xfs_qm_reset_dqcounts (aka quotacheck) is the only xfs_dqblk_verify
caller that actually knows the specific quota type that it's looking
for. Since everything else just pass in type==0 (including the buffer
verifier), drop the parameter and open-code the check like
xfs_dquot_from_disk already does.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add all the xfs_dquot fields to the tracepoint for that type; add a new
tracepoint type for the qtrx structure (dquot transaction deltas); and
use our new tracepoints. This makes it easier for the author to trace
changes to dquot counters for debugging.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Currently, xfs quotas have the ability to send netlink warnings when a
user exceeds the limits. They also have all the support code necessary
to convert softlimit warnings into failures if the number of warnings
exceeds a limit set by the administrator. Unfortunately, we never
actually increase the warning counter, so this never actually happens.
Make it so we actually do something useful with the warning counts.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
We always initialize the default quota limits to something nowadays, so
we don't need to check that the defaults are set to something before
using them.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Hoist the code that adjusts the incore quota reservation count
adjustments into a separate function, both to reduce the level of
indentation and also to reduce the amount of open-coded logic.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we've refactored the resource usage and limits into
per-resource structures, we can refactor some of the open-coded
reservation limit checking in xfs_trans_dqresv.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we can pass around quota resource and limit structures, clean
up the open-coded field setting in xfs_qm_scall_setqlim.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Refactor the open-coded test for whether or not we're over quota.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
struct xfs_dquot already has a pointer to the xfs mount, so remove the
redundant parameter from xfs_qm_adjust_dq*.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we've split up the dquot resource fields into separate structs,
do the same for the default limits to enable further refactoring.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we've stopped using qcore entirely, drop it from the incore
dquot.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Add timers fields to the incore dquot, and use that instead of the ones
in qcore. This eliminates a bunch of endian conversions and will
eventually allow us to remove qcore entirely.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Add warning counter fields to the incore dquot, and use that instead of
the ones in qcore. This eliminates a bunch of endian conversions and
will eventually allow us to remove qcore entirely.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Add counter fields to the incore dquot, and use that instead of the ones
in qcore. This eliminates a bunch of endian conversions and will
eventually allow us to remove qcore entirely.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Add limits fields in the incore dquot, and use that instead of the ones
in qcore. This eliminates a bunch of endian conversions and will
eventually allow us to remove qcore entirely.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Introduce a new struct xfs_dquot_res that we'll use to track all the
incore data for a particular resource type (block, inode, rt block).
This will help us (once we've eliminated q_core) to declutter quota
functions that currently open-code field access or pass around fields
around explicitly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Add a dquot id field to the incore dquot, and use that instead of the
one in qcore. This eliminates a bunch of endian conversions and will
eventually allow us to remove qcore entirely.
We also rearrange the start of xfs_dquot to remove padding holes, saving
8 bytes.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Use the incore dq_flags to figure out the dquot type. This is the first
step towards removing xfs_disk_dquot from the incore dquot.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Move the dquot cluster size #define to xfs_format.h. It is an important
part of the ondisk format because the ondisk dquot record size is not an
even power of two, which means that the buffer size we use is
significant here because the kernel leaves slack space at the end of the
buffer to avoid having to deal with a dquot record crossing a block
boundary.
This is also an excuse to fix one of the longstanding discrepancies
between kernel and userspace libxfs headers.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Rename the existing incore dquot "dq_flags" field to "q_flags" to match
everything else in the structure, then move the two actual dquot state
flags to the XFS_DQFLAG_ namespace from XFS_DQ_.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
We only use the XFS_QMOPT flags in quotacheck to signal the quota type,
so rip out all the flags handling and just pass the type all the way
through.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Since xfs_qm_scall_trunc_qfiles can take a bitset of quota types that we
want to truncate, change the flags argument to take XFS_QMOPT_[UGP}QUOTA
so that the next patch can start to deprecate XFS_DQ_*.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
While loading dquot records off disk, make sure that the quota type
flags are the same between the incore dquot and the ondisk dquot.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
xfs_trans_dqresv is the function that we use to make reservations
against resource quotas. Each resource contains two counters: the
q_core counter, which tracks resources allocated on disk; and the dquot
reservation counter, which tracks how much of that resource has either
been allocated or reserved by threads that are working on metadata
updates.
For disk blocks, we compare the proposed reservation counter against the
hard and soft limits to decide if we're going to fail the operation.
However, for inodes we inexplicably compare against the q_core counter,
not the incore reservation count.
Since the q_core counter is always lower than the reservation count and
we unlock the dquot between reservation and transaction commit, this
means that multiple threads can reserve the last inode count before we
hit the hard limit, and when they commit, we'll be well over the hard
limit.
Fix this by checking against the incore inode reservation counter, since
we would appear to maintain that correctly (and that's what we report in
GETQUOTA).
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
In commit 8d3d7e2b35, we changed xfs_qm_dqpurge to bail out if we
can't lock the dquot buf to flush the dquot. This prevents the AIL from
blocking on the dquot, but it also forgets to clear the FREEING flag on
its way out. A subsequent purge attempt will see the FREEING flag is
set and bail out, which leads to dqpurge_all failing to purge all the
dquots.
(copy-pasting from Dave Chinner's identical patch)
This was found by inspection after having xfs/305 hang 1 in ~50
iterations in a quotaoff operation:
[ 8872.301115] xfs_quota D13888 92262 91813 0x00004002
[ 8872.302538] Call Trace:
[ 8872.303193] __schedule+0x2d2/0x780
[ 8872.304108] ? do_raw_spin_unlock+0x57/0xd0
[ 8872.305198] schedule+0x6e/0xe0
[ 8872.306021] schedule_timeout+0x14d/0x300
[ 8872.307060] ? __next_timer_interrupt+0xe0/0xe0
[ 8872.308231] ? xfs_qm_dqusage_adjust+0x200/0x200
[ 8872.309422] schedule_timeout_uninterruptible+0x2a/0x30
[ 8872.310759] xfs_qm_dquot_walk.isra.0+0x15a/0x1b0
[ 8872.311971] xfs_qm_dqpurge_all+0x7f/0x90
[ 8872.313022] xfs_qm_scall_quotaoff+0x18d/0x2b0
[ 8872.314163] xfs_quota_disable+0x3a/0x60
[ 8872.315179] kernel_quotactl+0x7e2/0x8d0
[ 8872.316196] ? __do_sys_newstat+0x51/0x80
[ 8872.317238] __x64_sys_quotactl+0x1e/0x30
[ 8872.318266] do_syscall_64+0x46/0x90
[ 8872.319193] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 8872.320490] RIP: 0033:0x7f46b5490f2a
[ 8872.321414] Code: Bad RIP value.
Returning -EAGAIN from xfs_qm_dqpurge() without clearing the
XFS_DQ_FREEING flag means the xfs_qm_dqpurge_all() code can never
free the dquot, and we loop forever waiting for the XFS_DQ_FREEING
flag to go away on the dquot that leaked it via -EAGAIN.
Fixes: 8d3d7e2b35 ("xfs: trylock underlying buffer on dquot flush")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The block reservation calculation for inode allocation is supposed
to consist of the blocks required for the inode chunk plus
(maxlevels-1) of the inode btree multiplied by the number of inode
btrees in the fs (2 when finobt is enabled, 1 otherwise).
Instead, the macro returns (ialloc_blocks + 2) due to a precedence
error in the calculation logic. This leads to block reservation
overruns via generic/531 on small block filesystems with finobt
enabled. Add braces to fix the calculation and reserve the
appropriate number of blocks.
Fixes: 9d43b180af ("xfs: update inode allocation/free transaction reservations for finobt")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
xfsaild is racy with respect to transaction abort and shutdown in
that the task can idle or exit with an empty AIL but buffers still
on the delwri queue. This was partly addressed by cancelling the
delwri queue before the task exits to prevent memory leaks, but it's
also possible for xfsaild to empty and idle with buffers on the
delwri queue. For example, a transaction that pins a buffer that
also happens to sit on the AIL delwri queue will explicitly remove
the associated log item from the AIL if the transaction aborts. The
side effect of this is an unmount hang in xfs_wait_buftarg() as the
associated buffers remain held by the delwri queue indefinitely.
This is reproduced on repeated runs of generic/531 with an fs format
(-mrmapbt=1 -bsize=1k) that happens to also reproduce transaction
aborts.
Update xfsaild to not idle until both the AIL and associated delwri
queue are empty and update the push code to continue delwri queue
submission attempts even when the AIL is empty. This allows the AIL
to eventually release aborted buffers stranded on the delwri queue
when they are unlocked by the associated transaction. This should
have no significant effect on normal runtime behavior because the
xfsaild currently idles only when the AIL is empty and in practice
the AIL is rarely empty with a populated delwri queue. The items
must be AIL resident to land in the queue in the first place and
generally aren't removed until writeback completes.
Note that the pre-existing delwri queue cancel logic in the exit
path is retained because task stop is external, could technically
come at any point, and xfsaild is still responsible to release its
buffer references before it exits.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The MS_I_VERSION mount flag is exposed via the VFS, as documented
in the mount manpages etc; see the iversion and noiversion mount
options in mount(8).
As a result, mount -o remount looks for this option in /proc/mounts
and will only send the I_VERSION flag back in during remount it it
is present. Since it's not there, a remount will /remove/ the
I_VERSION flag at the vfs level, and iversion functionality is lost.
xfs v5 superblocks intend to always have i_version enabled; it is
set as a default at mount time, but is lost during remount for the
reasons above.
The generic fix would be to expose this documented option in
/proc/mounts, but since that was rejected, fix it up again in the
xfs remount path instead, so that at least xfs won't suffer from
this misbehavior.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove duplicated include.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
These two definitions are unused now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
In the course of some operations, we look up the perag from
the mount multiple times to get or change perag information.
These are often very short pieces of code, so while the
lookup cost is generally low, the cost of the lookup is far
higher than the cost of the operation we are doing on the
perag.
Since we changed buffers to hold references to the perag
they are cached in, many modification contexts already hold
active references to the perag that are held across these
operations. This is especially true for any operation that
is serialised by an allocation group header buffer.
In these cases, we can just use the buffer's reference to
the perag to avoid needing to do lookups to access the
perag. This means that many operations don't need to do
perag lookups at all to access the perag because they've
already looked up objects that own persistent references
and hence can use that reference instead.
Cc: Dave Chinner <dchinner@redhat.com>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Depending on the workloads, the following circular locking dependency
warning between sb_internal (a percpu rwsem) and fs_reclaim (a pseudo
lock) may show up:
======================================================
WARNING: possible circular locking dependency detected
5.0.0-rc1+ #60 Tainted: G W
------------------------------------------------------
fsfreeze/4346 is trying to acquire lock:
0000000026f1d784 (fs_reclaim){+.+.}, at:
fs_reclaim_acquire.part.19+0x5/0x30
but task is already holding lock:
0000000072bfc54b (sb_internal){++++}, at: percpu_down_write+0xb4/0x650
which lock already depends on the new lock.
:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(sb_internal);
lock(fs_reclaim);
lock(sb_internal);
lock(fs_reclaim);
*** DEADLOCK ***
4 locks held by fsfreeze/4346:
#0: 00000000b478ef56 (sb_writers#8){++++}, at: percpu_down_write+0xb4/0x650
#1: 000000001ec487a9 (&type->s_umount_key#28){++++}, at: freeze_super+0xda/0x290
#2: 000000003edbd5a0 (sb_pagefaults){++++}, at: percpu_down_write+0xb4/0x650
#3: 0000000072bfc54b (sb_internal){++++}, at: percpu_down_write+0xb4/0x650
stack backtrace:
Call Trace:
dump_stack+0xe0/0x19a
print_circular_bug.isra.10.cold.34+0x2f4/0x435
check_prev_add.constprop.19+0xca1/0x15f0
validate_chain.isra.14+0x11af/0x3b50
__lock_acquire+0x728/0x1200
lock_acquire+0x269/0x5a0
fs_reclaim_acquire.part.19+0x29/0x30
fs_reclaim_acquire+0x19/0x20
kmem_cache_alloc+0x3e/0x3f0
kmem_zone_alloc+0x79/0x150
xfs_trans_alloc+0xfa/0x9d0
xfs_sync_sb+0x86/0x170
xfs_log_sbcount+0x10f/0x140
xfs_quiesce_attr+0x134/0x270
xfs_fs_freeze+0x4a/0x70
freeze_super+0x1af/0x290
do_vfs_ioctl+0xedc/0x16c0
ksys_ioctl+0x41/0x80
__x64_sys_ioctl+0x73/0xa9
do_syscall_64+0x18f/0xd23
entry_SYSCALL_64_after_hwframe+0x49/0xbe
This is a false positive as all the dirty pages are flushed out before
the filesystem can be frozen.
One way to avoid this splat is to add GFP_NOFS to the affected allocation
calls by using the memalloc_nofs_save()/memalloc_nofs_restore() pair.
This shouldn't matter unless the system is really running out of memory.
In that particular case, the filesystem freeze operation may fail while
it was succeeding previously.
Without this patch, the command sequence below will show that the lock
dependency chain sb_internal -> fs_reclaim exists.
# fsfreeze -f /home
# fsfreeze --unfreeze /home
# grep -i fs_reclaim -C 3 /proc/lockdep_chains | grep -C 5 sb_internal
After applying the patch, such sb_internal -> fs_reclaim lock dependency
chain can no longer be found. Because of that, the locking dependency
warning will not be shown.
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Make sure the rtbitmap is large enough to store the entire bitmap.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Ensure that the realtime bitmap file is backed entirely by written
extents. No holes, no unwritten blocks, etc.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
This debug code is called on every xfs_iflush() call, which then
checks every inode in the buffer for non-zero unlinked list field.
Hence it checks every inode in the cluster buffer every time a
single inode on that cluster it flushed. This is resulting in:
- 38.91% 5.33% [kernel] [k] xfs_iflush
- 17.70% xfs_iflush
- 9.93% xfs_inobp_check
4.36% xfs_buf_offset
10% of the CPU time spent flushing inodes is repeatedly checking
unlinked fields in the buffer. We don't need to do this.
The other place we call xfs_inobp_check() is
xfs_iunlink_update_dinode(), and this is after we've done this
assert for the agino we are about to write into that inode:
ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
which means we've already checked that the agino we are about to
write is not 0 on debug kernels. The inode buffer verifiers do
everything else we need, so let's just remove this debug code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_iflush_done() does 3 distinct operations to the inodes attached
to the buffer. Separate these operations out into functions so that
it is easier to modify these operations independently in future.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that we have all the dirty inodes attached to the cluster
buffer, we don't actually have to do radix tree lookups to find
them. Sure, the radix tree is efficient, but walking a linked list
of just the dirty inodes attached to the buffer is much better.
We are also no longer dependent on having a locked inode passed into
the function to determine where to start the lookup. This means we
can drop it from the function call and treat all inodes the same.
We also make xfs_iflush_cluster skip inodes marked with
XFS_IRECLAIM. This we avoid races with inodes that reclaim is
actively referencing or are being re-initialised by inode lookup. If
they are actually dirty, they'll get written by a future cluster
flush....
We also add a shutdown check after obtaining the flush lock so that
we catch inodes that are dirty in memory and may have inconsistent
state due to the shutdown in progress. We abort these inodes
directly and so they remove themselves directly from the buffer list
and the AIL rather than having to wait for the buffer to be failed
and callbacks run to be processed correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
with xfs_iflush() gone, we can rename xfs_iflush_int() back to
xfs_iflush(). Also move it up above xfs_iflush_cluster() so we don't
need the forward definition any more.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now we have a cached buffer on inode log items, we don't need
to do buffer lookups when flushing inodes anymore - all we need
to do is lock the buffer and we are ready to go.
This largely gets rid of the need for xfs_iflush(), which is
essentially just a mechanism to look up the buffer and flush the
inode to it. Instead, we can just call xfs_iflush_cluster() with a
few modifications to ensure it also flushes the inode we already
hold locked.
This allows the AIL inode item pushing to be almost entirely
non-blocking in XFS - we won't block unless memory allocation
for the cluster inode lookup blocks or the block device queues are
full.
Writeback during inode reclaim becomes a little more complex because
we now have to lock the buffer ourselves, but otherwise this change
is largely a functional no-op that removes a whole lot of code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Rather than attach inodes to the cluster buffer just when we are
doing IO, attach the inodes to the cluster buffer when they are
dirtied. The means the buffer always carries a list of dirty inodes
that reference it, and we can use that list to make more fundamental
changes to inode writeback that aren't otherwise possible.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Once we have inodes pinning the cluster buffer and attached whenever
they are dirty, we no longer have a guarantee that the items are
flush locked when we lock the cluster buffer. Hence we cannot just
walk the buffer log item list and modify the attached inodes.
If the inode is not flush locked, we have to ILOCK it first and then
flush lock it to do all the prerequisite checks needed to avoid
races with other code. This is already handled by
xfs_ifree_get_one_inode(), so rework the inode iteration loop and
function to update all inodes in cache whether they are attached to
the buffer or not.
Note: we also remove the copying of the log item lsn to the
ili_flush_lsn as xfs_iflush_done() now uses the XFS_ISTALE flag to
trigger aborts and so flush lsn matching is not needed in IO
completion for processing freed inodes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Inode reclaim is quite different now to the way described in various
comments, so update all the comments explaining what it does and how
it works.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Clean up xfs_reclaim_inodes() callers. Most callers want blocking
behaviour, so just make the existing SYNC_WAIT behaviour the
default.
For the xfs_reclaim_worker(), just call xfs_reclaim_inodes_ag()
directly because we just want optimistic clean inode reclaim to be
done in the background.
For xfs_quiesce_attr() we can just remove the inode reclaim calls as
they are a historic relic that was required to flush dirty inodes
that contained unlogged changes. We now log all changes to the
inodes, so the sync AIL push from xfs_log_quiesce() called by
xfs_quiesce_attr() will do all the required inode writeback for
freeze.
Seeing as we now want to loop until all reclaimable inodes have been
reclaimed, make xfs_reclaim_inodes() loop on the XFS_ICI_RECLAIM_TAG
tag rather than having xfs_reclaim_inodes_ag() tell it that inodes
were skipped. This is much more reliable and will always loop until
all reclaimable inodes are reclaimed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
All background reclaim is SYNC_TRYLOCK already, and even blocking
reclaim (SYNC_WAIT) can use trylock mechanisms as
xfs_reclaim_inodes_ag() will keep cycling until there are no more
reclaimable inodes. Hence we can kill SYNC_TRYLOCK from inode
reclaim and make everything unconditionally non-blocking.
We remove all the optimistic "avoid blocking on locks" checks done
in xfs_reclaim_inode_grab() as nothing blocks on locks anymore.
Further, checking XFS_IFLOCK optimistically can result in detecting
inodes in the process of being cleaned (i.e. between being removed
from the AIL and having the flush lock dropped), so for
xfs_reclaim_inodes() to reliably reclaim all inodes we need to drop
these checks anyway.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we attempt to reclaim an inode, the first thing we do is take
the inode lock. This is blocking right now, so if the inode being
accessed by something else (e.g. being flushed to the cluster
buffer) we will block here.
Change this to a trylock so that we do not block inode reclaim
unnecessarily here.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Inode reclaim will still throttle direct reclaim on the per-ag
reclaim locks. This is no longer necessary as reclaim can run
non-blocking now. Hence we can remove these locks so that we don't
arbitrarily block reclaimers just because there are more direct
reclaimers than there are AGs.
This can result in multiple reclaimers working on the same range of
an AG, but this doesn't cause any apparent issues. Optimising the
spread of concurrent reclaimers for best efficiency can be done in a
future patchset.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We no longer need to issue IO from shrinker based inode reclaim to
prevent spurious OOM killer invocation. This leaves only the global
filesystem management operations such as unmount needing to
writeback dirty inodes and reclaim them.
Instead of using the reclaim pass to write dirty inodes before
reclaiming them, use the AIL to push all the dirty inodes before we
try to reclaim them. This allows us to remove all the conditional
SYNC_WAIT locking and the writeback code from xfs_reclaim_inode()
and greatly simplify the checks we need to do to reclaim an inode.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Now that dirty inode writeback doesn't cause read-modify-write
cycles on the inode cluster buffer under memory pressure, the need
to throttle memory reclaim to the rate at which we can clean dirty
inodes goes away. That is due to the fact that we no longer thrash
inode cluster buffers under memory pressure to clean dirty inodes.
This means inode writeback no longer stalls on memory allocation
or read IO, and hence can be done asynchronously without generating
memory pressure. As a result, blocking inode writeback in reclaim is
no longer necessary to prevent reclaim priority windup as cleaning
dirty inodes is no longer dependent on having memory reserves
available for the filesystem to make progress reclaiming inodes.
Hence we can convert inode reclaim to be non-blocking for shrinker
callouts, both for direct reclaim and kswapd.
On a vanilla kernel, running a 16-way fsmark create workload on a
4 node/16p/16GB RAM machine, I can reliably pin 14.75GB of RAM via
userspace mlock(). The OOM killer gets invoked at 15GB of
pinned RAM.
Without the inode cluster pinning, this non-blocking reclaim patch
triggers premature OOM killer invocation with the same memory
pinning, sometimes with as much as 45% of RAM being free. It's
trivially easy to trigger the OOM killer when reclaim does not
block.
With pinning inode clusters in RAM and then adding this patch, I can
reliably pin 14.5GB of RAM and still have the fsmark workload run to
completion. The OOM killer gets invoked 14.75GB of pinned RAM, which
is only a small amount of memory less than the vanilla kernel. It is
much more reliable than just with async reclaim alone.
simoops shows that allocation stalls go away when async reclaim is
used. Vanilla kernel:
Run time: 1924 seconds
Read latency (p50: 3,305,472) (p95: 3,723,264) (p99: 4,001,792)
Write latency (p50: 184,064) (p95: 553,984) (p99: 807,936)
Allocation latency (p50: 2,641,920) (p95: 3,911,680) (p99: 4,464,640)
work rate = 13.45/sec (avg 13.44/sec) (p50: 13.46) (p95: 13.58) (p99: 13.70)
alloc stall rate = 3.80/sec (avg: 2.59) (p50: 2.54) (p95: 2.96) (p99: 3.02)
With inode cluster pinning and async reclaim:
Run time: 1924 seconds
Read latency (p50: 3,305,472) (p95: 3,715,072) (p99: 3,977,216)
Write latency (p50: 187,648) (p95: 553,984) (p99: 789,504)
Allocation latency (p50: 2,748,416) (p95: 3,919,872) (p99: 4,448,256)
work rate = 13.28/sec (avg 13.32/sec) (p50: 13.26) (p95: 13.34) (p99: 13.34)
alloc stall rate = 0.02/sec (avg: 0.02) (p50: 0.01) (p95: 0.03) (p99: 0.03)
Latencies don't really change much, nor does the work rate. However,
allocation almost never stalls with these changes, whilst the
vanilla kernel is sometimes reporting 20 stalls/s over a 60s sample
period. This difference is due to inode reclaim being largely
non-blocking now.
IOWs, once we have pinned inode cluster buffers, we can make inode
reclaim non-blocking without a major risk of premature and/or
spurious OOM killer invocation, and without any changes to memory
reclaim infrastructure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we dirty an inode, we are going to have to write it disk at
some point in the near future. This requires the inode cluster
backing buffer to be present in memory. Unfortunately, under severe
memory pressure we can reclaim the inode backing buffer while the
inode is dirty in memory, resulting in stalling the AIL pushing
because it has to do a read-modify-write cycle on the cluster
buffer.
When we have no memory available, the read of the cluster buffer
blocks the AIL pushing process, and this causes all sorts of issues
for memory reclaim as it requires inode writeback to make forwards
progress. Allocating a cluster buffer causes more memory pressure,
and results in more cluster buffers to be reclaimed, resulting in
more RMW cycles to be done in the AIL context and everything then
backs up on AIL progress. Only the synchronous inode cluster
writeback in the the inode reclaim code provides some level of
forwards progress guarantees that prevent OOM-killer rampages in
this situation.
Fix this by pinning the inode backing buffer to the inode log item
when the inode is first dirtied (i.e. in xfs_trans_log_inode()).
This may mean the first modification of an inode that has been held
in cache for a long time may block on a cluster buffer read, but
we can do that in transaction context and block safely until the
buffer has been allocated and read.
Once we have the cluster buffer, the inode log item takes a
reference to it, pinning it in memory, and attaches it to the log
item for future reference. This means we can always grab the cluster
buffer from the inode log item when we need it.
When the inode is finally cleaned and removed from the AIL, we can
drop the reference the inode log item holds on the cluster buffer.
Once all inodes on the cluster buffer are clean, the cluster buffer
will be unpinned and it will be available for memory reclaim to
reclaim again.
This avoids the issues with needing to do RMW cycles in the AIL
pushing context, and hence allows complete non-blocking inode
flushing to be performed by the AIL pushing context.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_ail_delete_one() is called directly from dquot and inode IO
completion, as well as from the generic xfs_trans_ail_delete()
function. Inodes are about to have their own failure handling, and
dquots will in future, too. Pull the clearing of the LI_FAILED flag
up into the callers so we can customise the code appropriately.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>