There's one more case where we can't issue a rename operation for a
directory as soon as we process it. We used to delay directory renames
only if they have some ancestor directory with a higher inode number
that got renamed too, but there's another case where we need to delay
the rename too - when a directory A is renamed to the old name of a
directory B but that directory B has its rename delayed because it
has now (in the send root) an ancestor with a higher inode number that
was renamed. If we don't delay the directory rename in this case, the
receiving end of the send stream will attempt to rename A to the old
name of B before B got renamed to its new name, which results in a
"directory not empty" error. So fix this by delaying directory renames
for this case too.
Steps to reproduce:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ mkdir /mnt/a
$ mkdir /mnt/b
$ mkdir /mnt/c
$ touch /mnt/a/file
$ btrfs subvolume snapshot -r /mnt /mnt/snap1
$ mv /mnt/c /mnt/x
$ mv /mnt/a /mnt/x/y
$ mv /mnt/b /mnt/a
$ btrfs subvolume snapshot -r /mnt /mnt/snap2
$ btrfs send /mnt/snap1 -f /tmp/1.send
$ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/2.send
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt2
$ btrfs receive /mnt2 -f /tmp/1.send
$ btrfs receive /mnt2 -f /tmp/2.send
ERROR: rename b -> a failed. Directory not empty
A test case for xfstests follows soon.
Reported-by: Ames Cornish <ames@cornishes.net>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
A block-local variable stores error code but btrfs_get_blocks_direct may
not return it in the end as there's a ret defined in the function scope.
CC: <stable@vger.kernel.org> # 3.6+
Fixes: d187663ef2 ("Btrfs: lock extents as we map them in DIO")
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
The return value from btrfs_lookup_xattr() can be a pointer encoding an
error, therefore deal with it. This fixes commit 5f5bc6b1e2
("Btrfs: make xattr replace operations atomic").
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The end_slot variable actually matches the number of pointers in the
node and not the last slot (which is 'nritems - 1'). Therefore in order
to check that the current slot in the for loop doesn't match the last
one, the correct logic is to check if 'i' is less than 'end_slot - 1'
and not 'end_slot - 2'.
Fix this and set end_slot to be 'nritems - 1', as it's less confusing
since the variable name implies it's inclusive rather then exclusive.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
When punching a file hole if we endup only zeroing parts of a page,
because the start offset isn't a multiple of the sector size or the
start offset and length fall within the same page, we were not updating
the inode item. This prevented an fsync from doing anything, if no other
file changes happened in the current transaction, because the fields
in btrfs_inode used to check if the inode needs to be fsync'ed weren't
updated.
This issue is easy to reproduce and the following excerpt from the
xfstest case I made shows how to trigger it:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our test file.
$XFS_IO_PROG -f -c "pwrite -S 0x22 -b 16K 0 16K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Fsync the file, this makes btrfs update some btrfs inode specific fields
# that are used to track if the inode needs to be written/updated to the fsync
# log or not. After this fsync, the new values for those fields indicate that
# a subsequent fsync does not need to touch the fsync log.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
# Force a commit of the current transaction. After this point, any operation
# that modifies the data or metadata of our file, should update those fields in
# the btrfs inode with values that make the next fsync operation write to the
# fsync log.
sync
# Punch a hole in our file. This small range affects only 1 page.
# This made the btrfs hole punching implementation write only some zeroes in
# one page, but it did not update the btrfs inode fields used to determine if
# the next fsync needs to write to the fsync log.
$XFS_IO_PROG -c "fpunch 8000 4K" $SCRATCH_MNT/foo
# Another variation of the previously mentioned case.
$XFS_IO_PROG -c "fpunch 15000 100" $SCRATCH_MNT/foo
# Now fsync the file. This was a no-operation because the previous hole punch
# operation didn't update the inode's fields mentioned before, so they remained
# with the values they had after the first fsync - that is, they indicate that
# it is not needed to write to fsync log.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
echo "File content before:"
od -t x1 $SCRATCH_MNT/foo
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
# Enable writes and mount the fs. This makes the fsync log replay code run.
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# Because the last fsync didn't do anything, here the file content matched what
# it was after the first fsync, before the holes were punched, and not what it
# was after the holes were punched.
echo "File content after:"
od -t x1 $SCRATCH_MNT/foo
This issue has been around since 2012, when the punch hole implementation
was added, commit 2aaa665581 ("Btrfs: add hole punching").
A test case for xfstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Our gluster boxes were hitting a problem where they'd run out of space when
updating the block group cache and therefore wouldn't be able to update the free
space inode. This is a problem because this is how we invalidate the cache and
protect ourselves from errors further down the stack, so if this fails we have
to abort the transaction so we make sure we don't end up with stale free space
cache. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We can have multiple fsync operations against the same file during the
same transaction and they can collect the same ordered extents while they
don't complete (still accessible from the inode's ordered tree). If this
happens, those ordered extents will never get their reference counts
decremented to 0, leading to memory leaks and inode leaks (an iput for an
ordered extent's inode is scheduled only when the ordered extent's refcount
drops to 0). The following sequence diagram explains this race:
CPU 1 CPU 2
btrfs_sync_file()
btrfs_sync_file()
mutex_lock(inode->i_mutex)
btrfs_log_inode()
btrfs_get_logged_extents()
--> collects ordered extent X
--> increments ordered
extent X's refcount
btrfs_submit_logged_extents()
mutex_unlock(inode->i_mutex)
mutex_lock(inode->i_mutex)
btrfs_sync_log()
btrfs_wait_logged_extents()
--> list_del_init(&ordered->log_list)
btrfs_log_inode()
btrfs_get_logged_extents()
--> Adds ordered extent X
to logged_list because
at this point:
list_empty(&ordered->log_list)
&& test_bit(BTRFS_ORDERED_LOGGED,
&ordered->flags) == 0
--> Increments ordered extent
X's refcount
--> check if ordered extent's io is
finished or not, start it if
necessary and wait for it to finish
--> sets bit BTRFS_ORDERED_LOGGED
on ordered extent X's flags
and adds it to trans->ordered
btrfs_sync_log() finishes
btrfs_submit_logged_extents()
btrfs_log_inode() finishes
mutex_unlock(inode->i_mutex)
btrfs_sync_file() finishes
btrfs_sync_log()
btrfs_wait_logged_extents()
--> Sees ordered extent X has the
bit BTRFS_ORDERED_LOGGED set in
its flags
--> X's refcount is untouched
btrfs_sync_log() finishes
btrfs_sync_file() finishes
btrfs_commit_transaction()
--> called by transaction kthread for e.g.
btrfs_wait_pending_ordered()
--> waits for ordered extent X to
complete
--> decrements ordered extent X's
refcount by 1 only, corresponding
to the increment done by the fsync
task ran by CPU 1
In the scenario of the above diagram, after the transaction commit,
the ordered extent will remain with a refcount of 1 forever, leaking
the ordered extent structure and preventing the i_count of its inode
from ever decreasing to 0, since the delayed iput is scheduled only
when the ordered extent's refcount drops to 0, preventing the inode
from ever being evicted by the VFS.
Fix this by using the flag BTRFS_ORDERED_LOGGED differently. Use it to
mean that an ordered extent is already being processed by an fsync call,
which will attach it to the current transaction, preventing it from being
collected by subsequent fsync operations against the same inode.
This race was introduced with the following change (added in 3.19 and
backported to stable 3.18 and 3.17):
Btrfs: make sure logged extents complete in the current transaction V3
commit 50d9aa99bd
I ran into this issue while running xfstests/generic/113 in a loop, which
failed about 1 out of 10 runs with the following warning in dmesg:
[ 2612.440038] WARNING: CPU: 4 PID: 22057 at fs/btrfs/disk-io.c:3558 free_fs_root+0x36/0x133 [btrfs]()
[ 2612.442810] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop processor parport_pc parport psmouse therma
l_sys i2c_piix4 serio_raw pcspkr evdev microcode button i2c_core ext4 crc16 jbd2 mbcache sd_mod sg sr_mod cdrom virtio_scsi ata_generic virtio_pci ata_piix virtio_ring libata virtio flo
ppy e1000 scsi_mod [last unloaded: btrfs]
[ 2612.452711] CPU: 4 PID: 22057 Comm: umount Tainted: G W 3.19.0-rc5-btrfs-next-4+ #1
[ 2612.454921] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
[ 2612.457709] 0000000000000009 ffff8801342c3c78 ffffffff8142425e ffff88023ec8f2d8
[ 2612.459829] 0000000000000000 ffff8801342c3cb8 ffffffff81045308 ffff880046460000
[ 2612.461564] ffffffffa036da56 ffff88003d07b000 ffff880046460000 ffff880046460068
[ 2612.463163] Call Trace:
[ 2612.463719] [<ffffffff8142425e>] dump_stack+0x4c/0x65
[ 2612.464789] [<ffffffff81045308>] warn_slowpath_common+0xa1/0xbb
[ 2612.466026] [<ffffffffa036da56>] ? free_fs_root+0x36/0x133 [btrfs]
[ 2612.467247] [<ffffffff810453c5>] warn_slowpath_null+0x1a/0x1c
[ 2612.468416] [<ffffffffa036da56>] free_fs_root+0x36/0x133 [btrfs]
[ 2612.469625] [<ffffffffa036f2a7>] btrfs_drop_and_free_fs_root+0x93/0x9b [btrfs]
[ 2612.471251] [<ffffffffa036f353>] btrfs_free_fs_roots+0xa4/0xd6 [btrfs]
[ 2612.472536] [<ffffffff8142612e>] ? wait_for_completion+0x24/0x26
[ 2612.473742] [<ffffffffa0370bbc>] close_ctree+0x1f3/0x33c [btrfs]
[ 2612.475477] [<ffffffff81059d1d>] ? destroy_workqueue+0x148/0x1ba
[ 2612.476695] [<ffffffffa034e3da>] btrfs_put_super+0x19/0x1b [btrfs]
[ 2612.477911] [<ffffffff81153e53>] generic_shutdown_super+0x73/0xef
[ 2612.479106] [<ffffffff811540e2>] kill_anon_super+0x13/0x1e
[ 2612.480226] [<ffffffffa034e1e3>] btrfs_kill_super+0x17/0x23 [btrfs]
[ 2612.481471] [<ffffffff81154307>] deactivate_locked_super+0x3b/0x50
[ 2612.482686] [<ffffffff811547a7>] deactivate_super+0x3f/0x43
[ 2612.483791] [<ffffffff8116b3ed>] cleanup_mnt+0x59/0x78
[ 2612.484842] [<ffffffff8116b44c>] __cleanup_mnt+0x12/0x14
[ 2612.485900] [<ffffffff8105d019>] task_work_run+0x8f/0xbc
[ 2612.486960] [<ffffffff810028d8>] do_notify_resume+0x5a/0x6b
[ 2612.488083] [<ffffffff81236e5b>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[ 2612.489333] [<ffffffff8142a17f>] int_signal+0x12/0x17
[ 2612.490353] ---[ end trace 54a960a6bdcb8d93 ]---
[ 2612.557253] VFS: Busy inodes after unmount of sdb. Self-destruct in 5 seconds. Have a nice day...
Kmemleak confirmed the ordered extent leak (and btrfs inode specific
structures such as delayed nodes):
$ cat /sys/kernel/debug/kmemleak
unreferenced object 0xffff880154290db0 (size 576):
comm "btrfsck", pid 21980, jiffies 4295542503 (age 1273.412s)
hex dump (first 32 bytes):
01 40 00 00 01 00 00 00 b0 1d f1 4e 01 88 ff ff .@.........N....
00 00 00 00 00 00 00 00 c8 0d 29 54 01 88 ff ff ..........)T....
backtrace:
[<ffffffff8141d74d>] kmemleak_update_trace+0x4c/0x6a
[<ffffffff8122f2c0>] radix_tree_node_alloc+0x6d/0x83
[<ffffffff8122fb26>] __radix_tree_create+0x109/0x190
[<ffffffff8122fbdd>] radix_tree_insert+0x30/0xac
[<ffffffffa03b9bde>] btrfs_get_or_create_delayed_node+0x130/0x187 [btrfs]
[<ffffffffa03bb82d>] btrfs_delayed_delete_inode_ref+0x32/0xac [btrfs]
[<ffffffffa0379dae>] __btrfs_unlink_inode+0xee/0x288 [btrfs]
[<ffffffffa037c715>] btrfs_unlink_inode+0x1e/0x40 [btrfs]
[<ffffffffa037c797>] btrfs_unlink+0x60/0x9b [btrfs]
[<ffffffff8115d7f0>] vfs_unlink+0x9c/0xed
[<ffffffff8115f5de>] do_unlinkat+0x12c/0x1fa
[<ffffffff811601a7>] SyS_unlinkat+0x29/0x2b
[<ffffffff81429e92>] system_call_fastpath+0x12/0x17
[<ffffffffffffffff>] 0xffffffffffffffff
unreferenced object 0xffff88014ef11db0 (size 576):
comm "rm", pid 22009, jiffies 4295542593 (age 1273.052s)
hex dump (first 32 bytes):
02 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 c8 1d f1 4e 01 88 ff ff ...........N....
backtrace:
[<ffffffff8141d74d>] kmemleak_update_trace+0x4c/0x6a
[<ffffffff8122f2c0>] radix_tree_node_alloc+0x6d/0x83
[<ffffffff8122fb26>] __radix_tree_create+0x109/0x190
[<ffffffff8122fbdd>] radix_tree_insert+0x30/0xac
[<ffffffffa03b9bde>] btrfs_get_or_create_delayed_node+0x130/0x187 [btrfs]
[<ffffffffa03bb82d>] btrfs_delayed_delete_inode_ref+0x32/0xac [btrfs]
[<ffffffffa0379dae>] __btrfs_unlink_inode+0xee/0x288 [btrfs]
[<ffffffffa037c715>] btrfs_unlink_inode+0x1e/0x40 [btrfs]
[<ffffffffa037c797>] btrfs_unlink+0x60/0x9b [btrfs]
[<ffffffff8115d7f0>] vfs_unlink+0x9c/0xed
[<ffffffff8115f5de>] do_unlinkat+0x12c/0x1fa
[<ffffffff811601a7>] SyS_unlinkat+0x29/0x2b
[<ffffffff81429e92>] system_call_fastpath+0x12/0x17
[<ffffffffffffffff>] 0xffffffffffffffff
unreferenced object 0xffff8800336feda8 (size 584):
comm "aio-stress", pid 22031, jiffies 4295543006 (age 1271.400s)
hex dump (first 32 bytes):
00 40 3e 00 00 00 00 00 00 00 8f 42 00 00 00 00 .@>........B....
00 00 01 00 00 00 00 00 00 00 01 00 00 00 00 00 ................
backtrace:
[<ffffffff8114eb34>] create_object+0x172/0x29a
[<ffffffff8141d790>] kmemleak_alloc+0x25/0x41
[<ffffffff81141ae6>] kmemleak_alloc_recursive.constprop.52+0x16/0x18
[<ffffffff81145288>] kmem_cache_alloc+0xf7/0x198
[<ffffffffa0389243>] __btrfs_add_ordered_extent+0x43/0x309 [btrfs]
[<ffffffffa038968b>] btrfs_add_ordered_extent_dio+0x12/0x14 [btrfs]
[<ffffffffa03810e2>] btrfs_get_blocks_direct+0x3ef/0x571 [btrfs]
[<ffffffff81181349>] do_blockdev_direct_IO+0x62a/0xb47
[<ffffffff8118189a>] __blockdev_direct_IO+0x34/0x36
[<ffffffffa03776e5>] btrfs_direct_IO+0x16a/0x1e8 [btrfs]
[<ffffffff81100373>] generic_file_direct_write+0xb8/0x12d
[<ffffffffa038615c>] btrfs_file_write_iter+0x24b/0x42f [btrfs]
[<ffffffff8118bb0d>] aio_run_iocb+0x2b7/0x32e
[<ffffffff8118c99a>] do_io_submit+0x26e/0x2ff
[<ffffffff8118ca3b>] SyS_io_submit+0x10/0x12
[<ffffffff81429e92>] system_call_fastpath+0x12/0x17
CC: <stable@vger.kernel.org> # 3.19, 3.18 and 3.17
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Since commit 8e5cfb55d3 (Btrfs: Make raid_map array be inlined in
btrfs_bio structure), the raid map array is allocated along with the
btrfs bio in alloc_btrfs_bio. The calculation used to decide how much
we need to allocate was using the wrong parameter passed into the
allocation function.
The passed in real_stripes will be zero if a target replace operation
is not currently running. We want to use total_stripes instead.
Signed-off-by: Chris Mason <clm@fb.com>
Reported-by: David Sterba <dsterba@suse.cz>
Tested-by: David Sterba <dsterba@suse.cz>
If we are recording in the tree log that an inode has new names (new hard
links were added), we would drop items, belonging to the inode, that we
shouldn't:
1) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime
flags, we ended up dropping all the extent and xattr items that were
previously logged. This was done only in memory, since logging a new
name doesn't imply syncing the log;
2) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime
flags, we ended up dropping all the xattr items that were previously
logged. Like the case before, this was done only in memory because
logging a new name doesn't imply syncing the log.
This led to some surprises in scenarios such as the following:
1) write some extents to an inode;
2) fsync the inode;
3) truncate the inode or delete/modify some of its xattrs
4) add a new hard link for that inode
5) fsync some other file, to force the log tree to be durably persisted
6) power failure happens
The next time the fs is mounted, the fsync log replay code is executed,
and the resulting file doesn't have the content it had when the last fsync
against it was performed, instead if has a content matching what it had
when the last transaction commit happened.
So change the behaviour such that when a new name is logged, only the inode
item and reference items are processed.
This is easy to reproduce with the test I just made for xfstests, whose
main body is:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our test file with some data.
$XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Make sure the file is durably persisted.
sync
# Append some data to our file, to increase its size.
$XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Fsync the file, so from this point on if a crash/power failure happens, our
# new data is guaranteed to be there next time the fs is mounted.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
# Now shrink our file to 5000 bytes.
$XFS_IO_PROG -c "truncate 5000" $SCRATCH_MNT/foo
# Now do an expanding truncate to a size larger than what we had when we last
# fsync'ed our file. This is just to verify that after power failure and
# replaying the fsync log, our file matches what it was when we last fsync'ed
# it - 12Kb size, first 8Kb of data had a value of 0xaa and the last 4Kb of
# data had a value of 0xcc.
$XFS_IO_PROG -c "truncate 32K" $SCRATCH_MNT/foo
# Add one hard link to our file. This made btrfs drop all of our file's
# metadata from the fsync log, including the metadata relative to the
# extent we just wrote and fsync'ed. This change was made only to the fsync
# log in memory, so adding the hard link alone doesn't change the persisted
# fsync log. This happened because the previous truncates set the runtime
# flag BTRFS_INODE_NEEDS_FULL_SYNC in the btrfs inode structure.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link
# Now make sure the in memory fsync log is durably persisted.
# Creating and fsync'ing another file will do it.
# After this our persisted fsync log will no longer have metadata for our file
# foo that points to the extent we wrote and fsync'ed before.
touch $SCRATCH_MNT/bar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar
# As expected, before the crash/power failure, we should be able to see a file
# with a size of 32Kb, with its first 5000 bytes having the value 0xaa and all
# the remaining bytes with value 0x00.
echo "File content before:"
od -t x1 $SCRATCH_MNT/foo
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# After mounting the fs again, the fsync log was replayed.
# The expected result is to see a file with a size of 12Kb, with its first 8Kb
# of data having the value 0xaa and its last 4Kb of data having a value of 0xcc.
# The btrfs bug used to leave the file as it used te be as of the last
# transaction commit - that is, with a size of 8Kb with all bytes having a
# value of 0xaa.
echo "File content after:"
od -t x1 $SCRATCH_MNT/foo
The test case for xfstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We have a scenario where after the fsync log replay we can lose file data
that had been previously fsync'ed if we added an hard link for our inode
and after that we sync'ed the fsync log (for example by fsync'ing some
other file or directory).
This is because when adding an hard link we updated the inode item in the
log tree with an i_size value of 0. At that point the new inode item was
in memory only and a subsequent fsync log replay would not make us lose
the file data. However if after adding the hard link we sync the log tree
to disk, by fsync'ing some other file or directory for example, we ended
up losing the file data after log replay, because the inode item in the
persisted log tree had an an i_size of zero.
This is easy to reproduce, and the following excerpt from my test for
xfstests shows this:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create one file with data and fsync it.
# This made the btrfs fsync log persist the data and the inode metadata with
# a correct inode->i_size (4096 bytes).
$XFS_IO_PROG -f -c "pwrite -S 0xaa -b 4K 0 4K" -c "fsync" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Now add one hard link to our file. This made the btrfs code update the fsync
# log, in memory only, with an inode metadata having a size of 0.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link
# Now force persistence of the fsync log to disk, for example, by fsyncing some
# other file.
touch $SCRATCH_MNT/bar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar
# Before a power loss or crash, we could read the 4Kb of data from our file as
# expected.
echo "File content before:"
od -t x1 $SCRATCH_MNT/foo
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# After the fsync log replay, because the fsync log had a value of 0 for our
# inode's i_size, we couldn't read anymore the 4Kb of data that we previously
# wrote and fsync'ed. The size of the file became 0 after the fsync log replay.
echo "File content after:"
od -t x1 $SCRATCH_MNT/foo
Another alternative test, that doesn't need to fsync an inode in the same
transaction it was created, is:
_scratch_mkfs >> $seqres.full 2>&1
_init_flakey
_mount_flakey
# Create our test file with some data.
$XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Make sure the file is durably persisted.
sync
# Append some data to our file, to increase its size.
$XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \
$SCRATCH_MNT/foo | _filter_xfs_io
# Fsync the file, so from this point on if a crash/power failure happens, our
# new data is guaranteed to be there next time the fs is mounted.
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo
# Add one hard link to our file. This made btrfs write into the in memory fsync
# log a special inode with generation 0 and an i_size of 0 too. Note that this
# didn't update the inode in the fsync log on disk.
ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link
# Now make sure the in memory fsync log is durably persisted.
# Creating and fsync'ing another file will do it.
touch $SCRATCH_MNT/bar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar
# As expected, before the crash/power failure, we should be able to read the
# 12Kb of file data.
echo "File content before:"
od -t x1 $SCRATCH_MNT/foo
# Simulate a crash/power loss.
_load_flakey_table $FLAKEY_DROP_WRITES
_unmount_flakey
_load_flakey_table $FLAKEY_ALLOW_WRITES
_mount_flakey
# After mounting the fs again, the fsync log was replayed.
# The btrfs fsync log replay code didn't update the i_size of the persisted
# inode because the inode item in the log had a special generation with a
# value of 0 (and it couldn't know the correct i_size, since that inode item
# had a 0 i_size too). This made the last 4Kb of file data inaccessible and
# effectively lost.
echo "File content after:"
od -t x1 $SCRATCH_MNT/foo
This isn't a new issue/regression. This problem has been around since the
log tree code was added in 2008:
Btrfs: Add a write ahead tree log to optimize synchronous operations
(commit e02119d5a7)
Test cases for xfstests follow soon.
CC: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
On our gluster boxes we stream large tar balls of backups onto our fses. With
160gb of ram this means we get really large contiguous ranges of dirty data, but
the way our ENOSPC stuff works is that as long as it's contiguous we only hold
metadata reservation for one extent. The problem is we limit our extents to
128mb, so we'll end up with at least 800 extents so our enospc accounting is
quite a bit lower than what we need. To keep track of this make sure we
increase outstanding_extents for every multiple of the max extent size so we can
be sure to have enough reserved metadata space. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
We do this to get the space accounting, but this is just needless churn on the
io_tree, so just drop setting/clearing delalloc and just drop the reserved data
space when we have a successfull allocation. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
We have this weird dance where we always inc outstanding_extents when we do a
O_DIRECT write, even if we allocate the entire range. To get around this we
also drop the metadata space if we successfully write. This is an unnecessary
dance, we only need to jack up outstanding_extents if we don't satisfy the
entire range request in get_blocks_direct, otherwise we are good using our
original reservation. So drop the unconditional inc and the drop of the
metadata space that we have for the unconditional inc. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs will report NO_SPACE when we create and remove files for several times,
and we can't write to filesystem until mount it again.
Steps to reproduce:
1: Create a single-dev btrfs fs with default option
2: Write a file into it to take up most fs space
3: Delete above file
4: Wait about 100s to let chunk removed
5: goto 2
Script is like following:
#!/bin/bash
# Recommend 1.2G space, too large disk will make test slow
DEV="/dev/sda16"
MNT="/mnt/tmp"
dev_size="$(lsblk -bn -o SIZE "$DEV")" || exit 2
file_size_m=$((dev_size * 75 / 100 / 1024 / 1024))
echo "Loop write ${file_size_m}M file on $((dev_size / 1024 / 1024))M dev"
for ((i = 0; i < 10; i++)); do umount "$MNT" 2>/dev/null; done
echo "mkfs $DEV"
mkfs.btrfs -f "$DEV" >/dev/null || exit 2
echo "mount $DEV $MNT"
mount "$DEV" "$MNT" || exit 2
for ((loop_i = 0; loop_i < 20; loop_i++)); do
echo
echo "loop $loop_i"
echo "dd file..."
cmd=(dd if=/dev/zero of="$MNT"/file0 bs=1M count="$file_size_m")
"${cmd[@]}" 2>/dev/null || {
# NO_SPACE error triggered
echo "dd failed: ${cmd[*]}"
exit 1
}
echo "rm file..."
rm -f "$MNT"/file0 || exit 2
for ((i = 0; i < 10; i++)); do
df "$MNT" | tail -1
sleep 10
done
done
Reason:
It is triggered by commit: 47ab2a6c68
which is used to remove empty block groups automatically, but the
reason is not in that patch. Code before works well because btrfs
don't need to create and delete chunks so many times with high
complexity.
Above bug is caused by many reason, any of them can trigger it.
Reason1:
When we remove some continuous chunks but leave other chunks after,
these disk space should be used by chunk-recreating, but in current
code, only first create will successed.
Fixed by Forrest Liu <forrestl@synology.com> in:
Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
Reason2:
contains_pending_extent() return wrong value in calculation.
Fixed by Forrest Liu <forrestl@synology.com> in:
Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole
Reason3:
btrfs_check_data_free_space() try to commit transaction and retry
allocating chunk when the first allocating failed, but space_info->full
is set in first allocating, and prevent second allocating in retry.
Fixed in this patch by clear space_info->full in commit transaction.
Tested for severial times by above script.
Changelog v3->v4:
use light weight int instead of atomic_t to record have_remove_bgs in
transaction, suggested by:
Josef Bacik <jbacik@fb.com>
Changelog v2->v3:
v2 fixed the bug by adding more commit-transaction, but we
only need to reclaim space when we are really have no space for
new chunk, noticed by:
Filipe David Manana <fdmanana@gmail.com>
Actually, our code already have this type of commit-and-retry,
we only need to make it working with removed-bgs.
v3 fixed the bug with above way.
Changelog v1->v2:
v1 will introduce a new bug when delete and create chunk in same disk
space in same transaction, noticed by:
Filipe David Manana <fdmanana@gmail.com>
V2 fix this bug by commit transaction after remove block grops.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Suggested-by: Filipe David Manana <fdmanana@gmail.com>
Suggested-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
My previous patch "Btrfs: fix scrub race leading to use-after-free"
introduced the possibility to sleep in an atomic context, which happens
when the scrub_lock mutex is held at the time scrub_pending_bio_dec()
is called - this function can be called under an atomic context.
Chris ran into this in a debug kernel which gave the following trace:
[ 1928.950319] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:621
[ 1928.967334] in_atomic(): 1, irqs_disabled(): 0, pid: 149670, name: fsstress
[ 1928.981324] INFO: lockdep is turned off.
[ 1928.989244] CPU: 24 PID: 149670 Comm: fsstress Tainted: G W 3.19.0-rc7-mason+ #41
[ 1929.006418] Hardware name: ZTSYSTEMS Echo Ridge T4 /A9DRPF-10D, BIOS 1.07 05/10/2012
[ 1929.022207] ffffffff81a22cf8 ffff881076e03b78 ffffffff816b8dd9 ffff881076e03b78
[ 1929.037267] ffff880d8e828710 ffff881076e03ba8 ffffffff810856c4 ffff881076e03bc8
[ 1929.052315] 0000000000000000 000000000000026d ffffffff81a22cf8 ffff881076e03bd8
[ 1929.067381] Call Trace:
[ 1929.072344] <IRQ> [<ffffffff816b8dd9>] dump_stack+0x4f/0x6e
[ 1929.083968] [<ffffffff810856c4>] ___might_sleep+0x174/0x230
[ 1929.095352] [<ffffffff810857d2>] __might_sleep+0x52/0x90
[ 1929.106223] [<ffffffff816bb68f>] mutex_lock_nested+0x2f/0x3b0
[ 1929.117951] [<ffffffff810ab37d>] ? trace_hardirqs_on+0xd/0x10
[ 1929.129708] [<ffffffffa05dc838>] scrub_pending_bio_dec+0x38/0x70 [btrfs]
[ 1929.143370] [<ffffffffa05dd0e0>] scrub_parity_bio_endio+0x50/0x70 [btrfs]
[ 1929.157191] [<ffffffff812fa603>] bio_endio+0x53/0xa0
[ 1929.167382] [<ffffffffa05f96bc>] rbio_orig_end_io+0x7c/0xa0 [btrfs]
[ 1929.180161] [<ffffffffa05f97ba>] raid_write_parity_end_io+0x5a/0x80 [btrfs]
[ 1929.194318] [<ffffffff812fa603>] bio_endio+0x53/0xa0
[ 1929.204496] [<ffffffff8130401b>] blk_update_request+0x1eb/0x450
[ 1929.216569] [<ffffffff81096e58>] ? trigger_load_balance+0x78/0x500
[ 1929.229176] [<ffffffff8144c74d>] scsi_end_request+0x3d/0x1f0
[ 1929.240740] [<ffffffff8144ccac>] scsi_io_completion+0xac/0x5b0
[ 1929.252654] [<ffffffff81441c50>] scsi_finish_command+0xf0/0x150
[ 1929.264725] [<ffffffff8144d317>] scsi_softirq_done+0x147/0x170
[ 1929.276635] [<ffffffff8130ace6>] blk_done_softirq+0x86/0xa0
[ 1929.288014] [<ffffffff8105d92e>] __do_softirq+0xde/0x600
[ 1929.298885] [<ffffffff8105df6d>] irq_exit+0xbd/0xd0
(...)
Fix this by using a reference count on the scrub context structure
instead of locking the scrub_lock mutex.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
"notused" is not necessary. Set 1 to the first entry is enough.
Signed-off-by: Takeuchi Satoru <takeuchi_satoru@jp.fujitsu.com
Cc: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
o removed an unecessary INIT_LIST_HEAD after LIST_HEAD
o merge a declare & INIT_LIST_HEAD pair into one LIST_HEAD
Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Below test will fail currently:
mkfs.ext4 -F /dev/sda
btrfs-convert /dev/sda
mount /dev/sda /mnt
btrfs device add -f /dev/sdb /mnt
btrfs balance start -v -dconvert=raid1 -mconvert=raid1 /mnt
The reason is there are some block groups with usage 0, but the whole
disk hasn't free space to allocate new chunk, so we even can't set such
block group readonly. This patch deletes the chunk allocation when
setting block group ro. For META, we already have reserve. But for
SYSTEM, we don't have, so the check_system_chunk is still required.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Verify that the sys_array has enough bytes to read the next item.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
There's a pointer to buffer, integer offset and offset passed as
pointer, try to find matching names for them.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Verify that possible minimum and maximum size is set, validity of
contents is checked in btrfs_read_sys_array.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
I received a few crafted images from Jiri, all got through the recently
added superblock checks. The lower bounds checks for num_devices and
sector/node -sizes were missing and caused a crash during mount.
Tools for symbolic code execution were used to prepare the images
contents.
Reported-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
This patch adds a new member to the 'struct btrfs_inode' structure to hold
the file creation time.
Signed-off-by: chandan <chandanrmail@gmail.com>
[refreshed, removed btrfs_inode_otime]
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_alloc_tree_block() returns an extent buffer on which a blocked lock has
been taken. Hence assign the appropriate value to path->locks[level].
Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Chris Mason <clm@fb.com>
There isn't any real use of following members of struct btrfs_root
so delete them.
struct kobject root_kobj;
struct completion kobj_unregister;
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
In function qgroup_excl_accounting(), we need to WARN when
qg->excl is less than what we want to free, same to child
and parents. But currently, for parent qgroup, the WARN_ON()
is located after freeing qg->excl. It will WARN out even we
free it normally.
This patch move this WARN_ON() before freeing qg->excl.
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
"run_most" is not used anymore.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
refs is better than ref_count to record a struct's ref count.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Suggested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
So we can check raid56 with:
(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
instead of long:
(map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Corrent code use many kinds of "clever" way to determine operation
target's raid type, as:
raid_map != NULL
or
raid_map[MAX_NR] == RAID[56]_Q_STRIPE
To make code easy to maintenance, this patch put raid type into
bbio, and we can always get raid type from bbio with a "stupid"
way.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
scrub_setup_recheck_block() have many arguments but most of them
can be get from one of them, we can remove them to make code clean.
Some other cleanup for that function also included in this patch.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
The code are similar, combine them to make code clean and easy to maintenance.
Some lost condition are also completed with benefit of this combination.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
In corrent code, code of finding-right-mirror and writing-to-target
are mixed in logic, if we find a right mirror but failed in writing
to target, it will treat as "hadn't found right block", and fill the
target with sblock_bad.
Actually, "failed in writing to target" does not mean "source
block is wrong", this patch separate above two condition in logic,
and do some cleanup to make code clean.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Use break instead of useless loop should be more suitable in this
case.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
1: Remove no-need DEFINE_WAIT(wait)
2: Add likely() for BTRFS_FS_STATE_DEV_REPLACING condition
3: Use while loop instead of goto
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
It is always 1 in this place, because !1 case was already jumped
out in previous code.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
if (sctx->is_dev_replace && !is_metadata && !have_csum) {
...
goto nodatasum_case;
}
...
nodatasum_case:
WARN_ON(sctx->is_dev_replace);
In above code, nodatasum_case marker should be moved after
WARN_ON().
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
1: ref_count is simple than current RBIO_HOLD_BBIO_MAP_BIT flag
to keep btrfs_bio's memory in raid56 recovery implement.
2: free function for bbio will make code clean and flexible, plus
forced data type checking in compile.
Changelog v1->v2:
Rename following by David Sterba's suggestion:
put_btrfs_bio() -> btrfs_put_bio()
get_btrfs_bio() -> btrfs_get_bio()
bbio->ref_count -> bbio->refs
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
It can make code more simple and clear, we need not care about
free bbio and raid_map together.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
It can avoid complex calculation of real stripes in sort,
moreover, we can clean up code of sorting tgtdev_map because it
will be in order initially.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
We add the number of stripes on target devices into bbio->num_stripes
if we are under device replacement, and we just sort the raid_map of
those stripes that not on the target devices, so if when we need
real raid_map, we need skip the stripes on the target devices.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>