't contain
sizeof(struct btrfs_item), however.

  1. extent-tree.c: lookup_inline_extent_backref
  2. file-item.c: btrfs_csum_file_blocks

to make the logic of btrfs_search_slot more clear, we add a flag
search_for_extension in btrfs_path.

This flag indicates that ins_len passed to btrfs_search_slot doesn't
contain sizeof(struct btrfs_item). When key exists, btrfs_search_slot
will use the actual size needed to calculate the required leaf space.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: ethanwu <ethanwu@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-18 14:50:00 +01:00
Josef Bacik
e114c545bb btrfs: set the lockdep class for extent buffers on creation
Both Filipe and Fedora QA recently hit the following lockdep splat:

  WARNING: possible recursive locking detected
  5.10.0-0.rc1.20201028gited8780e3f2ec.57.fc34.x86_64 #1 Not tainted
  --------------------------------------------
  rsync/2610 is trying to acquire lock:
  ffff89617ed48f20 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140

  but task is already holding lock:
  ffff8961757b1130 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140

  other info that might help us debug this:
   Possible unsafe locking scenario:
	 CPU0
	 ----
    lock(&eb->lock);
    lock(&eb->lock);

   *** DEADLOCK ***
   May be due to missing lock nesting notation
  2 locks held by rsync/2610:
   #0: ffff896107212b90 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: walk_component+0x10c/0x190
   #1: ffff8961757b1130 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140

  stack backtrace:
  CPU: 1 PID: 2610 Comm: rsync Not tainted 5.10.0-0.rc1.20201028gited8780e3f2ec.57.fc34.x86_64 #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
  Call Trace:
   dump_stack+0x8b/0xb0
   __lock_acquire.cold+0x12d/0x2a4
   ? kvm_sched_clock_read+0x14/0x30
   ? sched_clock+0x5/0x10
   lock_acquire+0xc8/0x400
   ? btrfs_tree_read_lock_atomic+0x34/0x140
   ? read_block_for_search.isra.0+0xdd/0x320
   _raw_read_lock+0x3d/0xa0
   ? btrfs_tree_read_lock_atomic+0x34/0x140
   btrfs_tree_read_lock_atomic+0x34/0x140
   btrfs_search_slot+0x616/0x9a0
   btrfs_lookup_dir_item+0x6c/0xb0
   btrfs_lookup_dentry+0xa8/0x520
   ? lockdep_init_map_waits+0x4c/0x210
   btrfs_lookup+0xe/0x30
   __lookup_slow+0x10f/0x1e0
   walk_component+0x11b/0x190
   path_lookupat+0x72/0x1c0
   filename_lookup+0x97/0x180
   ? strncpy_from_user+0x96/0x1e0
   ? getname_flags.part.0+0x45/0x1a0
   vfs_statx+0x64/0x100
   ? lockdep_hardirqs_on_prepare+0xff/0x180
   ? _raw_spin_unlock_irqrestore+0x41/0x50
   __do_sys_newlstat+0x26/0x40
   ? lockdep_hardirqs_on_prepare+0xff/0x180
   ? syscall_enter_from_user_mode+0x27/0x80
   ? syscall_enter_from_user_mode+0x27/0x80
   do_syscall_64+0x33/0x40
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

I have also seen a report of lockdep complaining about the lock class
that was looked up being the same as the lock class on the lock we were
using, but I can't find the report.

These are problems that occur because we do not have the lockdep class
set on the extent buffer until _after_ we read the eb in properly.  This
is problematic for concurrent readers, because we will create the extent
buffer, lock it, and then attempt to read the extent buffer.

If a second thread comes in and tries to do a search down the same path
they'll get the above lockdep splat because the class isn't set properly
on the extent buffer.

There was a good reason for this, we generally didn't know the real
owner of the eb until we read it, specifically in refcounted roots.

However now all refcounted roots have the same class name, so we no
longer need to worry about this.  For non-refcounted trees we know
which root we're on based on the parent.

Fix this by setting the lockdep class on the eb at creation time instead
of read time.  This will fix the splat and the weirdness where the class
changes in the middle of locking the block.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:07 +01:00
Josef Bacik
3fbaf25817 btrfs: pass the owner_root and level to alloc_extent_buffer
Now that we've plumbed all of the callers to have the owner root and the
level, plumb it down into alloc_extent_buffer().

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:07 +01:00
Josef Bacik
1b7ec85ef4 btrfs: pass root owner to read_tree_block
In order to properly set the lockdep class of a newly allocated block we
need to know the owner of the block.  For non-refcounted trees this is
straightforward, we always know in advance what tree we're reading from.
For refcounted trees we don't necessarily know, however all refcounted
trees share the same lockdep class name, tree-<level>.

Fix all the callers of read_tree_block() to pass in the root objectid
we're using.  In places like relocation and backref we could probably
unconditionally use 0, but just in case use the root when we have it,
otherwise use 0 in the cases we don't have the root as it's going to be
a refcounted tree anyway.

This is a preparation patch for further changes.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:07 +01:00
Josef Bacik
bfb484d922 btrfs: cleanup extent buffer readahead
We're going to pass around more information when we allocate extent
buffers, in order to make that cleaner how we do readahead.  Most of the
callers have the parent node that we're getting our blockptr from, with
the sole exception of relocation which simply has the bytenr it wants to
read.

Add a helper that takes the current arguments that we need (bytenr and
gen), and add another helper for simply reading the slot out of a node.
In followup patches the helper that takes all the extra arguments will
be expanded, and the simpler helper won't need to have it's arguments
adjusted.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:05 +01:00
Josef Bacik
e747853cae btrfs: load free space cache asynchronously
While documenting the usage of the commit_root_sem, I noticed that we do
not actually take the commit_root_sem in the case of the free space
cache.  This is problematic because we're supposed to hold that sem
while we're reading the commit roots, which is what we do for the free
space cache.

The reason I did it inline when I originally wrote the code was because
there's the case of unpinning where we need to make sure that the free
space cache is loaded if we're going to use the free space cache.  But
we can accomplish the same thing by simply waiting for the cache to be
loaded.

Rework this code to load the free space cache asynchronously.  This
allows us to greatly cleanup the caching code because now it's all
shared by the various caching methods.  We also are now in a position to
have the commit_root semaphore held while we're loading the free space
cache.  And finally our modification of ->last_byte_to_unpin is removed
because it can be handled in the proper way on commit.

Some care must be taken when replaying the log, when we expect that the
free space cache will be read entirely before we start excluding space
to replay. This could lead to overwriting space during replay.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:03 +01:00
Josef Bacik
2ca08c56e8 btrfs: explicitly protect ->last_byte_to_unpin in unpin_extent_range
Currently unpin_extent_range happens in the transaction commit context,
so we are protected from ->last_byte_to_unpin changing while we're
unpinning, because any new transactions would have to wait for us to
complete before modifying ->last_byte_to_unpin.

However in the future we may want to change how this works, for instance
with async unpinning or other such TODO items.  To prepare for that
future explicitly protect ->last_byte_to_unpin with the commit_root_sem
so we are sure it won't change while we're doing our work.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:02 +01:00
Josef Bacik
27d56e62e4 btrfs: update last_byte_to_unpin in switch_commit_roots
While writing an explanation for the need of the commit_root_sem for
btrfs_prepare_extent_commit, I realized we have a slight hole that could
result in leaked space if we have to do the old style caching.  Consider
the following scenario

 commit root
 +----+----+----+----+----+----+----+
 |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
 +----+----+----+----+----+----+----+
 0    1    2    3    4    5    6    7

 new commit root
 +----+----+----+----+----+----+----+
 |    |    |    |\\\\|    |    |\\\\|
 +----+----+----+----+----+----+----+
 0    1    2    3    4    5    6    7

Prior to this patch, we run btrfs_prepare_extent_commit, which updates
the last_byte_to_unpin, and then we subsequently run
switch_commit_roots.  In this example lets assume that
caching_ctl->progress == 1 at btrfs_prepare_extent_commit() time, which
means that cache->last_byte_to_unpin == 1.  Then we go and do the
switch_commit_roots(), but in the meantime the caching thread has made
some more progress, because we drop the commit_root_sem and re-acquired
it.  Now caching_ctl->progress == 3.  We swap out the commit root and
carry on to unpin.

The race can happen like:

  1) The caching thread was running using the old commit root when it
     found the extent for [2, 3);

  2) Then it released the commit_root_sem because it was in the last
     item of a leaf and the semaphore was contended, and set ->progress
     to 3 (value of 'last'), as the last extent item in the current leaf
     was for the extent for range [2, 3);

  3) Next time it gets the commit_root_sem, will start using the new
     commit root and search for a key with offset 3, so it never finds
     the hole for [2, 3).

  So the caching thread never saw [2, 3) as free space in any of the
  commit roots, and by the time finish_extent_commit() was called for
  the range [0, 3), ->last_byte_to_unpin was 1, so it only returned the
  subrange [0, 1) to the free space cache, skipping [2, 3).

In the unpin code we have last_byte_to_unpin == 1, so we unpin [0,1),
but do not unpin [2,3).  However because caching_ctl->progress == 3 we
do not see the newly freed section of [2,3), and thus do not add it to
our free space cache.  This results in us missing a chunk of free space
in memory (on disk too, unless we have a power failure before writing
the free space cache to disk).

Fix this by making sure the ->last_byte_to_unpin is set at the same time
that we swap the commit roots, this ensures that we will always be
consistent.

CC: stable@vger.kernel.org # 5.8+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ update changelog with Filipe's review comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:02 +01:00
Josef Bacik
9076dbd5ee btrfs: do not shorten unpin len for caching block groups
While fixing up our ->last_byte_to_unpin locking I noticed that we will
shorten len based on ->last_byte_to_unpin if we're caching when we're
adding back the free space.  This is correct for the free space, as we
cannot unpin more than ->last_byte_to_unpin, however we use len to
adjust the ->bytes_pinned counters and such, which need to track the
actual pinned usage.  This could result in
WARN_ON(space_info->bytes_pinned) triggering at unmount time.

Fix this by using a local variable for the amount to add to free space
cache, and leave len untouched in this case.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:02 +01:00
Josef Bacik
b9729ce014 btrfs: locking: rip out path->leave_spinning
We no longer distinguish between blocking and spinning, so rip out all
this code.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:02 +01:00
Josef Bacik
ac5887c8e0 btrfs: locking: remove all the blocking helpers
Now that we're using a rw_semaphore we no longer need to indicate if a
lock is blocking or not, nor do we need to flip the entire path from
blocking to spinning.  Remove these helpers and all the places they are
called.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:01 +01:00
David Sterba
fe5ecbe818 btrfs: precalculate checksums per leaf once
btrfs_csum_bytes_to_leaves shows up in system profiles, which makes it a
candidate for optimizations. After the 64bit division has been replaced
by shift, there's still a calculation done each time the function is
called: checksums per leaf.

As this is a constant value for the entire filesystem lifetime, we
can calculate it once at mount time and reuse. This also allows to
reduce the division to 64bit/32bit as we know the constant will always
fit the 32bit type.

Replace the open-coded rounding up with a macro that internally handles
the 64bit division and as it's now a short function, make it static
inline (slight code increase, slight stack usage reduction).

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:58 +01:00
David Sterba
ab108d992b btrfs: use precalculated sectorsize_bits from fs_info
We do a lot of calculations where we divide or multiply by sectorsize.
We also know and make sure that sectorsize is a power of two, so this
means all divisions can be turned to shifts and avoid eg. expensive
u64/u32 divisions.

The type is u32 as it's more register friendly on x86_64 compared to u8
and the resulting assembly is smaller (movzbl vs movl).

There's also superblock s_blocksize_bits but it's usually one more
pointer dereference farther than fs_info.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:57 +01:00
David Sterba
c842268458 btrfs: add set/get accessors for root_item::drop_level
The drop_level member is used directly unlike all the other int types in
root_item. Add the definition and use it everywhere. The type is u8 so
there's no conversion necessary and the helpers are properly inlined,
this is for consistency.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:52 +01:00
Pujin Shi
cad69d1396 btrfs: tree-checker: fix incorrect printk format
This patch addresses a compile warning:

fs/btrfs/extent-tree.c: In function '__btrfs_free_extent':
fs/btrfs/extent-tree.c:3187:4: warning: format '%lu' expects argument of type 'long unsigned int', but argument 8 has type 'unsigned int' [-Wformat=]

Fixes: 1c2a07f598 ("btrfs: extent-tree: kill BUG_ON() in __btrfs_free_extent()")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Pujin Shi <shipujin.t@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-26 15:02:30 +01:00
Josef Bacik
9631e4cc1a btrfs: introduce BTRFS_NESTING_COW for cow'ing blocks
When we COW a block we are holding a lock on the original block, and
then we lock the new COW block.  Because our lockdep maps are based on
root + level, this will make lockdep complain.  We need a way to
indicate a subclass for locking the COW'ed block, so plumb through our
btrfs_lock_nesting from btrfs_cow_block down to the btrfs_init_buffer,
and then introduce BTRFS_NESTING_COW to be used for cow'ing blocks.

The reason I've added all this extra infrastructure is because there
will be need of different nesting classes in follow up patches.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:12:16 +02:00
Qu Wenruo
07cce5cf3b btrfs: extent-tree: kill the BUG_ON() in insert_inline_extent_backref()
[BUG]
With a crafted image, btrfs can panic at insert_inline_extent_backref():

  kernel BUG at fs/btrfs/extent-tree.c:1857!
  invalid opcode: 0000 [#1] SMP PTI
  CPU: 0 PID: 1117 Comm: btrfs-transacti Not tainted 5.0.0-rc8+ #9
  RIP: 0010:insert_inline_extent_backref+0xcc/0xe0
  RSP: 0018:ffffac4dc1287be8 EFLAGS: 00010293
  RAX: 0000000000000000 RBX: 0000000000000007 RCX: 0000000000000001
  RDX: 0000000000001000 RSI: 0000000000000000 RDI: 0000000000000000
  RBP: ffffac4dc1287c28 R08: ffffac4dc1287ab8 R09: ffffac4dc1287ac0
  R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
  R13: ffff8febef88a540 R14: ffff8febeaa7bc30 R15: 0000000000000000
  FS: 0000000000000000(0000) GS:ffff8febf7a00000(0000) knlGS:0000000000000000
  CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f663ace94c0 CR3: 0000000235698006 CR4: 00000000000206f0
  Call Trace:
  ? _cond_resched+0x1a/0x50
  __btrfs_inc_extent_ref.isra.64+0x7e/0x240
  ? btrfs_merge_delayed_refs+0xa5/0x330
  __btrfs_run_delayed_refs+0x653/0x1120
  btrfs_run_delayed_refs+0xdb/0x1b0
  btrfs_commit_transaction+0x52/0x950
  ? start_transaction+0x94/0x450
  transaction_kthread+0x163/0x190
  kthread+0x105/0x140
  ? btrfs_cleanup_transaction+0x560/0x560
  ? kthread_destroy_worker+0x50/0x50
  ret_from_fork+0x35/0x40
  Modules linked in:
  ---[ end trace 2ad8b3de903cf825 ]---

[CAUSE]
Due to extent tree corruption (still valid by itself, but bad cross
ref), we can allocate an extent which is still in extent tree.  The
offending tree block of that case is from csum tree.  The newly
allocated tree block is also for csum tree.

Then we will try to insert a tree block ref for the existing tree block
ref.

For a tree extent item, tree block can never be shared directly by the
same tree twice.  We have such BUG_ON() to prevent such problem, but
this is not a proper error handling.

[FIX]
Replace that BUG_ON() with proper error message and leaf dump for debug
build.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=202829
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:12:14 +02:00
Qu Wenruo
1c2a07f598 btrfs: extent-tree: kill BUG_ON() in __btrfs_free_extent()
__btrfs_free_extent() is doing two things:

1. Reduce the refs number of an extent backref
   Either it's an inline extent backref (inside EXTENT/METADATA item) or
   a keyed extent backref (SHARED_* item).
   We only need to locate that backref line, either reduce the number or
   remove the backref line completely.

2. Update the refs count in EXTENT/METADATA_ITEM

During step 1), we will try to locate the EXTENT/METADATA_ITEM without
triggering another btrfs_search_slot() as fast path.

Only when we fail to locate that item, we will trigger another
btrfs_search_slot() to get that EXTENT/METADATA_ITEM after we
updated/deleted the backref line.

And we have a lot of strict checks on things like refs_to_drop against
extent refs and special case checks for single ref extents.

There are 7 BUG_ON()s, although they're doing correct checks, they can
be triggered by crafted images.

This patch improves the function:

- Introduce two examples to show what __btrfs_free_extent() is doing
  One inline backref case and one keyed case.  Should cover most cases.

- Kill all BUG_ON()s with proper error message and optional leaf dump

- Add comment to show the overall flow

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=202819
[ The report triggers one BUG_ON() in __btrfs_free_extent() ]
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:12:14 +02:00
Josef Bacik
2732798c9b btrfs: call btrfs_try_granting_tickets when unpinning anything
When unpinning we were only calling btrfs_try_granting_tickets() if
global_rsv->space_info == space_info, which is problematic because we
use ticketing for SYSTEM chunks, and want to use it for DATA as well.
Fix this by moving this call outside of that if statement.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:06:51 +02:00
Qu Wenruo
437490fed3 btrfs: tracepoints: output proper root owner for trace_find_free_extent()
The current trace event always output result like this:

 find_free_extent: root=2(EXTENT_TREE) len=16384 empty_size=0 flags=4(METADATA)
 find_free_extent: root=2(EXTENT_TREE) len=16384 empty_size=0 flags=4(METADATA)
 find_free_extent: root=2(EXTENT_TREE) len=8192 empty_size=0 flags=1(DATA)
 find_free_extent: root=2(EXTENT_TREE) len=8192 empty_size=0 flags=1(DATA)
 find_free_extent: root=2(EXTENT_TREE) len=4096 empty_size=0 flags=1(DATA)
 find_free_extent: root=2(EXTENT_TREE) len=4096 empty_size=0 flags=1(DATA)

T's saying we're allocating data extent for EXTENT tree, which is not
even possible.

It's because we always use EXTENT tree as the owner for
trace_find_free_extent() without using the @root from
btrfs_reserve_extent().

This patch will change the parameter to use proper @root for
trace_find_free_extent():

Now it looks much better:

 find_free_extent: root=5(FS_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP)
 find_free_extent: root=5(FS_TREE) len=8192 empty_size=0 flags=1(DATA)
 find_free_extent: root=5(FS_TREE) len=16384 empty_size=0 flags=1(DATA)
 find_free_extent: root=5(FS_TREE) len=4096 empty_size=0 flags=1(DATA)
 find_free_extent: root=5(FS_TREE) len=8192 empty_size=0 flags=1(DATA)
 find_free_extent: root=5(FS_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP)
 find_free_extent: root=7(CSUM_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP)
 find_free_extent: root=2(EXTENT_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP)
 find_free_extent: root=1(ROOT_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP)

Reported-by: Hans van Kranenburg <hans@knorrie.org>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:06:49 +02:00
Qu Wenruo
ea57788eb7 btrfs: require only sector size alignment for parent eb bytenr
[BUG]
A completely sane converted fs will cause kernel warning at balance
time:

  [ 1557.188633] BTRFS info (device sda7): relocating block group 8162107392 flags data
  [ 1563.358078] BTRFS info (device sda7): found 11722 extents
  [ 1563.358277] BTRFS info (device sda7): leaf 7989321728 gen 95 total ptrs 213 free space 3458 owner 2
  [ 1563.358280] 	item 0 key (7984947200 169 0) itemoff 16250 itemsize 33
  [ 1563.358281] 		extent refs 1 gen 90 flags 2
  [ 1563.358282] 		ref#0: tree block backref root 4
  [ 1563.358285] 	item 1 key (7985602560 169 0) itemoff 16217 itemsize 33
  [ 1563.358286] 		extent refs 1 gen 93 flags 258
  [ 1563.358287] 		ref#0: shared block backref parent 7985602560
  [ 1563.358288] 			(parent 7985602560 is NOT ALIGNED to nodesize 16384)
  [ 1563.358290] 	item 2 key (7985635328 169 0) itemoff 16184 itemsize 33
  ...
  [ 1563.358995] BTRFS error (device sda7): eb 7989321728 invalid extent inline ref type 182
  [ 1563.358996] ------------[ cut here ]------------
  [ 1563.359005] WARNING: CPU: 14 PID: 2930 at 0xffffffff9f231766

Then with transaction abort, and obviously failed to balance the fs.

[CAUSE]
That mentioned inline ref type 182 is completely sane, it's
BTRFS_SHARED_BLOCK_REF_KEY, it's some extra check making kernel to
believe it's invalid.

Commit 64ecdb647d ("Btrfs: add one more sanity check for shared ref
type") introduced extra checks for backref type.

One of the requirement is, parent bytenr must be aligned to node size,
which is not correct.

One example is like this:

0	1G  1G+4K		2G 2G+4K
	|   |///////////////////|//|  <- A chunk starts at 1G+4K
            |   |	<- A tree block get reserved at bytenr 1G+4K

Then we have a valid tree block at bytenr 1G+4K, but not aligned to
nodesize (16K).

Such chunk is not ideal, but current kernel can handle it pretty well.
We may warn about such tree block in the future, but should not reject
them.

[FIX]
Change the alignment requirement from node size alignment to sector size
alignment.

Also, to make our lives a little easier, also output @iref when
btrfs_get_extent_inline_ref_type() failed, so we can locate the item
easier.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=205475
Fixes: 64ecdb647d ("Btrfs: add one more sanity check for shared ref type")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
[ update comments and messages ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-09-07 14:51:05 +02:00
Josef Bacik
ad24466588 btrfs: set the correct lockdep class for new nodes
When flipping over to the rw_semaphore I noticed I'd get a lockdep splat
in replace_path(), which is weird because we're swapping the reloc root
with the actual target root.  Turns out this is because we're using the
root->root_key.objectid as the root id for the newly allocated tree
block when setting the lockdep class, however we need to be using the
actual owner of this new block, which is saved in owner.

The affected path is through btrfs_copy_root as all other callers of
btrfs_alloc_tree_block (which calls init_new_buffer) have root_objectid
== root->root_key.objectid .

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-27 14:08:52 +02:00
Boris Burkov
a84d5d429f btrfs: detect nocow for swap after snapshot delete
can_nocow_extent and btrfs_cross_ref_exist both rely on a heuristic for
detecting a must cow condition which is not exactly accurate, but saves
unnecessary tree traversal. The incorrect assumption is that if the
extent was created in a generation smaller than the last snapshot
generation, it must be referenced by that snapshot. That is true, except
the snapshot could have since been deleted, without affecting the last
snapshot generation.

The original patch claimed a performance win from this check, but it
also leads to a bug where you are unable to use a swapfile if you ever
snapshotted the subvolume it's in. Make the check slower and more strict
for the swapon case, without modifying the general cow checks as a
compromise. Turning swap on does not seem to be a particularly
performance sensitive operation, so incurring a possibly unnecessary
btrfs_search_slot seems worthwhile for the added usability.

Note: Until the snapshot is competely cleaned after deletion,
check_committed_refs will still cause the logic to think that cow is
necessary, so the user must until 'btrfs subvolu sync' finished before
activating the swapfile swapon.

CC: stable@vger.kernel.org # 5.4+
Suggested-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-21 12:21:23 +02:00
Qu Wenruo
c57dd1f2f6 btrfs: trim: fix underflow in trim length to prevent access beyond device boundary
[BUG]
The following script can lead to tons of beyond device boundary access:

  mkfs.btrfs -f $dev -b 10G
  mount $dev $mnt
  trimfs $mnt
  btrfs filesystem resize 1:-1G $mnt
  trimfs $mnt

[CAUSE]
Since commit 929be17a9b ("btrfs: Switch btrfs_trim_free_extents to
find_first_clear_extent_bit"), we try to avoid trimming ranges that's
already trimmed.

So we check device->alloc_state by finding the first range which doesn't
have CHUNK_TRIMMED and CHUNK_ALLOCATED not set.

But if we shrunk the device, that bits are not cleared, thus we could
easily got a range starts beyond the shrunk device size.

This results the returned @start and @end are all beyond device size,
then we call "end = min(end, device->total_bytes -1);" making @end
smaller than device size.

Then finally we goes "len = end - start + 1", totally underflow the
result, and lead to the beyond-device-boundary access.

[FIX]
This patch will fix the problem in two ways:

- Clear CHUNK_TRIMMED | CHUNK_ALLOCATED bits when shrinking device
  This is the root fix

- Add extra safety check when trimming free device extents
  We check and warn if the returned range is already beyond current
  device.

Link: https://github.com/kdave/btrfs-progs/issues/282
Fixes: 929be17a9b ("btrfs: Switch btrfs_trim_free_extents to find_first_clear_extent_bit")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-12 10:15:58 +02:00
Qu Wenruo
f3e3d9cc35 btrfs: avoid possible signal interruption of btrfs_drop_snapshot() on relocation tree
[BUG]
There is a bug report about bad signal timing could lead to read-only
fs during balance:

  BTRFS info (device xvdb): balance: start -d -m -s
  BTRFS info (device xvdb): relocating block group 73001861120 flags metadata
  BTRFS info (device xvdb): found 12236 extents, stage: move data extents
  BTRFS info (device xvdb): relocating block group 71928119296 flags data
  BTRFS info (device xvdb): found 3 extents, stage: move data extents
  BTRFS info (device xvdb): found 3 extents, stage: update data pointers
  BTRFS info (device xvdb): relocating block group 60922265600 flags metadata
  BTRFS: error (device xvdb) in btrfs_drop_snapshot:5505: errno=-4 unknown
  BTRFS info (device xvdb): forced readonly
  BTRFS info (device xvdb): balance: ended with status: -4

[CAUSE]
The direct cause is the -EINTR from the following call chain when a
fatal signal is pending:

 relocate_block_group()
 |- clean_dirty_subvols()
    |- btrfs_drop_snapshot()
       |- btrfs_start_transaction()
          |- btrfs_delayed_refs_rsv_refill()
             |- btrfs_reserve_metadata_bytes()
                |- __reserve_metadata_bytes()
                   |- wait_reserve_ticket()
                      |- prepare_to_wait_event();
                      |- ticket->error = -EINTR;

Normally this behavior is fine for most btrfs_start_transaction()
callers, as they need to catch any other error, same for the signal, and
exit ASAP.

However for balance, especially for the clean_dirty_subvols() case, we're
already doing cleanup works, getting -EINTR from btrfs_drop_snapshot()
could cause a lot of unexpected problems.

From the mentioned forced read-only report, to later balance error due
to half dropped reloc trees.

[FIX]
Fix this problem by using btrfs_join_transaction() if
btrfs_drop_snapshot() is called from relocation context.

Since btrfs_join_transaction() won't get interrupted by signal, we can
continue the cleanup.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>3
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:45 +02:00
Qu Wenruo
a3cf0e4342 btrfs: qgroup: free per-trans reserved space when a subvolume gets dropped
[BUG]
Sometime fsstress could lead to qgroup warning for case like
generic/013:

  BTRFS warning (device dm-3): qgroup 0/259 has unreleased space, type 1 rsv 81920
  ------------[ cut here ]------------
  WARNING: CPU: 9 PID: 24535 at fs/btrfs/disk-io.c:4142 close_ctree+0x1dc/0x323 [btrfs]
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  RIP: 0010:close_ctree+0x1dc/0x323 [btrfs]
  Call Trace:
   btrfs_put_super+0x15/0x17 [btrfs]
   generic_shutdown_super+0x72/0x110
   kill_anon_super+0x18/0x30
   btrfs_kill_super+0x17/0x30 [btrfs]
   deactivate_locked_super+0x3b/0xa0
   deactivate_super+0x40/0x50
   cleanup_mnt+0x135/0x190
   __cleanup_mnt+0x12/0x20
   task_work_run+0x64/0xb0
   __prepare_exit_to_usermode+0x1bc/0x1c0
   __syscall_return_slowpath+0x47/0x230
   do_syscall_64+0x64/0xb0
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  ---[ end trace 6c341cdf9b6cc3c1 ]---
  BTRFS error (device dm-3): qgroup reserved space leaked

While that subvolume 259 is no longer in that filesystem.

[CAUSE]
Normally per-trans qgroup reserved space is freed when a transaction is
committed, in commit_fs_roots().

However for completely dropped subvolume, that subvolume is completely
gone, thus is no longer in the fs_roots_radix, and its per-trans
reserved qgroup will never be freed.

Since the subvolume is already gone, leaked per-trans space won't cause
any trouble for end users.

[FIX]
Just call btrfs_qgroup_free_meta_all_pertrans() before a subvolume is
completely dropped.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27 12:55:44 +02:00
Qu Wenruo
92a7cc4252 btrfs: rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE
The name BTRFS_ROOT_REF_COWS is not very clear about the meaning.

In fact, that bit can only be set to those trees:

- Subvolume roots
- Data reloc root
- Reloc roots for above roots

All other trees won't get this bit set.  So just by the result, it is
obvious that, roots with this bit set can have tree blocks shared with
other trees.  Either shared by snapshots, or by reloc roots (an special
snapshot created by relocation).

This patch will rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE to
make it easier to understand, and update all comment mentioning
"reference counted" to follow the rename.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:35 +02:00
Filipe Manana
6b7304af62 btrfs: rename member 'trimming' of block group to a more generic name
Back in 2014, commit 04216820fe ("Btrfs: fix race between fs trimming
and block group remove/allocation"), I added the 'trimming' member to the
block group structure. Its purpose was to prevent races between trimming
and block group deletion/allocation by pinning the block group in a way
that prevents its logical address and device extents from being reused
while trimming is in progress for a block group, so that if another task
deletes the block group and then another task allocates a new block group
that gets the same logical address and device extents while the trimming
task is still in progress.

After the previous fix for scrub (patch "btrfs: fix a race between scrub
and block group removal/allocation"), scrub now also has the same needs that
trimming has, so the member name 'trimming' no longer makes sense.
Since there is already a 'pinned' member in the block group that refers
to space reservations (pinned bytes), rename the member to 'frozen',
add a comment on top of it to describe its general purpose and rename
the helpers to increment and decrement the counter as well, to match
the new member name.

The next patch in the series will move the helpers into a more suitable
file (from free-space-cache.c to block-group.c).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:29 +02:00
YueHaibing
eec5b6e097 btrfs: remove unused function heads_to_leaves
There's no callers in-tree anymore since commit 64403612b7 ("btrfs:
rework btrfs_check_space_for_delayed_refs")

Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:28 +02:00
David Sterba
7c09c03091 btrfs: don't force read-only after error in drop snapshot
Deleting a subvolume on a full filesystem leads to ENOSPC followed by a
forced read-only. This is not a transaction abort and the filesystem is
otherwise ok, so the error should be just propagated to the callers.

This is caused by unnecessary call to btrfs_handle_fs_error for all
errors, except EAGAIN. This does not make sense as the standard
transaction abort mechanism is in btrfs_drop_snapshot so all relevant
failures are handled.

Originally in commit cb1b69f450 ("Btrfs: forced readonly when
btrfs_drop_snapshot() fails") there was no return value at all, so the
btrfs_std_error made some sense but once the error handling and
propagation has been implemented we don't need it anymore.

Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:23 +02:00
Jules Irenge
c142c6a449 btrfs: add missing annotation for btrfs_lock_cluster()
Sparse reports a warning at btrfs_lock_cluster()

warning: context imbalance in btrfs_lock_cluster()
	- wrong count

The root cause is the missing annotation at btrfs_lock_cluster()
Add the missing __acquires(&cluster->refill_lock) annotation.

Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25 11:25:16 +02:00
Josef Bacik
cd22a51c66 btrfs: do not use readahead for running delayed refs
Readahead will generate a lot of extra reads for adjacent nodes, but
when running delayed refs we have no idea if the next ref is going to be
adjacent or not, so this potentially just generates a lot of extra IO.
To make matters worse each ref is truly just looking for one item, it
doesn't generally search forward, so we simply don't need it here.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:03:50 +01:00
Josef Bacik
8c38938c7b btrfs: move the root freeing stuff into btrfs_put_root
There are a few different ways to free roots, either you allocated them
yourself and you just do

free_extent_buffer(root->node);
free_extent_buffer(root->commit_node);
btrfs_put_root(root);

Which is the pattern for log roots.  Or for snapshots/subvolumes that
are being dropped you simply call btrfs_free_fs_root() which does all
the cleanup for you.

Unify this all into btrfs_put_root(), so that we don't free up things
associated with the root until the last reference is dropped.  This
makes the root freeing code much more significant.

The only caveat is at close_ctree() time we have to free the extent
buffers for all of our main roots (extent_root, chunk_root, etc) because
we have to drop the btree_inode and we'll run into issues if we hold
onto those nodes until ->kill_sb() time.  This will be addressed in the
future when we kill the btree_inode.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:59 +01:00
Nikolay Borisov
0078a9f941 btrfs: Remove block_rsv parameter from btrfs_drop_snapshot
It's no longer used following 30d40577e3 ("btrfs: reloc: Also queue
orphan reloc tree for cleanup to avoid BUG_ON()"), so just remove it.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:55 +01:00
Nikolay Borisov
65cd6d9e30 btrfs: Open code insert_extent_backref
No need to add a level of indirection for hiding a simple 'if'. Open
code insert_extent_backref in its sole caller. No functional changes.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23 17:01:53 +01:00