wqh is unused, so we do not need to store it in irqfd anymore
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
kvm didn't clear irqfd counter on deassign, as a result we could get a
spurious interrupt when irqfd is assigned back. this leads to poor
performance and, in theory, guest crash.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Looks like repeatedly binding same fd to multiple gsi's with irqfd can
use up a ton of kernel memory for irqfd structures.
A simple fix is to allow each fd to only trigger one gsi: triggering a
storm of interrupts in guest is likely useless anyway, and we can do it
by binding a single gsi to many interrupts if we really want to.
Cc: stable@kernel.org
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Acked-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
The only thing it protects now is interrupt injection into lapic and
this can work lockless. Even now with kvm->irq_lock in place access
to lapic is not entirely serialized since vcpu access doesn't take
kvm->irq_lock.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This code is not executed before file has been initialized to the result of
calling eventfd_fget. This function returns an ERR_PTR value in an error
case instead of NULL. Thus the test that file is not NULL is always true.
A simplified version of the semantic match that finds this problem is as
follows: (http://coccinelle.lip6.fr/)
// <smpl>
@match exists@
expression x, E;
statement S1, S2;
@@
x = eventfd_fget(...)
... when != x = E
(
* if (x == NULL || ...) S1 else S2
|
* if (x == NULL && ...) S1 else S2
)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Avi Kivity <avi@redhat.com>
ioeventfd is a mechanism to register PIO/MMIO regions to trigger an eventfd
signal when written to by a guest. Host userspace can register any
arbitrary IO address with a corresponding eventfd and then pass the eventfd
to a specific end-point of interest for handling.
Normal IO requires a blocking round-trip since the operation may cause
side-effects in the emulated model or may return data to the caller.
Therefore, an IO in KVM traps from the guest to the host, causes a VMX/SVM
"heavy-weight" exit back to userspace, and is ultimately serviced by qemu's
device model synchronously before returning control back to the vcpu.
However, there is a subclass of IO which acts purely as a trigger for
other IO (such as to kick off an out-of-band DMA request, etc). For these
patterns, the synchronous call is particularly expensive since we really
only want to simply get our notification transmitted asychronously and
return as quickly as possible. All the sychronous infrastructure to ensure
proper data-dependencies are met in the normal IO case are just unecessary
overhead for signalling. This adds additional computational load on the
system, as well as latency to the signalling path.
Therefore, we provide a mechanism for registration of an in-kernel trigger
point that allows the VCPU to only require a very brief, lightweight
exit just long enough to signal an eventfd. This also means that any
clients compatible with the eventfd interface (which includes userspace
and kernelspace equally well) can now register to be notified. The end
result should be a more flexible and higher performance notification API
for the backend KVM hypervisor and perhipheral components.
To test this theory, we built a test-harness called "doorbell". This
module has a function called "doorbell_ring()" which simply increments a
counter for each time the doorbell is signaled. It supports signalling
from either an eventfd, or an ioctl().
We then wired up two paths to the doorbell: One via QEMU via a registered
io region and through the doorbell ioctl(). The other is direct via
ioeventfd.
You can download this test harness here:
ftp://ftp.novell.com/dev/ghaskins/doorbell.tar.bz2
The measured results are as follows:
qemu-mmio: 110000 iops, 9.09us rtt
ioeventfd-mmio: 200100 iops, 5.00us rtt
ioeventfd-pio: 367300 iops, 2.72us rtt
I didn't measure qemu-pio, because I have to figure out how to register a
PIO region with qemu's device model, and I got lazy. However, for now we
can extrapolate based on the data from the NULLIO runs of +2.56us for MMIO,
and -350ns for HC, we get:
qemu-pio: 153139 iops, 6.53us rtt
ioeventfd-hc: 412585 iops, 2.37us rtt
these are just for fun, for now, until I can gather more data.
Here is a graph for your convenience:
http://developer.novell.com/wiki/images/7/76/Iofd-chart.png
The conclusion to draw is that we save about 4us by skipping the userspace
hop.
--------------------
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Protect irq injection/acking data structures with a separate irq_lock
mutex. This fixes the following deadlock:
CPU A CPU B
kvm_vm_ioctl_deassign_dev_irq()
mutex_lock(&kvm->lock); worker_thread()
-> kvm_deassign_irq() -> kvm_assigned_dev_interrupt_work_handler()
-> deassign_host_irq() mutex_lock(&kvm->lock);
-> cancel_work_sync() [blocked]
[gleb: fix ia64 path]
Reported-by: Alex Williamson <alex.williamson@hp.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
KVM provides a complete virtual system environment for guests, including
support for injecting interrupts modeled after the real exception/interrupt
facilities present on the native platform (such as the IDT on x86).
Virtual interrupts can come from a variety of sources (emulated devices,
pass-through devices, etc) but all must be injected to the guest via
the KVM infrastructure. This patch adds a new mechanism to inject a specific
interrupt to a guest using a decoupled eventfd mechnanism: Any legal signal
on the irqfd (using eventfd semantics from either userspace or kernel) will
translate into an injected interrupt in the guest at the next available
interrupt window.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Avi Kivity <avi@redhat.com>