We have similar code here and there, this merges them into a helper.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs updates from Chris Mason:
"Jeff Mahoney and Dave Sterba have a really nice set of cleanups in
here, and Christoph pitched in corrections/improvements to make btrfs
use proper helpers for bio walking instead of doing it by hand.
There are some key fixes as well, including some long standing bugs
that took forever to track down in btrfs_drop_extents and during
balance"
* 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (77 commits)
btrfs: limit async_work allocation and worker func duration
Revert "Btrfs: adjust len of writes if following a preallocated extent"
Btrfs: don't WARN() in btrfs_transaction_abort() for IO errors
btrfs: opencode chunk locking, remove helpers
btrfs: remove root parameter from transaction commit/end routines
btrfs: split btrfs_wait_marked_extents into normal and tree log functions
btrfs: take an fs_info directly when the root is not used otherwise
btrfs: simplify btrfs_wait_cache_io prototype
btrfs: convert extent-tree tracepoints to use fs_info
btrfs: root->fs_info cleanup, access fs_info->delayed_root directly
btrfs: root->fs_info cleanup, add fs_info convenience variables
btrfs: root->fs_info cleanup, update_block_group{,flags}
btrfs: root->fs_info cleanup, lock/unlock_chunks
btrfs: root->fs_info cleanup, btrfs_calc_{trans,trunc}_metadata_size
btrfs: pull node/sector/stripe sizes out of root and into fs_info
btrfs: root->fs_info cleanup, io_ctl_init
btrfs: root->fs_info cleanup, use fs_info->dev_root everywhere
btrfs: struct reada_control.root -> reada_control.fs_info
btrfs: struct btrfsic_state->root should be an fs_info
btrfs: alloc_reserved_file_extent trace point should use extent_root
...
There are loads of functions in btrfs that accept a root parameter
but only use it to obtain an fs_info pointer. Let's convert those to
just accept an fs_info pointer directly.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_init_new_device only uses the root passed in via the ioctl to
start the transaction. Nothing else that happens is related to whatever
root the user used to initiate the ioctl. We can drop the root requirement
and just use fs_info->dev_root instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are many functions that are always called with the same root
argument. Rather than passing the same root every time, we can
pass an fs_info pointer instead and have the function get the root
pointer itself.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are 11 functions that accept a root parameter and immediately
overwrite it. We can pass those an fs_info pointer instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_map_block supports different types of mappings, which to a large
extent resemble block layer operations. But they don't always do, and
currently btrfs dangerously overlays it's own flag over the block layer
flags. This is just asking for a conflict, so introduce a different
map flags enum inside of btrfs instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove the WRITE_* and READ_SYNC wrappers, and just use the flags
directly. Where applicable this also drops usage of the
bio_set_op_attrs wrapper.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
For many printks, we want to know which file system issued the message.
This patch converts most pr_* calls to use the btrfs_* versions instead.
In some cases, this means adding plumbing to allow call sites access to
an fs_info pointer.
fs/btrfs/check-integrity.c is left alone for another day.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The bio REQ_OP and bi_rw rq_flag_bits are now always setup, so there is
no need to pass around the rq_flag_bits bits too. btrfs users should
should access the bio insead.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
We no longer pass in a bitmap of rq_flag_bits bits to __btrfs_map_block.
It will always be a REQ_OP, or the btrfs specific REQ_GET_READ_MIRRORS,
so this drops the bit tests.
Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The struct 'map_lookup' uses type int for @stripe_len, while
btrfs_chunk_stripe_len() can return a u64 value, and it may end up with
@stripe_len being undefined value and it can lead to 'divide error' in
__btrfs_map_block().
This changes 'map_lookup' to use type u64 for stripe_len, also right now
we only use BTRFS_STRIPE_LEN for stripe_len, so this adds a valid checker for
BTRFS_STRIPE_LEN.
Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Reported-by: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ folded division fix to scrub_raid56_parity ]
Signed-off-by: David Sterba <dsterba@suse.com>
Creates helper fucntion as needed by the device delete
and replace operations. Also now it checks if the next
device being assigned is an active device.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The BTRFS_BALANCE_* flags are used by struct btrfs_ioctl_balance_args.flags
and btrfs_ioctl_balance_args.{data,meta,sys}.flags in the BTRFS_IOC_BALANCE
ioctl.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For clarity how we are going to find the device, let's call it a device
specifier, devspec for short. Also rename the arguments that are a
leftover from previous function purpose.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This introduces new ioctl BTRFS_IOC_RM_DEV_V2, which uses enhanced struct
btrfs_ioctl_vol_args_v2 to carry devid as an user argument.
The patch won't delete the old ioctl interface and so kernel remains
backward compatible with user land progs.
Test case/script:
echo "0 $(blockdev --getsz /dev/sdf) linear /dev/sdf 0" | dmsetup create bad_disk
mkfs.btrfs -f -d raid1 -m raid1 /dev/sdd /dev/sde /dev/mapper/bad_disk
mount /dev/sdd /btrfs
dmsetup suspend bad_disk
echo "0 $(blockdev --getsz /dev/sdf) error /dev/sdf 0" | dmsetup load bad_disk
dmsetup resume bad_disk
echo "bad disk failed. now deleting/replacing"
btrfs dev del 3 /btrfs
echo $?
btrfs fi show /btrfs
umount /btrfs
btrfs-show-super /dev/sdd | egrep num_device
dmsetup remove bad_disk
wipefs -a /dev/sdf
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reported-by: Martin <m_btrfs@ml1.co.uk>
[ adjust messages, s/disk/device/ ]
Signed-off-by: David Sterba <dsterba@suse.com>
The patch renames btrfs_dev_replace_find_srcdev() to
btrfs_find_device_by_user_input() and moves it to volumes.c, so that
delete device can use it.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use many constants to represent size and offset value. And to make
code readable we use '256 * 1024 * 1024' instead of '268435456' to
represent '256MB'. However we can make far more readable with 'SZ_256MB'
which is defined in the 'linux/sizes.h'.
So this patch replaces 'xxx * 1024 * 1024' kind of expression with
single 'SZ_xxxMB' if 'xxx' is a power of 2 then 'xxx * SZ_1M' if 'xxx' is
not a power of 2. And I haven't touched to '4096' & '8192' because it's
more intuitive than 'SZ_4KB' & 'SZ_8KB'.
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I've accidentally picked an already used number for the enhanced usage
filter represented by BTRFS_BALANCE_ARGS_USAGE_RANGE, clashing with
BTRFS_BALANCE_ARGS_CONVERT. Introduced during the development phase,
no backward compatibility issues.
Reported-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Fixes: bc3094673f ("btrfs: extend balance filter usage to take minimum and maximum")
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Enable the extended 'limit' syntax (a range), the new 'stripes' and
extended 'usage' syntax (a range) filters in the filters mask. The patch
comes separate and not within the series that introduced the new filters
because the patch adding the mask was merged in a late rc. The
integration branch was based on an older rc and could not merge the
patch due to the missing changes.
Prerequisities:
* btrfs: check unsupported filters in balance arguments
* btrfs: extend balance filter limit to take minimum and maximum
* btrfs: add balance filter for stripes
* btrfs: extend balance filter usage to take minimum and maximum
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Similar to the 'limit' filter, we can enhance the 'usage' filter to
accept a range. The change is backward compatible, the range is applied
only in connection with the BTRFS_BALANCE_ARGS_USAGE_RANGE flag.
We don't have a usecase yet, the current syntax has been sufficient. The
enhancement should provide parity with other range-like filters.
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Balance block groups which have the given number of stripes, defined by
a range min..max. This is useful to selectively rebalance only chunks
that do not span enough devices, applies to RAID0/10/5/6.
Signed-off-by: Gabríel Arthúr Pétursson <gabriel@system.is>
[ renamed bargs members, added to the UAPI, wrote the changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
The 'limit' filter is underdesigned, it should have been a range for
[min,max], with some relaxed semantics when one of the bounds is
missing. Besides that, using a full u64 for a single value is a waste of
bytes.
Let's fix both by extending the use of the u64 bytes for the [min,max]
range. This can be done in a backward compatible way, the range will be
interpreted only if the appropriate flag is set
(BTRFS_BALANCE_ARGS_LIMIT_RANGE).
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
We don't verify that all the balance filter arguments supplemented by
the flags are actually known to the kernel. Thus we let it silently pass
and do nothing.
At the moment this means only the 'limit' filter, but we're going to add
a few more soon so it's better to have that fixed. Also in older stable
kernels so that it works with newer userspace tools.
Cc: stable@vger.kernel.org # 3.16+
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
btrfs_raid_array[] is used to define all raid attributes, use it
to get tolerated_failures in btrfs_get_num_tolerated_disk_barrier_failures(),
instead of complex condition in function.
It can make code simple and auto-support other possible raid-type in
future.
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This array is used to record attributes of each raid type,
make it public, and many functions will benifit with this array.
For example, num_tolerated_disk_barrier_failures(), we can
avoid complex conditions in this function, and get raid attribute
simply by accessing above array.
It can also make code logic simple, reduce duplication code, and
increase maintainability.
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch updates and renames btrfs_scratch_superblocks, (which is used
by the replace device thread), with those fixes from the scratch
superblock code section of btrfs_rm_device(). The fixes are:
Scratch all copies of superblock
Notify kobject that superblock has been changed
Update time on the device
So that btrfs_rm_device() can use the function
btrfs_scratch_superblocks() instead of its own scratch code. And further
replace deivce code which similarly releases device back to the system,
will have the fixes from the btrfs device delete.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
[renamed to btrfs_scratch_superblock]
Signed-off-by: David Sterba <dsterba@suse.com>
Since we now clean up block groups automatically as they become
empty, iterating over block groups is no longer sufficient to discard
unused space.
This patch iterates over the unused chunk space and discards any regions
that are unallocated, regardless of whether they were ever used. This is
a change for btrfs but is consistent with other file systems.
We do this in a transactionless manner since the discard process can take
a substantial amount of time and a transaction would need to be started
before the acquisition of the device list lock. That would mean a
transaction would be held open across /all/ of the discards collectively.
In order to prevent other threads from allocating or freeing chunks, we
hold the chunks lock across the search and discard calls. We release it
between searches to allow the file system to perform more-or-less
normally. Since the running transaction can commit and disappear while
we're using the transaction pointer, we take a reference to it and
release it after the search. This is safe since it would happen normally
at the end of the transaction commit after any locks are released anyway.
We also take the commit_root_sem to protect against a transaction starting
and committing while we're running.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs updates from Chris Mason:
"Outside of our usual batch of fixes, this integrates the subvolume
quota updates that Qu Wenruo from Fujitsu has been working on for a
few releases now. He gets an extra gold star for making btrfs smaller
this time, and fixing a number of quota corners in the process.
Dave Sterba tested and integrated Anand Jain's sysfs improvements.
Outside of exporting a symbol (ack'd by Greg) these are all internal
to btrfs and it's mostly cleanups and fixes. Anand also attached some
of our sysfs objects to our internal device management structs instead
of an object off the super block. It will make device management
easier overall and it's a better fit for how the sysfs files are used.
None of the existing sysfs files are moved around.
Thanks for all the fixes everyone"
* 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (87 commits)
btrfs: delayed-ref: double free in btrfs_add_delayed_tree_ref()
Btrfs: Check if kobject is initialized before put
lib: export symbol kobject_move()
Btrfs: sysfs: add support to show replacing target in the sysfs
Btrfs: free the stale device
Btrfs: use received_uuid of parent during send
Btrfs: fix use-after-free in btrfs_replay_log
btrfs: wait for delayed iputs on no space
btrfs: qgroup: Make snapshot accounting work with new extent-oriented qgroup.
btrfs: qgroup: Add the ability to skip given qgroup for old/new_roots.
btrfs: ulist: Add ulist_del() function.
btrfs: qgroup: Cleanup the old ref_node-oriented mechanism.
btrfs: qgroup: Switch self test to extent-oriented qgroup mechanism.
btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.
btrfs: qgroup: Switch rescan to new mechanism.
btrfs: qgroup: Add new qgroup calculation function btrfs_qgroup_account_extents().
btrfs: backref: Add special time_seq == (u64)-1 case for btrfs_find_all_roots().
btrfs: qgroup: Add new function to record old_roots.
btrfs: qgroup: Record possible quota-related extent for qgroup.
btrfs: qgroup: Add function qgroup_update_counters().
...
This patch will provide a framework and help to create attributes
from the structure btrfs_fs_devices which are available even before
fs_info is created. So by moving the parent kobject super_kobj from
fs_info to btrfs_fs_devices, it will help to create attributes
from the btrfs_fs_devices as well.
Patches on top of this patch now will be able to create the
sys/fs/btrfs/fsid kobject and attributes from btrfs_fs_devices
when devices are scanned and registered to the kernel.
Just to note, this does not change any of the existing btrfs sysfs
external kobject names and its attributes and not even the life
cycle of them. Changes are internal only. And to ensure the same,
this path has been tested with various device operations and,
checking and comparing the sysfs kobjects and attributes with
sysfs kobject and attributes with out this patch, and they remain
same.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Commit c4cf5261 ("bio: skip atomic inc/dec of ->bi_remaining for
non-chains") regressed all existing callers that followed this pattern:
1) saving a bio's original bi_end_io
2) wiring up an intermediate bi_end_io
3) restoring the original bi_end_io from intermediate bi_end_io
4) calling bio_endio() to execute the restored original bi_end_io
The regression was due to BIO_CHAIN only ever getting set if
bio_inc_remaining() is called. For the above pattern it isn't set until
step 3 above (step 2 would've needed to establish BIO_CHAIN). As such
the first bio_endio(), in step 2 above, never decremented __bi_remaining
before calling the intermediate bi_end_io -- leaving __bi_remaining with
the value 1 instead of 0. When bio_inc_remaining() occurred during step
3 it brought it to a value of 2. When the second bio_endio() was
called, in step 4 above, it should've called the original bi_end_io but
it didn't because there was an extra reference that wasn't dropped (due
to atomic operations being optimized away since BIO_CHAIN wasn't set
upfront).
Fix this issue by removing the __bi_remaining management complexity for
all callers that use the above pattern -- bio_chain() is the only
interface that _needs_ to be concerned with __bi_remaining. For the
above pattern callers just expect the bi_end_io they set to get called!
Remove bio_endio_nodec() and also remove all bio_inc_remaining() calls
that aren't associated with the bio_chain() interface.
Also, the bio_inc_remaining() interface has been moved local to bio.c.
Fixes: c4cf5261 ("bio: skip atomic inc/dec of ->bi_remaining for non-chains")
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The commit:
8dabb74 Btrfs: change core code of btrfs to support the
device replace operations
added the fs_info argument, but never used it -
just remove it again.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
Corrent code use many kinds of "clever" way to determine operation
target's raid type, as:
raid_map != NULL
or
raid_map[MAX_NR] == RAID[56]_Q_STRIPE
To make code easy to maintenance, this patch put raid type into
bbio, and we can always get raid type from bbio with a "stupid"
way.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>