Commit Graph

3537 Commits

Author SHA1 Message Date
K Prateek Nayak
f5b2eeb499 sched/fair: Consider CPU affinity when allowing NUMA imbalance in find_idlest_group()
In the case of systems containing multiple LLCs per socket, like
AMD Zen systems, users want to spread bandwidth hungry applications
across multiple LLCs. Stream is one such representative workload where
the best performance is obtained by limiting one stream thread per LLC.
To ensure this, users are known to pin the tasks to a specify a subset
of the CPUs consisting of one CPU per LLC while running such bandwidth
hungry tasks.

Suppose we kickstart a multi-threaded task like stream with 8 threads
using taskset or numactl to run on a subset of CPUs on a 2 socket Zen3
server where each socket contains 128 CPUs
(0-63,128-191 in one socket, 64-127,192-255 in another socket)

Eg: numactl -C 0,16,32,48,64,80,96,112 ./stream8

Here each CPU in the list is from a different LLC and 4 of those LLCs
are on one socket, while the other 4 are on another socket.

Ideally we would prefer that each stream thread runs on a different
CPU from the allowed list of CPUs. However, the current heuristics in
find_idlest_group() do not allow this during the initial placement.

Suppose the first socket (0-63,128-191) is our local group from which
we are kickstarting the stream tasks. The first four stream threads
will be placed in this socket. When it comes to placing the 5th
thread, all the allowed CPUs are from the local group (0,16,32,48)
would have been taken.

However, the current scheduler code simply checks if the number of
tasks in the local group is fewer than the allowed numa-imbalance
threshold. This threshold was previously 25% of the NUMA domain span
(in this case threshold = 32) but after the v6 of Mel's patchset
"Adjust NUMA imbalance for multiple LLCs", got merged in sched-tip,
Commit: e496132ebe ("sched/fair: Adjust the allowed NUMA imbalance
when SD_NUMA spans multiple LLCs") it is now equal to number of LLCs
in the NUMA domain, for processors with multiple LLCs.
(in this case threshold = 8).

For this example, the number of tasks will always be within threshold
and thus all the 8 stream threads will be woken up on the first socket
thereby resulting in sub-optimal performance.

The following sched_wakeup_new tracepoint output shows the initial
placement of tasks in the current tip/sched/core on the Zen3 machine:

stream-5313    [016] d..2.   627.005036: sched_wakeup_new: comm=stream pid=5315 prio=120 target_cpu=032
stream-5313    [016] d..2.   627.005086: sched_wakeup_new: comm=stream pid=5316 prio=120 target_cpu=048
stream-5313    [016] d..2.   627.005141: sched_wakeup_new: comm=stream pid=5317 prio=120 target_cpu=000
stream-5313    [016] d..2.   627.005183: sched_wakeup_new: comm=stream pid=5318 prio=120 target_cpu=016
stream-5313    [016] d..2.   627.005218: sched_wakeup_new: comm=stream pid=5319 prio=120 target_cpu=016
stream-5313    [016] d..2.   627.005256: sched_wakeup_new: comm=stream pid=5320 prio=120 target_cpu=016
stream-5313    [016] d..2.   627.005295: sched_wakeup_new: comm=stream pid=5321 prio=120 target_cpu=016

Once the first four threads are distributed among the allowed CPUs of
socket one, the rest of the treads start piling on these same CPUs
when clearly there are CPUs on the second socket that can be used.

Following the initial pile up on a small number of CPUs, though the
load-balancer eventually kicks in, it takes a while to get to {4}{4}
and even {4}{4} isn't stable as we observe a bunch of ping ponging
between {4}{4} to {5}{3} and back before a stable state is reached
much later (1 Stream thread per allowed CPU) and no more migration is
required.

We can detect this piling and avoid it by checking if the number of
allowed CPUs in the local group are fewer than the number of tasks
running in the local group and use this information to spread the
5th task out into the next socket (after all, the goal in this
slowpath is to find the idlest group and the idlest CPU during the
initial placement!).

The following sched_wakeup_new tracepoint output shows the initial
placement of tasks after adding this fix on the Zen3 machine:

stream-4485    [016] d..2.   230.784046: sched_wakeup_new: comm=stream pid=4487 prio=120 target_cpu=032
stream-4485    [016] d..2.   230.784123: sched_wakeup_new: comm=stream pid=4488 prio=120 target_cpu=048
stream-4485    [016] d..2.   230.784167: sched_wakeup_new: comm=stream pid=4489 prio=120 target_cpu=000
stream-4485    [016] d..2.   230.784222: sched_wakeup_new: comm=stream pid=4490 prio=120 target_cpu=112
stream-4485    [016] d..2.   230.784271: sched_wakeup_new: comm=stream pid=4491 prio=120 target_cpu=096
stream-4485    [016] d..2.   230.784322: sched_wakeup_new: comm=stream pid=4492 prio=120 target_cpu=080
stream-4485    [016] d..2.   230.784368: sched_wakeup_new: comm=stream pid=4493 prio=120 target_cpu=064

We see that threads are using all of the allowed CPUs and there is
no pileup.

No output is generated for tracepoint sched_migrate_task with this
patch due to a perfect initial placement which removes the need
for balancing later on - both across NUMA boundaries and within
NUMA boundaries for stream.

Following are the results from running 8 Stream threads with and
without pinning on a dual socket Zen3 Machine (2 x 64C/128T):

During the testing of this patch, the tip sched/core was at
commit: 089c02ae27 "ftrace: Use preemption model accessors for trace
header printout"

Pinning is done using: numactl -C 0,16,32,48,64,80,96,112 ./stream8

	           5.18.0-rc1               5.18.0-rc1                5.18.0-rc1
               tip sched/core           tip sched/core            tip sched/core
                 (no pinning)                + pinning              + this-patch
								       + pinning

 Copy:   109364.74 (0.00 pct)     94220.50 (-13.84 pct)    158301.28 (44.74 pct)
Scale:   109670.26 (0.00 pct)     90210.59 (-17.74 pct)    149525.64 (36.34 pct)
  Add:   129029.01 (0.00 pct)    101906.00 (-21.02 pct)    186658.17 (44.66 pct)
Triad:   127260.05 (0.00 pct)    106051.36 (-16.66 pct)    184327.30 (44.84 pct)

Pinning currently hurts the performance compared to unbound case on
tip/sched/core. With the addition of this patch, we are able to
outperform tip/sched/core by a good margin with pinning.

Following are the results from running 16 Stream threads with and
without pinning on a dual socket IceLake Machine (2 x 32C/64T):

NUMA Topology of Intel Skylake machine:
Node 1: 0,2,4,6 ... 126 (Even numbers)
Node 2: 1,3,5,7 ... 127 (Odd numbers)

Pinning is done using: numactl -C 0-15 ./stream16

	           5.18.0-rc1               5.18.0-rc1                5.18.0-rc1
               tip sched/core           tip sched/core            tip sched/core
                 (no pinning)                 +pinning              + this-patch
								       + pinning

 Copy:    85815.31 (0.00 pct)     149819.21 (74.58 pct)    156807.48 (82.72 pct)
Scale:    64795.60 (0.00 pct)      97595.07 (50.61 pct)     99871.96 (54.13 pct)
  Add:    71340.68 (0.00 pct)     111549.10 (56.36 pct)    114598.33 (60.63 pct)
Triad:    68890.97 (0.00 pct)     111635.16 (62.04 pct)    114589.24 (66.33 pct)

In case of Icelake machine, with single LLC per socket, pinning across
the two sockets reduces cache contention, thus showing great
improvement in pinned case which is further benefited by this patch.

Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lkml.kernel.org/r/20220407111222.22649-1-kprateek.nayak@amd.com
2022-06-13 10:30:00 +02:00
Mel Gorman
026b98a93b sched/numa: Adjust imb_numa_nr to a better approximation of memory channels
For a single LLC per node, a NUMA imbalance is allowed up until 25%
of CPUs sharing a node could be active. One intent of the cut-off is
to avoid an imbalance of memory channels but there is no topological
information based on active memory channels. Furthermore, there can
be differences between nodes depending on the number of populated
DIMMs.

A cut-off of 25% was arbitrary but generally worked. It does have a severe
corner cases though when an parallel workload is using 25% of all available
CPUs over-saturates memory channels. This can happen due to the initial
forking of tasks that get pulled more to one node after early wakeups
(e.g. a barrier synchronisation) that is not quickly corrected by the
load balancer. The LB may fail to act quickly as the parallel tasks are
considered to be poor migrate candidates due to locality or cache hotness.

On a range of modern Intel CPUs, 12.5% appears to be a better cut-off
assuming all memory channels are populated and is used as the new cut-off
point. A minimum of 1 is specified to allow a communicating pair to
remain local even for CPUs with low numbers of cores. For modern AMDs,
there are multiple LLCs and are not affected.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20220520103519.1863-5-mgorman@techsingularity.net
2022-06-13 10:30:00 +02:00
Mel Gorman
cb29a5c19d sched/numa: Apply imbalance limitations consistently
The imbalance limitations are applied inconsistently at fork time
and at runtime. At fork, a new task can remain local until there are
too many running tasks even if the degree of imbalance is larger than
NUMA_IMBALANCE_MIN which is different to runtime. Secondly, the imbalance
figure used during load balancing is different to the one used at NUMA
placement. Load balancing uses the number of tasks that must move to
restore imbalance where as NUMA balancing uses the total imbalance.

In combination, it is possible for a parallel workload that uses a small
number of CPUs without applying scheduler policies to have very variable
run-to-run performance.

[lkp@intel.com: Fix build breakage for arc-allyesconfig]

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20220520103519.1863-4-mgorman@techsingularity.net
2022-06-13 10:29:59 +02:00
Mel Gorman
13ede33150 sched/numa: Do not swap tasks between nodes when spare capacity is available
If a destination node has spare capacity but there is an imbalance then
two tasks are selected for swapping. If the tasks have no numa group
or are within the same NUMA group, it's simply shuffling tasks around
without having any impact on the compute imbalance. Instead, it's just
punishing one task to help another.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20220520103519.1863-3-mgorman@techsingularity.net
2022-06-13 10:29:59 +02:00
Mel Gorman
70ce3ea9aa sched/numa: Initialise numa_migrate_retry
On clone, numa_migrate_retry is inherited from the parent which means
that the first NUMA placement of a task is non-deterministic. This
affects when load balancing recognises numa tasks and whether to
migrate "regular", "remote" or "all" tasks between NUMA scheduler
domains.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20220520103519.1863-2-mgorman@techsingularity.net
2022-06-13 10:29:59 +02:00
Linus Torvalds
bc1e02c3e5 Fix the fallout of sysctl code move which placed the init function wrong.
-----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKcc+ATHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYobuAD/i9gZZ1b1Qtr9vCeioy8hXkP1QltXC5
 sBK/l+LH8kWMi2eQtqhr5T8Xhca0K84Ml2gCLimnhX5PZxUJ7VTL9DVhhU0vPbFx
 7dKVAF6xU6B0gV92Ojn4ztHXM/qulqbOExESaxOXpIQ8Rh5QUqokVSeTFVzQmxve
 GykHUGK6DFi3+W1aID4oW5BsGgG1i+5Qn4HuSP35vfvS4e0K056s5ANfJdzt4+Sz
 q4APbOrB5Dgbg351vRk+ms49TariVrdWOBc4ujPAYJms+oCrDHpTbHtTAKt/n1UF
 z5AbfFkebSK7hf2nplo1Qr+QZ0vLlWchbc+IdjhPvkXrZwqbgdJKJUznieHyUEOO
 xUUYKErEAcDNuF6wkhum5hhRARuHpHOdd6qAIFGsexTN7gOIgFF3Mdq2GD4YBebF
 O86tinGdOD1hzzxzW+r+AIgZgCUILmP0+lRasEZuJMT/iTWAiU1MjrNNPL45ZX1e
 Ldie5b7rGubwKaCwCv1R//D9NI6OTalVnmCyf1NRIeb9py4bG3SgCQecHP0pZeh5
 +xmsO8rrMlkq2fOe9K6N57vWeRcvQzTMGb17wZh/fAWCa2Ny7Si52NFgRwPNExCu
 YKR2bptFSZmKe0cZ8Q6mdw7J1tCJm+4Htgw9LSgaf/jvmvHyTV261ZZTHeglsdTQ
 JDGbad9Vt6h1
 =arj3
 -----END PGP SIGNATURE-----

Merge tag 'sched-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler fix from Thomas Gleixner:
 "Fix the fallout of sysctl code move which placed the init function
  wrong"

* tag 'sched-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/autogroup: Fix sysctl move
2022-06-05 10:42:40 -07:00
Linus Torvalds
67850b7bdc While looking at the ptrace problems with PREEMPT_RT and the problems
of Peter Zijlstra was encountering with ptrace in his freezer rewrite
 I identified some cleanups to ptrace_stop that make sense on their own
 and move make resolving the other problems much simpler.
 
 The biggest issue is the habbit of the ptrace code to change task->__state
 from the tracer to suppress TASK_WAKEKILL from waking up the tracee.  No
 other code in the kernel does that and it is straight forward to update
 signal_wake_up and friends to make that unnecessary.
 
 Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
 then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
 on the fact that all stopped states except the special stop states can
 tolerate spurious wake up and recover their state.
 
 The state of stopped and traced tasked is changed to be stored in
 task->jobctl as well as in task->__state.  This makes it possible for
 the freezer to recover tasks in these special states, as well as
 serving as a general cleanup.  With a little more work in that
 direction I believe TASK_STOPPED can learn to tolerate spurious wake
 ups and become an ordinary stop state.
 
 The TASK_TRACED state has to remain a special state as the registers for
 a process are only reliably available when the process is stopped in
 the scheduler.  Fundamentally ptrace needs acess to the saved
 register values of a task.
 
 There are bunch of semi-random ptrace related cleanups that were found
 while looking at these issues.
 
 One cleanup that deserves to be called out is from commit 57b6de08b5
 ("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs").  This
 makes a change that is technically user space visible, in the handling
 of what happens to a tracee when a tracer dies unexpectedly.
 According to our testing and our understanding of userspace nothing
 cares that spurious SIGTRAPs can be generated in that case.
 
 The entire discussion can be found at:
   https://lkml.kernel.org/r/87a6bv6dl6.fsf_-_@email.froward.int.ebiederm.org
 
 Eric W. Biederman (11):
       signal: Rename send_signal send_signal_locked
       signal: Replace __group_send_sig_info with send_signal_locked
       ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
       ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
       ptrace: Remove arch_ptrace_attach
       signal: Use lockdep_assert_held instead of assert_spin_locked
       ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
       ptrace: Document that wait_task_inactive can't fail
       ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
       ptrace: Don't change __state
       ptrace: Always take siglock in ptrace_resume
 
 Peter Zijlstra (1):
       sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
 
  arch/ia64/include/asm/ptrace.h    |   4 --
  arch/ia64/kernel/ptrace.c         |  57 ----------------
  arch/um/include/asm/thread_info.h |   2 +
  arch/um/kernel/exec.c             |   2 +-
  arch/um/kernel/process.c          |   2 +-
  arch/um/kernel/ptrace.c           |   8 +--
  arch/um/kernel/signal.c           |   4 +-
  arch/x86/kernel/step.c            |   3 +-
  arch/xtensa/kernel/ptrace.c       |   4 +-
  arch/xtensa/kernel/signal.c       |   4 +-
  drivers/tty/tty_jobctrl.c         |   4 +-
  include/linux/ptrace.h            |   7 --
  include/linux/sched.h             |  10 ++-
  include/linux/sched/jobctl.h      |   8 +++
  include/linux/sched/signal.h      |  20 ++++--
  include/linux/signal.h            |   3 +-
  kernel/ptrace.c                   |  87 ++++++++---------------
  kernel/sched/core.c               |   5 +-
  kernel/signal.c                   | 140 +++++++++++++++++---------------------
  kernel/time/posix-cpu-timers.c    |   6 +-
  20 files changed, 140 insertions(+), 240 deletions(-)
 
 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmKaXaYACgkQC/v6Eiaj
 j0CgoA/+JncSQ6PY2D5Jh1apvHzmnRsFXzr3DRvtv/CVx4oIebOXRQFyVDeD5tRn
 TmMgB29HpBlHRDLojlmlZRGAld1HR/aPEW9j8W1D3Sy/ZFO5L8lQitv9aDHO9Ntw
 4lZvlhS1M0KhATudVVBqSPixiG6CnV5SsGmixqdOyg7xcXSY6G1l2nB7Zk9I3Tat
 ZlmhuZ6R5Z5qsm4MEq0vUSrnsHiGxYrpk6uQOaVz8Wkv8ZFmbutt6XgxF0tsyZNn
 mHSmWSiZzIgBjTlaibEmxi8urYJTPj3vGBeJQVYHblFwLFi6+Oy7bDxQbWjQvaZh
 DsgWPScfBF4Jm0+8hhCiSYpvPp8XnZuklb4LNCeok/VFr+KfSmpJTIhn00kagQ1u
 vxQDqLws8YLW4qsfGydfx9uUIFCbQE/V2VDYk5J3Re3gkUNDOOR1A56hPniKv6VB
 2aqGO2Fl0RdBbUa3JF+XI5Pwq5y1WrqR93EUvj+5+u5W9rZL/8WLBHBMEz6gbmfD
 DhwFE0y8TG2WRlWJVEDRId+5zo3di/YvasH0vJZ5HbrxhS2RE/yIGAd+kKGx/lZO
 qWDJC7IHvFJ7Mw5KugacyF0SHeNdloyBM7KZW6HeXmgKn9IMJBpmwib92uUkRZJx
 D8j/bHHqD/zsgQ39nO+c4M0MmhO/DsPLG/dnGKrRCu7v1tmEnkY=
 =ZUuO
 -----END PGP SIGNATURE-----

Merge tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace

Pull ptrace_stop cleanups from Eric Biederman:
 "While looking at the ptrace problems with PREEMPT_RT and the problems
  Peter Zijlstra was encountering with ptrace in his freezer rewrite I
  identified some cleanups to ptrace_stop that make sense on their own
  and move make resolving the other problems much simpler.

  The biggest issue is the habit of the ptrace code to change
  task->__state from the tracer to suppress TASK_WAKEKILL from waking up
  the tracee. No other code in the kernel does that and it is straight
  forward to update signal_wake_up and friends to make that unnecessary.

  Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
  then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
  on the fact that all stopped states except the special stop states can
  tolerate spurious wake up and recover their state.

  The state of stopped and traced tasked is changed to be stored in
  task->jobctl as well as in task->__state. This makes it possible for
  the freezer to recover tasks in these special states, as well as
  serving as a general cleanup. With a little more work in that
  direction I believe TASK_STOPPED can learn to tolerate spurious wake
  ups and become an ordinary stop state.

  The TASK_TRACED state has to remain a special state as the registers
  for a process are only reliably available when the process is stopped
  in the scheduler. Fundamentally ptrace needs acess to the saved
  register values of a task.

  There are bunch of semi-random ptrace related cleanups that were found
  while looking at these issues.

  One cleanup that deserves to be called out is from commit 57b6de08b5
  ("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This
  makes a change that is technically user space visible, in the handling
  of what happens to a tracee when a tracer dies unexpectedly. According
  to our testing and our understanding of userspace nothing cares that
  spurious SIGTRAPs can be generated in that case"

* tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
  ptrace: Always take siglock in ptrace_resume
  ptrace: Don't change __state
  ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
  ptrace: Document that wait_task_inactive can't fail
  ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
  signal: Use lockdep_assert_held instead of assert_spin_locked
  ptrace: Remove arch_ptrace_attach
  ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
  ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
  signal: Replace __group_send_sig_info with send_signal_locked
  signal: Rename send_signal send_signal_locked
2022-06-03 16:13:25 -07:00
Linus Torvalds
1ec6574a3c This set of changes updates init and user mode helper tasks to be
ordinary user mode tasks.
 
 In commit 40966e316f ("kthread: Ensure struct kthread is present for
 all kthreads") caused init and the user mode helper threads that call
 kernel_execve to have struct kthread allocated for them.  This struct
 kthread going away during execve in turned made a use after free of
 struct kthread possible.
 
 The commit 343f4c49f2 ("kthread: Don't allocate kthread_struct for
 init and umh") is enough to fix the use after free and is simple enough
 to be backportable.
 
 The rest of the changes pass struct kernel_clone_args to clean things
 up and cause the code to make sense.
 
 In making init and the user mode helpers tasks purely user mode tasks
 I ran into two complications.  The function task_tick_numa was
 detecting tasks without an mm by testing for the presence of
 PF_KTHREAD.  The initramfs code in populate_initrd_image was using
 flush_delayed_fput to ensuere the closing of all it's file descriptors
 was complete, and flush_delayed_fput does not work in a userspace thread.
 
 I have looked and looked and more complications and in my code review
 I have not found any, and neither has anyone else with the code sitting
 in linux-next.
 
 Link: https://lkml.kernel.org/r/87mtfu4up3.fsf@email.froward.int.ebiederm.org
 
 Eric W. Biederman (8):
       kthread: Don't allocate kthread_struct for init and umh
       fork: Pass struct kernel_clone_args into copy_thread
       fork: Explicity test for idle tasks in copy_thread
       fork: Generalize PF_IO_WORKER handling
       init: Deal with the init process being a user mode process
       fork: Explicitly set PF_KTHREAD
       fork: Stop allowing kthreads to call execve
       sched: Update task_tick_numa to ignore tasks without an mm
 
  arch/alpha/kernel/process.c      | 13 ++++++------
  arch/arc/kernel/process.c        | 13 ++++++------
  arch/arm/kernel/process.c        | 12 ++++++-----
  arch/arm64/kernel/process.c      | 12 ++++++-----
  arch/csky/kernel/process.c       | 15 ++++++-------
  arch/h8300/kernel/process.c      | 10 ++++-----
  arch/hexagon/kernel/process.c    | 12 ++++++-----
  arch/ia64/kernel/process.c       | 15 +++++++------
  arch/m68k/kernel/process.c       | 12 ++++++-----
  arch/microblaze/kernel/process.c | 12 ++++++-----
  arch/mips/kernel/process.c       | 13 ++++++------
  arch/nios2/kernel/process.c      | 12 ++++++-----
  arch/openrisc/kernel/process.c   | 12 ++++++-----
  arch/parisc/kernel/process.c     | 18 +++++++++-------
  arch/powerpc/kernel/process.c    | 15 +++++++------
  arch/riscv/kernel/process.c      | 12 ++++++-----
  arch/s390/kernel/process.c       | 12 ++++++-----
  arch/sh/kernel/process_32.c      | 12 ++++++-----
  arch/sparc/kernel/process_32.c   | 12 ++++++-----
  arch/sparc/kernel/process_64.c   | 12 ++++++-----
  arch/um/kernel/process.c         | 15 +++++++------
  arch/x86/include/asm/fpu/sched.h |  2 +-
  arch/x86/include/asm/switch_to.h |  8 +++----
  arch/x86/kernel/fpu/core.c       |  4 ++--
  arch/x86/kernel/process.c        | 18 +++++++++-------
  arch/xtensa/kernel/process.c     | 17 ++++++++-------
  fs/exec.c                        |  8 ++++---
  include/linux/sched/task.h       |  8 +++++--
  init/initramfs.c                 |  2 ++
  init/main.c                      |  2 +-
  kernel/fork.c                    | 46 +++++++++++++++++++++++++++++++++-------
  kernel/sched/fair.c              |  2 +-
  kernel/umh.c                     |  6 +++---
  33 files changed, 234 insertions(+), 160 deletions(-)
 
 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmKaR/MACgkQC/v6Eiaj
 j0Aayg/7Bx66872d9c6igkJ+MPCTuh+v9QKCGwiYEmiU4Q5sVAFB0HPJO27qC14u
 630X0RFNZTkPzNNEJNIW4kw6Dj8s8YRKf+FgQAVt4SzdRwT7eIPDjk1nGraopPJ3
 O04pjvuTmUyidyViRyFcf2ptx/pnkrwP8jUSc+bGTgfASAKAgAokqKE5ecjewbBc
 Y/EAkQ6QW7KxPjeSmpAHwI+t3BpBev9WEC4PbhRhsBCQFO2+PJiklvqdhVNBnIjv
 qUezll/1xv9UYgniB15Q4Nb722SmnWSU3r8as1eFPugzTHizKhufrrpyP+KMK1A0
 tdtEJNs5t2DZF7ZbGTFSPqJWmyTYLrghZdO+lOmnaSjHxK4Nda1d4NzbefJ0u+FE
 tutewowvHtBX6AFIbx+H3O+DOJM2IgNMf+ReQDU/TyNyVf3wBrTbsr9cLxypIJIp
 zze8npoLMlB7B4yxVo5ES5e63EXfi3iHl0L3/1EhoGwriRz1kWgVLUX/VZOUpscL
 RkJHsW6bT8sqxPWAA5kyWjEN+wNR2PxbXi8OE4arT0uJrEBMUgDCzydzOv5tJB00
 mSQdytxH9LVdsmxBKAOBp5X6WOLGA4yb1cZ6E/mEhlqXMpBDF1DaMfwbWqxSYi4q
 sp5zU3SBAW0qceiZSsWZXInfbjrcQXNV/DkDRDO9OmzEZP4m1j0=
 =x6fy
 -----END PGP SIGNATURE-----

Merge tag 'kthread-cleanups-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace

Pull kthread updates from Eric Biederman:
 "This updates init and user mode helper tasks to be ordinary user mode
  tasks.

  Commit 40966e316f ("kthread: Ensure struct kthread is present for
  all kthreads") caused init and the user mode helper threads that call
  kernel_execve to have struct kthread allocated for them. This struct
  kthread going away during execve in turned made a use after free of
  struct kthread possible.

  Here, commit 343f4c49f2 ("kthread: Don't allocate kthread_struct for
  init and umh") is enough to fix the use after free and is simple
  enough to be backportable.

  The rest of the changes pass struct kernel_clone_args to clean things
  up and cause the code to make sense.

  In making init and the user mode helpers tasks purely user mode tasks
  I ran into two complications. The function task_tick_numa was
  detecting tasks without an mm by testing for the presence of
  PF_KTHREAD. The initramfs code in populate_initrd_image was using
  flush_delayed_fput to ensuere the closing of all it's file descriptors
  was complete, and flush_delayed_fput does not work in a userspace
  thread.

  I have looked and looked and more complications and in my code review
  I have not found any, and neither has anyone else with the code
  sitting in linux-next"

* tag 'kthread-cleanups-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  sched: Update task_tick_numa to ignore tasks without an mm
  fork: Stop allowing kthreads to call execve
  fork: Explicitly set PF_KTHREAD
  init: Deal with the init process being a user mode process
  fork: Generalize PF_IO_WORKER handling
  fork: Explicity test for idle tasks in copy_thread
  fork: Pass struct kernel_clone_args into copy_thread
  kthread: Don't allocate kthread_struct for init and umh
2022-06-03 16:03:05 -07:00
Peter Zijlstra
82f586f923 sched/autogroup: Fix sysctl move
Ivan reported /proc/sys/kernel/sched_autogroup_enabled went walk-about
and using the noautogroup command line parameter would result in a
boot error message.

Turns out the sysctl move placed the init function wrong.

Fixes: c8eaf6ac76 ("sched: move autogroup sysctls into its own file")
Reported-by: Ivan Kozik <ivan@ludios.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Ivan Kozik <ivan@ludios.org>
Link: https://lkml.kernel.org/r/YpR2IqndgsyMzN00@worktop.programming.kicks-ass.net
2022-05-30 12:36:36 +02:00
Linus Torvalds
44d35720c9 sysctl changes for v5.19-rc1
For two kernel releases now kernel/sysctl.c has been being cleaned up
 slowly, since the tables were grossly long, sprinkled with tons of #ifdefs and
 all this caused merge conflicts with one susbystem or another.
 
 This tree was put together to help try to avoid conflicts with these cleanups
 going on different trees at time. So nothing exciting on this pull request,
 just cleanups.
 
 I actually had this sysctl-next tree up since v5.18 but I missed sending a
 pull request for it on time during the last merge window. And so these changes
 have been being soaking up on sysctl-next and so linux-next for a while.
 The last change was merged May 4th.
 
 Most of the compile issues were reported by 0day and fixed.
 
 To help avoid a conflict with bpf folks at Daniel Borkmann's request
 I merged bpf-next/pr/bpf-sysctl into sysctl-next to get the effor which
 moves the BPF sysctls from kernel/sysctl.c to BPF core.
 
 Possible merge conflicts and known resolutions as per linux-next:
 
 bfp:
 https://lkml.kernel.org/r/20220414112812.652190b5@canb.auug.org.au
 
 rcu:
 https://lkml.kernel.org/r/20220420153746.4790d532@canb.auug.org.au
 
 powerpc:
 https://lkml.kernel.org/r/20220520154055.7f964b76@canb.auug.org.au
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmKOq8ASHG1jZ3JvZkBr
 ZXJuZWwub3JnAAoJEM4jHQowkoinDAkQAJVo5YVM9f74UwYp4PQhTpjxJBCjRoZD
 z1u9bp5rMj2ujTC8Fr7VmzKaHrb8+r1C1WvCvZtIzemYNB4lZUrHpVDYfXuXiPRB
 ihPmEjhlPO5PFBx6cVCpI3cu9bEhG00rLc1QXnABx/pXwNPcOTJAGZJVamZvqubk
 chjgZrb7N+adHPfvS55v1+zpwdeKfpp5U3zuu5qlT/nn0GS0HCVzOj5fj4oC4wtJ
 IqfUubo+FX50Ga58yQABWNrjaPD9Crykz5ohVazy3ElQl0hJ4VsK65ct3blqc2vz
 1Bb8kPpWuv6aZ5nr1lCVE8qvF4ZIL33ySvpg5BSdWLQEDrBbSpzvJe9Yn7wgR+eq
 y7fhpO24+zRM82EoDMEvyxX9u1n1RsvoXRtf3ds9BGf63MUxk8a1cgjlU6vuyO2U
 JhDmfM1xzdKvPoY4COOnHzcAiIqzItTqKd09N5y0cahmYstROU8lvp9huhTAHqk1
 SjQMbLIZG7OnX8ZeQcR1EB8sq/IOPZT48ejj0iJmQ8FyMaep71MOQLYyLPAq4lgh
 JHXm8P6QdB57jfJbqAeNSyZoK0qdxOUR/83Zcah7Jjns6vkju1DNatEsaEEI2y2M
 4n7/rkHeZ3TyFHBUX4e9FomKvGLsAalDBRiqsuxLSOPMU8rGrNLAslOAtKwvp90X
 4ht3M2VP098l
 =btwh
 -----END PGP SIGNATURE-----

Merge tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux

Pull sysctl updates from Luis Chamberlain:
 "For two kernel releases now kernel/sysctl.c has been being cleaned up
  slowly, since the tables were grossly long, sprinkled with tons of
  #ifdefs and all this caused merge conflicts with one susbystem or
  another.

  This tree was put together to help try to avoid conflicts with these
  cleanups going on different trees at time. So nothing exciting on this
  pull request, just cleanups.

  Thanks a lot to the Uniontech and Huawei folks for doing some of this
  nasty work"

* tag 'sysctl-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (28 commits)
  sched: Fix build warning without CONFIG_SYSCTL
  reboot: Fix build warning without CONFIG_SYSCTL
  kernel/kexec_core: move kexec_core sysctls into its own file
  sysctl: minor cleanup in new_dir()
  ftrace: fix building with SYSCTL=y but DYNAMIC_FTRACE=n
  fs/proc: Introduce list_for_each_table_entry for proc sysctl
  mm: fix unused variable kernel warning when SYSCTL=n
  latencytop: move sysctl to its own file
  ftrace: fix building with SYSCTL=n but DYNAMIC_FTRACE=y
  ftrace: Fix build warning
  ftrace: move sysctl_ftrace_enabled to ftrace.c
  kernel/do_mount_initrd: move real_root_dev sysctls to its own file
  kernel/delayacct: move delayacct sysctls to its own file
  kernel/acct: move acct sysctls to its own file
  kernel/panic: move panic sysctls to its own file
  kernel/lockdep: move lockdep sysctls to its own file
  mm: move page-writeback sysctls to their own file
  mm: move oom_kill sysctls to their own file
  kernel/reboot: move reboot sysctls to its own file
  sched: Move energy_aware sysctls to topology.c
  ...
2022-05-26 16:57:20 -07:00
Linus Torvalds
6f3f04c190 Scheduler changes in this cycle were:
- Updates to scheduler metrics:
 
     - PELT fixes & enhancements
     - PSI fixes & enhancements
     - Refactor cpu_util_without()
 
  - Updates to instrumentation/debugging:
 
     - Remove sched_trace_*() helper functions - can be done via debug info
     - Fix double update_rq_clock() warnings
 
  - Introduce & use "preemption model accessors" to simplify some of
    the Kconfig complexity.
 
  - Make softirq handling RT-safe.
 
  - Misc smaller fixes & cleanups.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmKLvXYRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hcXg//fJ1jAB9pQOg/Su9wwwbcOeaXNUpQA38e
 970nXdK6i7w+YeAT2x1ikIQZq5S/px7k9S4Fzks8U9LMhnKPxhjdnG6J69h5XLuB
 z1BtRJBB6W8BAYWzAeq1M+R8whQylciOMZOBSjeTIEdpYBK7c9QA/R1DkDqPRlBA
 7nW0mFbpYcK8Q1n1ItjP0wkpiHG4q8orp+BXiPG8rjiHdCa3GFt7g38hiqNls64H
 fOQ/Ka25tBSYrmeqQY3QsWKnKNHKQRLNareHAwI/x4V8F8d4tn/OmJzmWGDdtprn
 6/gi/E99ej1j5Do8sgx/oTp/aVg4j8AsurrpGFd4/er+euoG4UyHr42UhX6zmFM6
 /KIinp0Z/V2n9okgI9LUZ2x7mD682iXDilNDgiSAwu1bNDUvxBXPD30gThh+KasA
 HxeKxTzb4/dZV4ih4xUMsCOjUT4NFZT2rmiMorUystgyNRk28DtFCdBMtrs/zVtG
 qAktb7v5g76pKAmV4nQu4imZeSD+f+RJP2fuSUYQCJbCxQfthTZkn8GfCMYEdY7Y
 sDyBx4Te8Vu/dcnal9qMpY/m5EPruPQAkvC9zK4YvkvLUmGC742PG/xHfCdC9J2m
 Adbl/Cmn7tD9dOGYbHPsrViqwIiZUcjbnBlMN5DjJXQF6kWNOIXUEguZpBocminP
 1CSy0+gyI6o=
 =GY8N
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - Updates to scheduler metrics:
     - PELT fixes & enhancements
     - PSI fixes & enhancements
     - Refactor cpu_util_without()

 - Updates to instrumentation/debugging:
     - Remove sched_trace_*() helper functions - can be done via debug
       info
     - Fix double update_rq_clock() warnings

 - Introduce & use "preemption model accessors" to simplify some of the
   Kconfig complexity.

 - Make softirq handling RT-safe.

 - Misc smaller fixes & cleanups.

* tag 'sched-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  topology: Remove unused cpu_cluster_mask()
  sched: Reverse sched_class layout
  sched/deadline: Remove superfluous rq clock update in push_dl_task()
  sched/core: Avoid obvious double update_rq_clock warning
  smp: Make softirq handling RT safe in flush_smp_call_function_queue()
  smp: Rename flush_smp_call_function_from_idle()
  sched: Fix missing prototype warnings
  sched/fair: Remove cfs_rq_tg_path()
  sched/fair: Remove sched_trace_*() helper functions
  sched/fair: Refactor cpu_util_without()
  sched/fair: Revise comment about lb decision matrix
  sched/psi: report zeroes for CPU full at the system level
  sched/fair: Delete useless condition in tg_unthrottle_up()
  sched/fair: Fix cfs_rq_clock_pelt() for throttled cfs_rq
  sched/fair: Move calculate of avg_load to a better location
  mailmap: Update my email address to @redhat.com
  MAINTAINERS: Add myself as scheduler topology reviewer
  psi: Fix trigger being fired unexpectedly at initial
  ftrace: Use preemption model accessors for trace header printout
  kcsan: Use preemption model accessors
2022-05-24 11:11:13 -07:00
Linus Torvalds
2319be1356 Locking changes in this cycle were:
- rwsem cleanups & optimizations/fixes:
     - Conditionally wake waiters in reader/writer slowpaths
     - Always try to wake waiters in out_nolock path
 
  - Add try_cmpxchg64() implementation, with arch optimizations - and use it to
    micro-optimize sched_clock_{local,remote}()
 
  - Various force-inlining fixes to address objdump instrumentation-check warnings
 
  - Add lock contention tracepoints:
 
     lock:contention_begin
     lock:contention_end
 
  - Misc smaller fixes & cleanups
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmKLsrERHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1js3g//cPR9PYlvZv87T2hI8VWKfNzapgSmwCsH
 1P+nk27Pef+jfxHr/N7YScvSD06+z2wIroLE3npPNETmNd1X8obBDThmeD4VI899
 J6h4sE0cFOpTG/mHeECFxqnDuzhdHiRHWS52RxOwTjZTpdbeKWZYueC0Mvqn+tIp
 UM2D2yTseIHs67ikxYtayU/iJgSZ+PYrMPv9nSVUjIFILmg7gMIz38OZYQzR84++
 auL3m8sAq/i2pjzDBbXMpfYeu177/tPHpPJr2rOErLEXWqK2K6op8+CbX4z3yv3z
 EBBhGiUNqDmFaFuIgg7Mx94SvPh8MBGexUnT0XA2aXPwyP9oAaenCk2CZ1j9u15m
 /Xp1A4KNvg1WY8jHu5ZM4VIEXQ7d6Gwtbej7IeovUxBD6y7Trb3+rxb7PVdZX941
 uVGjss1Lgk70wUQqBqBPmBm08O6NUF3vekHlona5CZTQgEF84zD7+7D++QPaAZo7
 kiuNUptdgfq6X0xqgP88GX1KU85gJYoF5Q13vb7lAcv19QhRG5JBJeWMYiXEmg12
 Ktl97Sru0zCpCY1NCvwsBll09SLVO9kX3Lq+QFD8bFMZ0obsGIBotHq1qH6U7cH8
 RY6esVBF/1/+qdrxOKs8qowlJ4EUp/3bX0R/MKYHJJbulj/aaE916HvMsoN/QR4Y
 oW7GcxMQGLE=
 =gaS5
 -----END PGP SIGNATURE-----

Merge tag 'locking-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull locking updates from Ingo Molnar:

 - rwsem cleanups & optimizations/fixes:
    - Conditionally wake waiters in reader/writer slowpaths
    - Always try to wake waiters in out_nolock path

 - Add try_cmpxchg64() implementation, with arch optimizations - and use
   it to micro-optimize sched_clock_{local,remote}()

 - Various force-inlining fixes to address objdump instrumentation-check
   warnings

 - Add lock contention tracepoints:

    lock:contention_begin
    lock:contention_end

 - Misc smaller fixes & cleanups

* tag 'locking-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/clock: Use try_cmpxchg64 in sched_clock_{local,remote}
  locking/atomic/x86: Introduce arch_try_cmpxchg64
  locking/atomic: Add generic try_cmpxchg64 support
  futex: Remove a PREEMPT_RT_FULL reference.
  locking/qrwlock: Change "queue rwlock" to "queued rwlock"
  lockdep: Delete local_irq_enable_in_hardirq()
  locking/mutex: Make contention tracepoints more consistent wrt adaptive spinning
  locking: Apply contention tracepoints in the slow path
  locking: Add lock contention tracepoints
  locking/rwsem: Always try to wake waiters in out_nolock path
  locking/rwsem: Conditionally wake waiters in reader/writer slowpaths
  locking/rwsem: No need to check for handoff bit if wait queue empty
  lockdep: Fix -Wunused-parameter for _THIS_IP_
  x86/mm: Force-inline __phys_addr_nodebug()
  x86/kvm/svm: Force-inline GHCB accessors
  task_stack, x86/cea: Force-inline stack helpers
2022-05-24 10:18:23 -07:00
Linus Torvalds
1e57930e9f RCU pull request for v5.19
This pull request contains the following branches:
 
 docs.2022.04.20a: Documentation updates.
 
 fixes.2022.04.20a: Miscellaneous fixes.
 
 nocb.2022.04.11b: Callback-offloading updates, mainly simplifications.
 
 rcu-tasks.2022.04.11b: RCU-tasks updates, including some -rt fixups,
 	handling of systems with sparse CPU numbering, and a fix for a
 	boot-time race-condition failure.
 
 srcu.2022.05.03a: Put SRCU on a memory diet in order to reduce the size
 	of the srcu_struct structure.
 
 torture.2022.04.11b: Torture-test updates fixing some bugs in tests and
 	closing some testing holes.
 
 torture-tasks.2022.04.20a: Torture-test updates for the RCU tasks flavors,
 	most notably ensuring that building rcutorture and friends does
 	not change the RCU-tasks-related Kconfig options.
 
 torturescript.2022.04.20a: Torture-test scripting updates.
 
 exp.2022.05.11a: Expedited grace-period updates, most notably providing
 	milliseconds-scale (not all that) soft real-time response from
 	synchronize_rcu_expedited().  This is also the first time in
 	almost 30 years of RCU that someone other than me has pushed
 	for a reduction in the RCU CPU stall-warning timeout, in this
 	case by more than three orders of magnitude from 21 seconds to
 	20 milliseconds.  This tighter timeout applies only to expedited
 	grace periods.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmKG2zcTHHBhdWxtY2tA
 a2VybmVsLm9yZwAKCRCevxLzctn7jGXgD/90xtRtZyN0umlN/IOBBn8fIOM+BAMu
 5k3ef6wLsXKXlLO13WTjSitypX9LEFwytTeVhEyN4ODeX0cI9mUmts6Z8/6sV92D
 fN8vqTavveE7m5YfFfLRvDRfVHpB0LpLMM+V0qWPu/F8dWPDKA0225rX9IC7iICP
 LkxCuNVNzJ0cLaVTvsUWlxMdHcogydXZb1gPDVRhnR6iVFWCBtL4RRpU41CoSNh4
 fWRSLQak6OhZRFE7hVoLQhZyLE0GIw1fuUJgj2fCllhgGogDx78FQ8jHdDzMEhVk
 cD4Yel5vUPiy2AKphGfi28bKFYcyhVBnD/Jq733VJV0/szyddxNbz0xKpEA0/8qh
 w1T7IjBN6MAKHSh0uUitm6U24VN13m4r30HrUQSpp71VFZkUD4QS6TismKsaRNjR
 lK4q2QKBprBb3Hv7KPAGYT1Us3aS7qLPrgPf3gzSxL1aY5QV0A5UpPP6RKTLbWPl
 CEQxEno6g5LTHwKd5QD74dG8ccphg9377lDMJpeesYShBqlLNrNWCxqJoZk2HnSf
 f2dTQeQWrtRJjeTGy/4cfONCGZTghE0Pch43XMzLLt3ZTuDc8FVM0t3Xs9J5Kg22
 zmThQh6LRXTGjrb1vLiOrjPf5JaTnX2Sz8OUJTo/ZxwcixxP/mj8Ja+W81NjfqnK
 LLZ1D6UN4a8n9A==
 =4spH
 -----END PGP SIGNATURE-----

Merge tag 'rcu.2022.05.19a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu

Pull RCU update from Paul McKenney:

 - Documentation updates

 - Miscellaneous fixes

 - Callback-offloading updates, mainly simplifications

 - RCU-tasks updates, including some -rt fixups, handling of systems
   with sparse CPU numbering, and a fix for a boot-time race-condition
   failure

 - Put SRCU on a memory diet in order to reduce the size of the
   srcu_struct structure

 - Torture-test updates fixing some bugs in tests and closing some
   testing holes

 - Torture-test updates for the RCU tasks flavors, most notably ensuring
   that building rcutorture and friends does not change the
   RCU-tasks-related Kconfig options

 - Torture-test scripting updates

 - Expedited grace-period updates, most notably providing
   milliseconds-scale (not all that) soft real-time response from
   synchronize_rcu_expedited().

   This is also the first time in almost 30 years of RCU that someone
   other than me has pushed for a reduction in the RCU CPU stall-warning
   timeout, in this case by more than three orders of magnitude from 21
   seconds to 20 milliseconds. This tighter timeout applies only to
   expedited grace periods

* tag 'rcu.2022.05.19a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (80 commits)
  rcu: Move expedited grace period (GP) work to RT kthread_worker
  rcu: Introduce CONFIG_RCU_EXP_CPU_STALL_TIMEOUT
  srcu: Drop needless initialization of sdp in srcu_gp_start()
  srcu: Prevent expedited GPs and blocking readers from consuming CPU
  srcu: Add contention check to call_srcu() srcu_data ->lock acquisition
  srcu: Automatically determine size-transition strategy at boot
  rcutorture: Make torture.sh allow for --kasan
  rcutorture: Make torture.sh refscale and rcuscale specify Tasks Trace RCU
  rcutorture: Make kvm.sh allow more memory for --kasan runs
  torture: Save "make allmodconfig" .config file
  scftorture: Remove extraneous "scf" from per_version_boot_params
  rcutorture: Adjust scenarios' Kconfig options for CONFIG_PREEMPT_DYNAMIC
  torture: Enable CSD-lock stall reports for scftorture
  torture: Skip vmlinux check for kvm-again.sh runs
  scftorture: Adjust for TASKS_RCU Kconfig option being selected
  rcuscale: Allow rcuscale without RCU Tasks Rude/Trace
  rcuscale: Allow rcuscale without RCU Tasks
  refscale: Allow refscale without RCU Tasks Rude/Trace
  refscale: Allow refscale without RCU Tasks
  rcutorture: Allow specifying per-scenario stat_interval
  ...
2022-05-23 11:46:51 -07:00
Peter Zijlstra
546a3fee17 sched: Reverse sched_class layout
Because GCC-12 is fully stupid about array bounds and it's just really
hard to get a solid array definition from a linker script, flip the
array order to avoid needing negative offsets :-/

This makes the whole relational pointer magic a little less obvious, but
alas.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/YoOLLmLG7HRTXeEm@hirez.programming.kicks-ass.net
2022-05-19 23:46:13 +02:00
Uros Bizjak
8491d1bdf5 sched/clock: Use try_cmpxchg64 in sched_clock_{local,remote}
Use try_cmpxchg64 instead of cmpxchg64 (*ptr, old, new) != old in
sched_clock_{local,remote}. x86 cmpxchg returns success in ZF flag,
so this change saves a compare after cmpxchg (and related move
instruction in front of cmpxchg).

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220518184953.3446778-1-ubizjak@gmail.com
2022-05-19 23:46:09 +02:00
Delyan Kratunov
9c2136be08 sched/tracing: Append prev_state to tp args instead
Commit fa2c3254d7 (sched/tracing: Don't re-read p->state when emitting
sched_switch event, 2022-01-20) added a new prev_state argument to the
sched_switch tracepoint, before the prev task_struct pointer.

This reordering of arguments broke BPF programs that use the raw
tracepoint (e.g. tp_btf programs). The type of the second argument has
changed and existing programs that assume a task_struct* argument
(e.g. for bpf_task_storage access) will now fail to verify.

If we instead append the new argument to the end, all existing programs
would continue to work and can conditionally extract the prev_state
argument on supported kernel versions.

Fixes: fa2c3254d7 (sched/tracing: Don't re-read p->state when emitting sched_switch event, 2022-01-20)
Signed-off-by: Delyan Kratunov <delyank@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/c8a6930dfdd58a4a5755fc01732675472979732b.camel@fb.com
2022-05-12 00:37:11 +02:00
Eric W. Biederman
2500ad1c7f ptrace: Don't change __state
Stop playing with tsk->__state to remove TASK_WAKEKILL while a ptrace
command is executing.

Instead remove TASK_WAKEKILL from the definition of TASK_TRACED, and
implement a new jobctl flag TASK_PTRACE_FROZEN.  This new flag is set
in jobctl_freeze_task and cleared when ptrace_stop is awoken or in
jobctl_unfreeze_task (when ptrace_stop remains asleep).

In signal_wake_up add __TASK_TRACED to state along with TASK_WAKEKILL
when the wake up is for a fatal signal.  Skip adding __TASK_TRACED
when TASK_PTRACE_FROZEN is not set.  This has the same effect as
changing TASK_TRACED to __TASK_TRACED as all of the wake_ups that use
TASK_KILLABLE go through signal_wake_up.

Handle a ptrace_stop being called with a pending fatal signal.
Previously it would have been handled by schedule simply failing to
sleep.  As TASK_WAKEKILL is no longer part of TASK_TRACED schedule
will sleep with a fatal_signal_pending.   The code in signal_wake_up
guarantees that the code will be awaked by any fatal signal that
codes after TASK_TRACED is set.

Previously the __state value of __TASK_TRACED was changed to
TASK_RUNNING when woken up or back to TASK_TRACED when the code was
left in ptrace_stop.  Now when woken up ptrace_stop now clears
JOBCTL_PTRACE_FROZEN and when left sleeping ptrace_unfreezed_traced
clears JOBCTL_PTRACE_FROZEN.

Tested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20220505182645.497868-10-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-11 14:35:32 -05:00
Eric W. Biederman
b3f9916d81 sched: Update task_tick_numa to ignore tasks without an mm
Qian Cai <quic_qiancai@quicinc.com> wrote:
> Reverting the last 3 commits of the series fixed a boot crash.
>
> 1b2552cbdb fork: Stop allowing kthreads to call execve
> 753550eb0c fork: Explicitly set PF_KTHREAD
> 68d85f0a33 init: Deal with the init process being a user mode process
>
>  BUG: KASAN: null-ptr-deref in task_nr_scan_windows.isra.0
>  arch_atomic_long_read at ./include/linux/atomic/atomic-long.h:29
>  (inlined by) atomic_long_read at ./include/linux/atomic/atomic-instrumented.h:1266
>  (inlined by) get_mm_counter at ./include/linux/mm.h:1996
>  (inlined by) get_mm_rss at ./include/linux/mm.h:2049
>  (inlined by) task_nr_scan_windows at kernel/sched/fair.c:1123
>  Read of size 8 at addr 00000000000003d0 by task swapper/0/1

With the change to init and the user mode helper processes to not have
PF_KTHREAD set before they call kernel_execve the PF_KTHREAD test in
task_tick_numa became insufficient to detect all tasks that have
"->mm == NULL".  Correct that by testing for "->mm == NULL" directly.

Reported-by: Qian Cai <quic_qiancai@quicinc.com>
Tested-by: Qian Cai <quic_qiancai@quicinc.com>
Fixes: 1b2552cbdb ("fork: Stop allowing kthreads to call execve")
Link: https://lkml.kernel.org/r/87r150ug1l.fsf_-_@email.froward.int.ebiederm.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-11 12:41:48 -05:00
Hao Jia
734387ec2f sched/deadline: Remove superfluous rq clock update in push_dl_task()
The change to call update_rq_clock() before activate_task()
commit 840d719604 ("sched/deadline: Update rq_clock of later_rq
when pushing a task") is no longer needed since commit f4904815f9
("sched/deadline: Fix double accounting of rq/running bw in push & pull")
removed the add_running_bw() before the activate_task().

So we remove some comments that are no longer needed and update
rq clock in activate_task().

Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lore.kernel.org/r/20220430085843.62939-3-jiahao.os@bytedance.com
2022-05-11 16:27:12 +02:00
Hao Jia
2679a83731 sched/core: Avoid obvious double update_rq_clock warning
When we use raw_spin_rq_lock() to acquire the rq lock and have to
update the rq clock while holding the lock, the kernel may issue
a WARN_DOUBLE_CLOCK warning.

Since we directly use raw_spin_rq_lock() to acquire rq lock instead of
rq_lock(), there is no corresponding change to rq->clock_update_flags.
In particular, we have obtained the rq lock of other CPUs, the
rq->clock_update_flags of this CPU may be RQCF_UPDATED at this time, and
then calling update_rq_clock() will trigger the WARN_DOUBLE_CLOCK warning.

So we need to clear RQCF_UPDATED of rq->clock_update_flags to avoid
the WARN_DOUBLE_CLOCK warning.

For the sched_rt_period_timer() and migrate_task_rq_dl() cases
we simply replace raw_spin_rq_lock()/raw_spin_rq_unlock() with
rq_lock()/rq_unlock().

For the {pull,push}_{rt,dl}_task() cases, we add the
double_rq_clock_clear_update() function to clear RQCF_UPDATED of
rq->clock_update_flags, and call double_rq_clock_clear_update()
before double_lock_balance()/double_rq_lock() returns to avoid the
WARN_DOUBLE_CLOCK warning.

Some call trace reports:
Call Trace 1:
 <IRQ>
 sched_rt_period_timer+0x10f/0x3a0
 ? enqueue_top_rt_rq+0x110/0x110
 __hrtimer_run_queues+0x1a9/0x490
 hrtimer_interrupt+0x10b/0x240
 __sysvec_apic_timer_interrupt+0x8a/0x250
 sysvec_apic_timer_interrupt+0x9a/0xd0
 </IRQ>
 <TASK>
 asm_sysvec_apic_timer_interrupt+0x12/0x20

Call Trace 2:
 <TASK>
 activate_task+0x8b/0x110
 push_rt_task.part.108+0x241/0x2c0
 push_rt_tasks+0x15/0x30
 finish_task_switch+0xaa/0x2e0
 ? __switch_to+0x134/0x420
 __schedule+0x343/0x8e0
 ? hrtimer_start_range_ns+0x101/0x340
 schedule+0x4e/0xb0
 do_nanosleep+0x8e/0x160
 hrtimer_nanosleep+0x89/0x120
 ? hrtimer_init_sleeper+0x90/0x90
 __x64_sys_nanosleep+0x96/0xd0
 do_syscall_64+0x34/0x90
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Call Trace 3:
 <TASK>
 deactivate_task+0x93/0xe0
 pull_rt_task+0x33e/0x400
 balance_rt+0x7e/0x90
 __schedule+0x62f/0x8e0
 do_task_dead+0x3f/0x50
 do_exit+0x7b8/0xbb0
 do_group_exit+0x2d/0x90
 get_signal+0x9df/0x9e0
 ? preempt_count_add+0x56/0xa0
 ? __remove_hrtimer+0x35/0x70
 arch_do_signal_or_restart+0x36/0x720
 ? nanosleep_copyout+0x39/0x50
 ? do_nanosleep+0x131/0x160
 ? audit_filter_inodes+0xf5/0x120
 exit_to_user_mode_prepare+0x10f/0x1e0
 syscall_exit_to_user_mode+0x17/0x30
 do_syscall_64+0x40/0x90
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Call Trace 4:
 update_rq_clock+0x128/0x1a0
 migrate_task_rq_dl+0xec/0x310
 set_task_cpu+0x84/0x1e4
 try_to_wake_up+0x1d8/0x5c0
 wake_up_process+0x1c/0x30
 hrtimer_wakeup+0x24/0x3c
 __hrtimer_run_queues+0x114/0x270
 hrtimer_interrupt+0xe8/0x244
 arch_timer_handler_phys+0x30/0x50
 handle_percpu_devid_irq+0x88/0x140
 generic_handle_domain_irq+0x40/0x60
 gic_handle_irq+0x48/0xe0
 call_on_irq_stack+0x2c/0x60
 do_interrupt_handler+0x80/0x84

Steps to reproduce:
1. Enable CONFIG_SCHED_DEBUG when compiling the kernel
2. echo 1 > /sys/kernel/debug/clear_warn_once
   echo "WARN_DOUBLE_CLOCK" > /sys/kernel/debug/sched/features
   echo "NO_RT_PUSH_IPI" > /sys/kernel/debug/sched/features
3. Run some rt/dl tasks that periodically work and sleep, e.g.
Create 2*n rt or dl (90% running) tasks via rt-app (on a system
with n CPUs), and Dietmar Eggemann reports Call Trace 4 when running
on PREEMPT_RT kernel.

Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20220430085843.62939-2-jiahao.os@bytedance.com
2022-05-11 16:27:11 +02:00
YueHaibing
494dcdf46e sched: Fix build warning without CONFIG_SYSCTL
IF CONFIG_SYSCTL is n, build warn:

kernel/sched/core.c:1782:12: warning: ‘sysctl_sched_uclamp_handler’ defined but not used [-Wunused-function]
 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
            ^~~~~~~~~~~~~~~~~~~~~~~~~~~

sysctl_sched_uclamp_handler() is used while CONFIG_SYSCTL enabled,
wrap all related code with CONFIG_SYSCTL to fix this.

Fixes: 3267e0156c ("sched: Move uclamp_util sysctls to core.c")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-05-09 16:54:57 -07:00
Ingo Molnar
d70522fc54 Linux 5.18-rc5
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmJu9FYeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGAyEH/16xtJSpLmLwrQzG
 o+4ToQxSQ+/9UHyu0RTEvHg2THm9/8emtIuYyc/5FgdoWctcSa3AaDcveWmuWmkS
 KYcdhfJsaEqjNHS3OPYXN84fmo9Hel7263shu5+IYmP/sN0DfQp6UWTryX1q4B3Q
 4Pdutkuq63Uwd8nBZ5LXQBumaBrmkkuMgWEdT4+6FOo1mPzwdIGBxCuz1UsNNl5k
 chLWxkQfe2eqgWbYJrgCQfrVdORXVtoU2fGilZUNrHRVGkkldXkkz5clJfapyZD3
 odmZCEbrE4GPKgZwCmDERMfD1hzhZDtYKiHfOQ506szH5ykJjPBcOjHed7dA60eB
 J3+wdek=
 =39Ca
 -----END PGP SIGNATURE-----

Merge tag 'v5.18-rc5' into sched/core to pull in fixes & to resolve a conflict

 - sched/core is on a pretty old -rc1 base - refresh it to include recent fixes.
 - this also allows up to resolve a (trivial) .mailmap conflict

Conflicts:
	.mailmap

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-05-06 10:21:46 +02:00
Thomas Gleixner
16bf5a5e1e smp: Rename flush_smp_call_function_from_idle()
This is invoked from the stopper thread too, which is definitely not idle.
Rename it to flush_smp_call_function_queue() and fixup the callers.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220413133024.305001096@linutronix.de
2022-05-01 10:03:43 +02:00
Thomas Gleixner
d664e39912 sched: Fix missing prototype warnings
A W=1 build emits more than a dozen missing prototype warnings related to
scheduler and scheduler specific includes.

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220413133024.249118058@linutronix.de
2022-05-01 10:03:43 +02:00
Dietmar Eggemann
97956dd278 sched/fair: Remove cfs_rq_tg_path()
cfs_rq_tg_path() is used by a tracepoint-to traceevent (tp-2-te)
converter to format the path of a taskgroup or autogroup respectively.
It doesn't have any in-kernel users after the removal of the
sched_trace_cfs_rq_path() helper function.

cfs_rq_tg_path() can be coded in a tp-2-te converter.

Remove it from kernel/sched/fair.c.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220428144338.479094-3-qais.yousef@arm.com
2022-04-29 11:06:29 +02:00
Dietmar Eggemann
50e7b416d2 sched/fair: Remove sched_trace_*() helper functions
We no longer need them as we can use DWARF debug info or BTF + pahole to
re-generate the required structs to compile against them for a given
kernel.

This moves the burden of maintaining these helper functions to the
module.

	https://github.com/qais-yousef/sched_tp

Note that pahole v1.15 is required at least for using DWARF. And for BTF
v1.23 which is not yet released will be required. There's alignment
problem that will lead to crashes in earlier versions when used with
BTF.

We should have enough infrastructure to make these helper functions now
obsolete, so remove them.

[Rewrote commit message to reflect the new alternative]
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220428144338.479094-2-qais.yousef@arm.com
2022-04-29 11:06:29 +02:00
Dietmar Eggemann
4e3c7d338a sched/fair: Refactor cpu_util_without()
Except the 'task has no contribution or is new' condition at the
beginning of cpu_util_without(), which it shares with the load and
runnable counterpart functions, a cpu_util_next(..., dst_cpu = -1)
call can replace the rest of it.

The UTIL_EST specific check that task util_est has to be subtracted
from the CPU one in case of an enqueued (or current (to cater for the
wakeup - lb race)) task has to be moved to cpu_util_next().
This was initially introduced by commit c469933e77
("sched/fair: Fix cpu_util_wake() for 'execl' type workloads").
UnixBench's `execl` throughput tests were run on the dual socket 40
CPUs Intel E5-2690 v2 to make sure it doesn't regress again.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220318163656.954440-1-dietmar.eggemann@arm.com
2022-04-29 11:06:29 +02:00
Tao Zhou
a658353167 sched/fair: Revise comment about lb decision matrix
If busiest group type is group_misfit_task, the local
group type must be group_has_spare according to below
code in update_sd_pick_busiest():

  if (sgs->group_type == group_misfit_task &&
      (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
       sds->local_stat.group_type != group_has_spare))
	   return false;

group type imbalanced and overloaded and fully_busy are filtered in here.
misfit and asym are filtered before in update_sg_lb_stats().
So, change the decision matrix to:

  busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
  has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
  fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
  misfit_task      force     N/A        N/A    N/A  *N/A*      *N/A*
  asym_packing     force     force      N/A    N/A  force      force
  imbalanced       force     force      N/A    N/A  force      force
  overloaded       force     force      N/A    N/A  force      avg_load

Fixes: 0b0695f2b3 ("sched/fair: Rework load_balance()")
Signed-off-by: Tao Zhou <tao.zhou@linux.dev>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20220415095505.7765-1-tao.zhou@linux.dev
2022-04-22 12:14:08 +02:00
Chengming Zhou
890d550d7d sched/psi: report zeroes for CPU full at the system level
Martin find it confusing when look at the /proc/pressure/cpu output,
and found no hint about that CPU "full" line in psi Documentation.

% cat /proc/pressure/cpu
some avg10=0.92 avg60=0.91 avg300=0.73 total=933490489
full avg10=0.22 avg60=0.23 avg300=0.16 total=358783277

The PSI_CPU_FULL state is introduced by commit e7fcd76228
("psi: Add PSI_CPU_FULL state"), which mainly for cgroup level,
but also counted at the system level as a side effect.

Naturally, the FULL state doesn't exist for the CPU resource at
the system level. These "full" numbers can come from CPU idle
schedule latency. For example, t1 is the time when task wakeup
on an idle CPU, t2 is the time when CPU pick and switch to it.
The delta of (t2 - t1) will be in CPU_FULL state.

Another case all processes can be stalled is when all cgroups
have been throttled at the same time, which unlikely to happen.

Anyway, CPU_FULL metric is meaningless and confusing at the
system level. So this patch will report zeroes for CPU full
at the system level, and update psi Documentation accordingly.

Fixes: e7fcd76228 ("psi: Add PSI_CPU_FULL state")
Reported-by: Martin Steigerwald <Martin.Steigerwald@proact.de>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20220408121914.82855-1-zhouchengming@bytedance.com
2022-04-22 12:14:08 +02:00
Chengming Zhou
0a00a35464 sched/fair: Delete useless condition in tg_unthrottle_up()
We have tested cfs_rq->load.weight in cfs_rq_is_decayed(),
the first condition "!cfs_rq_is_decayed(cfs_rq)" is enough
to cover the second condition "cfs_rq->nr_running".

Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220408115309.81603-2-zhouchengming@bytedance.com
2022-04-22 12:14:07 +02:00
Chengming Zhou
64eaf50731 sched/fair: Fix cfs_rq_clock_pelt() for throttled cfs_rq
Since commit 2312729688 ("sched/fair: Update scale invariance of PELT")
change to use rq_clock_pelt() instead of rq_clock_task(), we should also
use rq_clock_pelt() for throttled_clock_task_time and throttled_clock_task
accounting to get correct cfs_rq_clock_pelt() of throttled cfs_rq. And
rename throttled_clock_task(_time) to be clock_pelt rather than clock_task.

Fixes: 2312729688 ("sched/fair: Update scale invariance of PELT")
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20220408115309.81603-1-zhouchengming@bytedance.com
2022-04-22 12:14:07 +02:00
zgpeng
0635490078 sched/fair: Move calculate of avg_load to a better location
In calculate_imbalance function, when the value of local->avg_load is
greater than or equal to busiest->avg_load, the calculated sds->avg_load is
not used. So this calculation can be placed in a more appropriate position.

Signed-off-by: zgpeng <zgpeng@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Samuel Liao <samuelliao@tencent.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/1649239025-10010-1-git-send-email-zgpeng@tencent.com
2022-04-22 12:14:07 +02:00
Hailong Liu
915a087e4c psi: Fix trigger being fired unexpectedly at initial
When a trigger being created, its win.start_value and win.start_time are
reset to zero. If group->total[PSI_POLL][t->state] has accumulated before,
this trigger will be fired unexpectedly in the next period, even if its
growth time does not reach its threshold.

So set the window of the new trigger to the current state value.

Signed-off-by: Hailong Liu <liuhailong@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Suren Baghdasaryan <surenb@google.com>
Link: https://lore.kernel.org/r/1648789811-3788971-1-git-send-email-liuhailong@linux.alibaba.com
2022-04-22 12:14:06 +02:00
kuyo chang
40f5aa4c5e sched/pelt: Fix attach_entity_load_avg() corner case
The warning in cfs_rq_is_decayed() triggered:

    SCHED_WARN_ON(cfs_rq->avg.load_avg ||
		  cfs_rq->avg.util_avg ||
		  cfs_rq->avg.runnable_avg)

There exists a corner case in attach_entity_load_avg() which will
cause load_sum to be zero while load_avg will not be.

Consider se_weight is 88761 as per the sched_prio_to_weight[] table.
Further assume the get_pelt_divider() is 47742, this gives:
se->avg.load_avg is 1.

However, calculating load_sum:

  se->avg.load_sum = div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
  se->avg.load_sum = 1*47742/88761 = 0.

Then enqueue_load_avg() adds this to the cfs_rq totals:

  cfs_rq->avg.load_avg += se->avg.load_avg;
  cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;

Resulting in load_avg being 1 with load_sum is 0, which will trigger
the WARN.

Fixes: f207934fb7 ("sched/fair: Align PELT windows between cfs_rq and its se")
Signed-off-by: kuyo chang <kuyo.chang@mediatek.com>
[peterz: massage changelog]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20220414090229.342-1-kuyo.chang@mediatek.com
2022-04-19 21:15:41 +02:00
Zhen Ni
8a0441415b sched: Move energy_aware sysctls to topology.c
move energy_aware sysctls to topology.c and use the new
register_sysctl_init() to register the sysctl interface.

Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-06 13:43:44 -07:00
Zhen Ni
d4ae80ffa6 sched: Move cfs_bandwidth_slice sysctls to fair.c
move cfs_bandwidth_slice sysctls to fair.c and use the
new register_sysctl_init() to register the sysctl interface.

Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-06 13:43:43 -07:00
Zhen Ni
3267e0156c sched: Move uclamp_util sysctls to core.c
move uclamp_util sysctls to core.c and use the new
register_sysctl_init() to register the sysctl interface.

Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-06 13:43:43 -07:00
Baisong Zhong
28f152cd09 sched/rt: fix build error when CONFIG_SYSCTL is disable
Avoid random build errors which do not select
CONFIG_SYSCTL by depending on it in Kconfig.

This fixes the following warning:

In file included from kernel/sched/build_policy.c:43:
At top level:
kernel/sched/rt.c:3017:12: error: ‘sched_rr_handler’ defined but not used [-Werror=unused-function]
 3017 | static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
      |            ^~~~~~~~~~~~~~~~
kernel/sched/rt.c:2978:12: error: ‘sched_rt_handler’ defined but not used [-Werror=unused-function]
 2978 | static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
      |            ^~~~~~~~~~~~~~~~
cc1: all warnings being treated as errors
make[2]: *** [scripts/Makefile.build:310: kernel/sched/build_policy.o] Error 1
make[1]: *** [scripts/Makefile.build:638: kernel/sched] Error 2
make[1]: *** Waiting for unfinished jobs....

Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Baisong Zhong <zhongbaisong@huawei.com>
[mcgrof: small build fix, we need sched_rt_can_attach() even
 when CONFIG_SYSCTL is disabled]
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-06 13:43:43 -07:00
Zhen Ni
dafd7a9dad sched: Move rr_timeslice sysctls to rt.c
move rr_timeslice sysctls to rt.c and use the new
register_sysctl_init() to register the sysctl interface.

Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-06 13:43:43 -07:00
Zhen Ni
84227c1288 sched: Move deadline_period sysctls to deadline.c
move deadline_period sysctls to deadline.c and use the new
register_sysctl_init() to register the sysctl interface.

Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-06 13:43:43 -07:00
Zhen Ni
d9ab0e63fa sched: Move rt_period/runtime sysctls to rt.c
move rt_period/runtime sysctls to rt.c and use the new
register_sysctl_init() to register the sysctl interface.

Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-06 13:43:43 -07:00
Zhen Ni
f5ef06d58b sched: Move schedstats sysctls to core.c
move schedstats sysctls to core.c and use the new
register_sysctl_init() to register the sysctl interface.

Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-06 13:43:43 -07:00
Zhen Ni
a60707d74b sched: Move child_runs_first sysctls to fair.c
move child_runs_first sysctls to fair.c and use the new
register_sysctl_init() to register the sysctl interface.

Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-04-06 13:43:43 -07:00
Valentin Schneider
cfe43f478b preempt/dynamic: Introduce preemption model accessors
CONFIG_PREEMPT{_NONE, _VOLUNTARY} designate either:
o The build-time preemption model when !PREEMPT_DYNAMIC
o The default boot-time preemption model when PREEMPT_DYNAMIC

IOW, using those on PREEMPT_DYNAMIC kernels is meaningless - the actual
model could have been set to something else by the "preempt=foo" cmdline
parameter. Same problem applies to CONFIG_PREEMPTION.

Introduce a set of helpers to determine the actual preemption model used by
the live kernel.

Suggested-by: Marco Elver <elver@google.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20211112185203.280040-3-valentin.schneider@arm.com
2022-04-05 10:24:42 +02:00
Nick Desaulniers
8b023accc8 lockdep: Fix -Wunused-parameter for _THIS_IP_
While looking into a bug related to the compiler's handling of addresses
of labels, I noticed some uses of _THIS_IP_ seemed unused in lockdep.
Drive by cleanup.

-Wunused-parameter:
kernel/locking/lockdep.c:1383:22: warning: unused parameter 'ip'
kernel/locking/lockdep.c:4246:48: warning: unused parameter 'ip'
kernel/locking/lockdep.c:4844:19: warning: unused parameter 'ip'

Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/r/20220314221909.2027027-1-ndesaulniers@google.com
2022-04-05 10:24:34 +02:00
Sebastian Andrzej Siewior
386ef214c3 sched: Teach the forced-newidle balancer about CPU affinity limitation.
try_steal_cookie() looks at task_struct::cpus_mask to decide if the
task could be moved to `this' CPU. It ignores that the task might be in
a migration disabled section while not on the CPU. In this case the task
must not be moved otherwise per-CPU assumption are broken.

Use is_cpu_allowed(), as suggested by Peter Zijlstra, to decide if the a
task can be moved.

Fixes: d2dfa17bc7 ("sched: Trivial forced-newidle balancer")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YjNK9El+3fzGmswf@linutronix.de
2022-04-05 09:59:36 +02:00
Peter Zijlstra
5b6547ed97 sched/core: Fix forceidle balancing
Steve reported that ChromeOS encounters the forceidle balancer being
ran from rt_mutex_setprio()'s balance_callback() invocation and
explodes.

Now, the forceidle balancer gets queued every time the idle task gets
selected, set_next_task(), which is strictly too often.
rt_mutex_setprio() also uses set_next_task() in the 'change' pattern:

	queued = task_on_rq_queued(p); /* p->on_rq == TASK_ON_RQ_QUEUED */
	running = task_current(rq, p); /* rq->curr == p */

	if (queued)
		dequeue_task(...);
	if (running)
		put_prev_task(...);

	/* change task properties */

	if (queued)
		enqueue_task(...);
	if (running)
		set_next_task(...);

However, rt_mutex_setprio() will explicitly not run this pattern on
the idle task (since priority boosting the idle task is quite insane).
Most other 'change' pattern users are pidhash based and would also not
apply to idle.

Also, the change pattern doesn't contain a __balance_callback()
invocation and hence we could have an out-of-band balance-callback,
which *should* trigger the WARN in rq_pin_lock() (which guards against
this exact anti-pattern).

So while none of that explains how this happens, it does indicate that
having it in set_next_task() might not be the most robust option.

Instead, explicitly queue the forceidle balancer from pick_next_task()
when it does indeed result in forceidle selection. Having it here,
ensures it can only be triggered under the __schedule() rq->lock
instance, and hence must be ran from that context.

This also happens to clean up the code a little, so win-win.

Fixes: d2dfa17bc7 ("sched: Trivial forced-newidle balancer")
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: T.J. Alumbaugh <talumbau@chromium.org>
Link: https://lkml.kernel.org/r/20220330160535.GN8939@worktop.programming.kicks-ass.net
2022-04-05 09:59:36 +02:00
Linus Torvalds
1930a6e739 ptrace: Cleanups for v5.18
This set of changes removes tracehook.h, moves modification of all of
 the ptrace fields inside of siglock to remove races, adds a missing
 permission check to ptrace.c
 
 The removal of tracehook.h is quite significant as it has been a major
 source of confusion in recent years.  Much of that confusion was
 around task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled
 making the semantics clearer).
 
 For people who don't know tracehook.h is a vestiage of an attempt to
 implement uprobes like functionality that was never fully merged, and
 was later superseeded by uprobes when uprobes was merged.  For many
 years now we have been removing what tracehook functionaly a little
 bit at a time.  To the point where now anything left in tracehook.h is
 some weird strange thing that is difficult to understand.
 
 Eric W. Biederman (15):
       ptrace: Move ptrace_report_syscall into ptrace.h
       ptrace/arm: Rename tracehook_report_syscall report_syscall
       ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h
       ptrace: Remove arch_syscall_{enter,exit}_tracehook
       ptrace: Remove tracehook_signal_handler
       task_work: Remove unnecessary include from posix_timers.h
       task_work: Introduce task_work_pending
       task_work: Call tracehook_notify_signal from get_signal on all architectures
       task_work: Decouple TIF_NOTIFY_SIGNAL and task_work
       signal: Move set_notify_signal and clear_notify_signal into sched/signal.h
       resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume
       resume_user_mode: Move to resume_user_mode.h
       tracehook: Remove tracehook.h
       ptrace: Move setting/clearing ptrace_message into ptrace_stop
       ptrace: Return the signal to continue with from ptrace_stop
 
 Jann Horn (1):
       ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE
 
 Yang Li (1):
       ptrace: Remove duplicated include in ptrace.c
 
  MAINTAINERS                          |   1 -
  arch/Kconfig                         |   5 +-
  arch/alpha/kernel/ptrace.c           |   5 +-
  arch/alpha/kernel/signal.c           |   4 +-
  arch/arc/kernel/ptrace.c             |   5 +-
  arch/arc/kernel/signal.c             |   4 +-
  arch/arm/kernel/ptrace.c             |  12 +-
  arch/arm/kernel/signal.c             |   4 +-
  arch/arm64/kernel/ptrace.c           |  14 +--
  arch/arm64/kernel/signal.c           |   4 +-
  arch/csky/kernel/ptrace.c            |   5 +-
  arch/csky/kernel/signal.c            |   4 +-
  arch/h8300/kernel/ptrace.c           |   5 +-
  arch/h8300/kernel/signal.c           |   4 +-
  arch/hexagon/kernel/process.c        |   4 +-
  arch/hexagon/kernel/signal.c         |   1 -
  arch/hexagon/kernel/traps.c          |   6 +-
  arch/ia64/kernel/process.c           |   4 +-
  arch/ia64/kernel/ptrace.c            |   6 +-
  arch/ia64/kernel/signal.c            |   1 -
  arch/m68k/kernel/ptrace.c            |   5 +-
  arch/m68k/kernel/signal.c            |   4 +-
  arch/microblaze/kernel/ptrace.c      |   5 +-
  arch/microblaze/kernel/signal.c      |   4 +-
  arch/mips/kernel/ptrace.c            |   5 +-
  arch/mips/kernel/signal.c            |   4 +-
  arch/nds32/include/asm/syscall.h     |   2 +-
  arch/nds32/kernel/ptrace.c           |   5 +-
  arch/nds32/kernel/signal.c           |   4 +-
  arch/nios2/kernel/ptrace.c           |   5 +-
  arch/nios2/kernel/signal.c           |   4 +-
  arch/openrisc/kernel/ptrace.c        |   5 +-
  arch/openrisc/kernel/signal.c        |   4 +-
  arch/parisc/kernel/ptrace.c          |   7 +-
  arch/parisc/kernel/signal.c          |   4 +-
  arch/powerpc/kernel/ptrace/ptrace.c  |   8 +-
  arch/powerpc/kernel/signal.c         |   4 +-
  arch/riscv/kernel/ptrace.c           |   5 +-
  arch/riscv/kernel/signal.c           |   4 +-
  arch/s390/include/asm/entry-common.h |   1 -
  arch/s390/kernel/ptrace.c            |   1 -
  arch/s390/kernel/signal.c            |   5 +-
  arch/sh/kernel/ptrace_32.c           |   5 +-
  arch/sh/kernel/signal_32.c           |   4 +-
  arch/sparc/kernel/ptrace_32.c        |   5 +-
  arch/sparc/kernel/ptrace_64.c        |   5 +-
  arch/sparc/kernel/signal32.c         |   1 -
  arch/sparc/kernel/signal_32.c        |   4 +-
  arch/sparc/kernel/signal_64.c        |   4 +-
  arch/um/kernel/process.c             |   4 +-
  arch/um/kernel/ptrace.c              |   5 +-
  arch/x86/kernel/ptrace.c             |   1 -
  arch/x86/kernel/signal.c             |   5 +-
  arch/x86/mm/tlb.c                    |   1 +
  arch/xtensa/kernel/ptrace.c          |   5 +-
  arch/xtensa/kernel/signal.c          |   4 +-
  block/blk-cgroup.c                   |   2 +-
  fs/coredump.c                        |   1 -
  fs/exec.c                            |   1 -
  fs/io-wq.c                           |   6 +-
  fs/io_uring.c                        |  11 +-
  fs/proc/array.c                      |   1 -
  fs/proc/base.c                       |   1 -
  include/asm-generic/syscall.h        |   2 +-
  include/linux/entry-common.h         |  47 +-------
  include/linux/entry-kvm.h            |   2 +-
  include/linux/posix-timers.h         |   1 -
  include/linux/ptrace.h               |  81 ++++++++++++-
  include/linux/resume_user_mode.h     |  64 ++++++++++
  include/linux/sched/signal.h         |  17 +++
  include/linux/task_work.h            |   5 +
  include/linux/tracehook.h            | 226 -----------------------------------
  include/uapi/linux/ptrace.h          |   2 +-
  kernel/entry/common.c                |  19 +--
  kernel/entry/kvm.c                   |   9 +-
  kernel/exit.c                        |   3 +-
  kernel/livepatch/transition.c        |   1 -
  kernel/ptrace.c                      |  47 +++++---
  kernel/seccomp.c                     |   1 -
  kernel/signal.c                      |  62 +++++-----
  kernel/task_work.c                   |   4 +-
  kernel/time/posix-cpu-timers.c       |   1 +
  mm/memcontrol.c                      |   2 +-
  security/apparmor/domain.c           |   1 -
  security/selinux/hooks.c             |   1 -
  85 files changed, 372 insertions(+), 495 deletions(-)
 
 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmJCQkoACgkQC/v6Eiaj
 j0DCWQ/5AZVFU+hX32obUNCLackHTwgcCtSOs3JNBmNA/zL/htPiYYG0ghkvtlDR
 Dw5J5DnxC6P7PVAdAqrpvx2uX2FebHYU0bRlyLx8LYUEP5dhyNicxX9jA882Z+vw
 Ud0Ue9EojwGWS76dC9YoKUj3slThMATbhA2r4GVEoof8fSNJaBxQIqath44t0FwU
 DinWa+tIOvZANGBZr6CUUINNIgqBIZCH/R4h6ArBhMlJpuQ5Ufk2kAaiWFwZCkX4
 0LuuAwbKsCKkF8eap5I2KrIg/7zZVgxAg9O3cHOzzm8OPbKzRnNnQClcDe8perqp
 S6e/f3MgpE+eavd1EiLxevZ660cJChnmikXVVh8ZYYoefaMKGqBaBSsB38bNcLjY
 3+f2dB+TNBFRnZs1aCujK3tWBT9QyjZDKtCBfzxDNWBpXGLhHH6j6lA5Lj+Cef5K
 /HNHFb+FuqedlFZh5m1Y+piFQ70hTgCa2u8b+FSOubI2hW9Zd+WzINV0ANaZ2LvZ
 4YGtcyDNk1q1+c87lxP9xMRl/xi6rNg+B9T2MCo4IUnHgpSVP6VEB3osgUmrrrN0
 eQlUI154G/AaDlqXLgmn1xhRmlPGfmenkxpok1AuzxvNJsfLKnpEwQSc13g3oiZr
 disZQxNY0kBO2Nv3G323Z6PLinhbiIIFez6cJzK5v0YJ2WtO3pY=
 =uEro
 -----END PGP SIGNATURE-----

Merge tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace

Pull ptrace cleanups from Eric Biederman:
 "This set of changes removes tracehook.h, moves modification of all of
  the ptrace fields inside of siglock to remove races, adds a missing
  permission check to ptrace.c

  The removal of tracehook.h is quite significant as it has been a major
  source of confusion in recent years. Much of that confusion was around
  task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled making the
  semantics clearer).

  For people who don't know tracehook.h is a vestiage of an attempt to
  implement uprobes like functionality that was never fully merged, and
  was later superseeded by uprobes when uprobes was merged. For many
  years now we have been removing what tracehook functionaly a little
  bit at a time. To the point where anything left in tracehook.h was
  some weird strange thing that was difficult to understand"

* tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  ptrace: Remove duplicated include in ptrace.c
  ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE
  ptrace: Return the signal to continue with from ptrace_stop
  ptrace: Move setting/clearing ptrace_message into ptrace_stop
  tracehook: Remove tracehook.h
  resume_user_mode: Move to resume_user_mode.h
  resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume
  signal: Move set_notify_signal and clear_notify_signal into sched/signal.h
  task_work: Decouple TIF_NOTIFY_SIGNAL and task_work
  task_work: Call tracehook_notify_signal from get_signal on all architectures
  task_work: Introduce task_work_pending
  task_work: Remove unnecessary include from posix_timers.h
  ptrace: Remove tracehook_signal_handler
  ptrace: Remove arch_syscall_{enter,exit}_tracehook
  ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h
  ptrace/arm: Rename tracehook_report_syscall report_syscall
  ptrace: Move ptrace_report_syscall into ptrace.h
2022-03-28 17:29:53 -07:00
Linus Torvalds
3bf03b9a08 Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - A few misc subsystems: kthread, scripts, ntfs, ocfs2, block, and vfs

 - Most the MM patches which precede the patches in Willy's tree: kasan,
   pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
   sparsemem, vmalloc, pagealloc, memory-failure, mlock, hugetlb,
   userfaultfd, vmscan, compaction, mempolicy, oom-kill, migration, thp,
   cma, autonuma, psi, ksm, page-poison, madvise, memory-hotplug, rmap,
   zswap, uaccess, ioremap, highmem, cleanups, kfence, hmm, and damon.

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (227 commits)
  mm/damon/sysfs: remove repeat container_of() in damon_sysfs_kdamond_release()
  Docs/ABI/testing: add DAMON sysfs interface ABI document
  Docs/admin-guide/mm/damon/usage: document DAMON sysfs interface
  selftests/damon: add a test for DAMON sysfs interface
  mm/damon/sysfs: support DAMOS stats
  mm/damon/sysfs: support DAMOS watermarks
  mm/damon/sysfs: support schemes prioritization
  mm/damon/sysfs: support DAMOS quotas
  mm/damon/sysfs: support DAMON-based Operation Schemes
  mm/damon/sysfs: support the physical address space monitoring
  mm/damon/sysfs: link DAMON for virtual address spaces monitoring
  mm/damon: implement a minimal stub for sysfs-based DAMON interface
  mm/damon/core: add number of each enum type values
  mm/damon/core: allow non-exclusive DAMON start/stop
  Docs/damon: update outdated term 'regions update interval'
  Docs/vm/damon/design: update DAMON-Idle Page Tracking interference handling
  Docs/vm/damon: call low level monitoring primitives the operations
  mm/damon: remove unnecessary CONFIG_DAMON option
  mm/damon/paddr,vaddr: remove damon_{p,v}a_{target_valid,set_operations}()
  mm/damon/dbgfs-test: fix is_target_id() change
  ...
2022-03-22 16:11:53 -07:00
Huang Ying
c574bbe917 NUMA balancing: optimize page placement for memory tiering system
With the advent of various new memory types, some machines will have
multiple types of memory, e.g.  DRAM and PMEM (persistent memory).  The
memory subsystem of these machines can be called memory tiering system,
because the performance of the different types of memory are usually
different.

In such system, because of the memory accessing pattern changing etc,
some pages in the slow memory may become hot globally.  So in this
patch, the NUMA balancing mechanism is enhanced to optimize the page
placement among the different memory types according to hot/cold
dynamically.

In a typical memory tiering system, there are CPUs, fast memory and slow
memory in each physical NUMA node.  The CPUs and the fast memory will be
put in one logical node (called fast memory node), while the slow memory
will be put in another (faked) logical node (called slow memory node).
That is, the fast memory is regarded as local while the slow memory is
regarded as remote.  So it's possible for the recently accessed pages in
the slow memory node to be promoted to the fast memory node via the
existing NUMA balancing mechanism.

The original NUMA balancing mechanism will stop to migrate pages if the
free memory of the target node becomes below the high watermark.  This
is a reasonable policy if there's only one memory type.  But this makes
the original NUMA balancing mechanism almost do not work to optimize
page placement among different memory types.  Details are as follows.

It's the common cases that the working-set size of the workload is
larger than the size of the fast memory nodes.  Otherwise, it's
unnecessary to use the slow memory at all.  So, there are almost always
no enough free pages in the fast memory nodes, so that the globally hot
pages in the slow memory node cannot be promoted to the fast memory
node.  To solve the issue, we have 2 choices as follows,

a. Ignore the free pages watermark checking when promoting hot pages
   from the slow memory node to the fast memory node.  This will
   create some memory pressure in the fast memory node, thus trigger
   the memory reclaiming.  So that, the cold pages in the fast memory
   node will be demoted to the slow memory node.

b. Define a new watermark called wmark_promo which is higher than
   wmark_high, and have kswapd reclaiming pages until free pages reach
   such watermark.  The scenario is as follows: when we want to promote
   hot-pages from a slow memory to a fast memory, but fast memory's free
   pages would go lower than high watermark with such promotion, we wake
   up kswapd with wmark_promo watermark in order to demote cold pages and
   free us up some space.  So, next time we want to promote hot-pages we
   might have a chance of doing so.

The choice "a" may create high memory pressure in the fast memory node.
If the memory pressure of the workload is high, the memory pressure
may become so high that the memory allocation latency of the workload
is influenced, e.g.  the direct reclaiming may be triggered.

The choice "b" works much better at this aspect.  If the memory
pressure of the workload is high, the hot pages promotion will stop
earlier because its allocation watermark is higher than that of the
normal memory allocation.  So in this patch, choice "b" is implemented.
A new zone watermark (WMARK_PROMO) is added.  Which is larger than the
high watermark and can be controlled via watermark_scale_factor.

In addition to the original page placement optimization among sockets,
the NUMA balancing mechanism is extended to be used to optimize page
placement according to hot/cold among different memory types.  So the
sysctl user space interface (numa_balancing) is extended in a backward
compatible way as follow, so that the users can enable/disable these
functionality individually.

The sysctl is converted from a Boolean value to a bits field.  The
definition of the flags is,

- 0: NUMA_BALANCING_DISABLED
- 1: NUMA_BALANCING_NORMAL
- 2: NUMA_BALANCING_MEMORY_TIERING

We have tested the patch with the pmbench memory accessing benchmark
with the 80:20 read/write ratio and the Gauss access address
distribution on a 2 socket Intel server with Optane DC Persistent
Memory Model.  The test results shows that the pmbench score can
improve up to 95.9%.

Thanks Andrew Morton to help fix the document format error.

Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:09 -07:00