devm_memremap_pages() is currently used by the PCI P2PDMA code to create
struct page mappings for IO memory. At present, these mappings are
created with PAGE_KERNEL which implies setting the PAT bits to be WB.
However, on x86, an mtrr register will typically override this and force
the cache type to be UC-. In the case firmware doesn't set this
register it is effectively WB and will typically result in a machine
check exception when it's accessed.
Other arches are not currently likely to function correctly seeing they
don't have any MTRR registers to fall back on.
To solve this, provide a way to specify the pgprot value explicitly to
arch_add_memory().
Of the arches that support MEMORY_HOTPLUG: x86_64, and arm64 need a
simple change to pass the pgprot_t down to their respective functions
which set up the page tables. For x86_32, set the page tables
explicitly using _set_memory_prot() (seeing they are already mapped).
For ia64, s390 and sh, reject anything but PAGE_KERNEL settings -- this
should be fine, for now, seeing these architectures don't support
ZONE_DEVICE.
A check in __add_pages() is also added to ensure the pgprot parameter
was set for all arches.
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Badger <ebadger@gigaio.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200306170846.9333-7-logang@deltatee.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mhp_restrictions struct really doesn't specify anything resembling a
restriction anymore so rename it to be mhp_params as it is a list of
extended parameters.
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Badger <ebadger@gigaio.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200306170846.9333-3-logang@deltatee.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We currently try to shrink a single zone when removing memory. We use
the zone of the first page of the memory we are removing. If that
memmap was never initialized (e.g., memory was never onlined), we will
read garbage and can trigger kernel BUGs (due to a stale pointer):
BUG: unable to handle page fault for address: 000000000000353d
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP PTI
CPU: 1 PID: 7 Comm: kworker/u8:0 Not tainted 5.3.0-rc5-next-20190820+ #317
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.4
Workqueue: kacpi_hotplug acpi_hotplug_work_fn
RIP: 0010:clear_zone_contiguous+0x5/0x10
Code: 48 89 c6 48 89 c3 e8 2a fe ff ff 48 85 c0 75 cf 5b 5d c3 c6 85 fd 05 00 00 01 5b 5d c3 0f 1f 840
RSP: 0018:ffffad2400043c98 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000200000000 RCX: 0000000000000000
RDX: 0000000000200000 RSI: 0000000000140000 RDI: 0000000000002f40
RBP: 0000000140000000 R08: 0000000000000000 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000140000
R13: 0000000000140000 R14: 0000000000002f40 R15: ffff9e3e7aff3680
FS: 0000000000000000(0000) GS:ffff9e3e7bb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000000353d CR3: 0000000058610000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
__remove_pages+0x4b/0x640
arch_remove_memory+0x63/0x8d
try_remove_memory+0xdb/0x130
__remove_memory+0xa/0x11
acpi_memory_device_remove+0x70/0x100
acpi_bus_trim+0x55/0x90
acpi_device_hotplug+0x227/0x3a0
acpi_hotplug_work_fn+0x1a/0x30
process_one_work+0x221/0x550
worker_thread+0x50/0x3b0
kthread+0x105/0x140
ret_from_fork+0x3a/0x50
Modules linked in:
CR2: 000000000000353d
Instead, shrink the zones when offlining memory or when onlining failed.
Introduce and use remove_pfn_range_from_zone(() for that. We now
properly shrink the zones, even if we have DIMMs whereby
- Some memory blocks fall into no zone (never onlined)
- Some memory blocks fall into multiple zones (offlined+re-onlined)
- Multiple memory blocks that fall into different zones
Drop the zone parameter (with a potential dubious value) from
__remove_pages() and __remove_section().
Link: http://lkml.kernel.org/r/20191006085646.5768-6-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online") [visible after d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: <stable@vger.kernel.org> [5.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some architectures, notably ARM, are interested in tweaking this
depending on their runtime DMA addressing limitations.
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
All references to sev_active() were moved to arch/x86 so we don't need to
define it for s390 anymore.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Halil Pasic <pasic@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190806044919.10622-7-bauerman@linux.ibm.com
Fix various regressions:
- force unencrypted dma-coherent buffers if encryption bit can't fit
into the dma coherent mask (Tom Lendacky)
- avoid limiting request size if swiotlb is not used (me)
- fix swiotlb handling in dma_direct_sync_sg_for_cpu/device
(Fugang Duan)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl0zTvELHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYMAsQ/6AleklMsMbc1xPsYYMukmjAOUNf+nvsFG4PRs/KVn
1/Yohkxx/FN3oXZ+zZEnyd8a5u0ghwkN1WDivEhpclzbDuQP+Z+jEDmb37Oea4aJ
L6XRLQJYiFwwEA6oJ87FNVMZXK/QUo+/lnDvJg0xNW6+HiR4GAUmnqy+/KyEIRSf
SX+aiUOX4tUkwHPWyMaWvTlZ4hZgSovXwkUnR08jCwyJFezUwJBr/Yf5G6M1C10B
hPFTrREhaekXgFd5E1dwKNk5omvfihxGyVUujFZhtMvs//LP8GcFLcVtYRWM/SUZ
XpKkXxnaRC0gEm2P4/tSEGL3xl1CST/oYde74KNBQDIe0svGFS0QrP68+4zu/1ih
vaf2gHoCoJciFY2DHglw1OG/gMWW06OtdseOKe9LZXtsGA6HCVBZW4c01V5YHVQT
TMQMr0UyxJzmrxCo+LafAf9DoQxIii8WapewomwceL0TUtIDIujirzC/ieLhNPKL
L2Fk+zPtFL24IpVe52S1PngatlW4MioiyiJji1QM0RK1V68+r/nSKPBxeq9s+jR3
CfGvfhfRDd/NbZ9m66YFUaRzHL6Fpi2hMvJc9O6dgcVEYEBrL0d8J9nH42cqOlfe
OBGeCxnFNQMuBp4Tw1OZO9PjzR3+pQOb32pOWLDUUs9ed3gtdMrJYTKhw9/cLpyp
838=
=Bv+Q
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.3-1' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping fixes from Christoph Hellwig:
"Fix various regressions:
- force unencrypted dma-coherent buffers if encryption bit can't fit
into the dma coherent mask (Tom Lendacky)
- avoid limiting request size if swiotlb is not used (me)
- fix swiotlb handling in dma_direct_sync_sg_for_cpu/device (Fugang
Duan)"
* tag 'dma-mapping-5.3-1' of git://git.infradead.org/users/hch/dma-mapping:
dma-direct: correct the physical addr in dma_direct_sync_sg_for_cpu/device
dma-direct: only limit the mapping size if swiotlb could be used
dma-mapping: add a dma_addressing_limited helper
dma-direct: Force unencrypted DMA under SME for certain DMA masks
We want to improve error handling while adding memory by allowing to use
arch_remove_memory() and __remove_pages() even if
CONFIG_MEMORY_HOTREMOVE is not set to e.g., implement something like:
arch_add_memory()
rc = do_something();
if (rc) {
arch_remove_memory();
}
We won't get rid of CONFIG_MEMORY_HOTREMOVE for now, as it will require
quite some dependencies for memory offlining.
Link: http://lkml.kernel.org/r/20190527111152.16324-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Mark Brown <broonie@kernel.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Will come in handy when wanting to handle errors after
arch_add_memory().
Link: http://lkml.kernel.org/r/20190527111152.16324-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ZONE_DEVICE is not yet supported, fail if an altmap is passed, so we
don't forget arch_add_memory()/arch_remove_memory() when unlocking
support.
Link: http://lkml.kernel.org/r/20190527111152.16324-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a device doesn't support DMA to a physical address that includes the
encryption bit (currently bit 47, so 48-bit DMA), then the DMA must
occur to unencrypted memory. SWIOTLB is used to satisfy that requirement
if an IOMMU is not active (enabled or configured in passthrough mode).
However, commit fafadcd165 ("swiotlb: don't dip into swiotlb pool for
coherent allocations") modified the coherent allocation support in
SWIOTLB to use the DMA direct coherent allocation support. When an IOMMU
is not active, this resulted in dma_alloc_coherent() failing for devices
that didn't support DMA addresses that included the encryption bit.
Addressing this requires changes to the force_dma_unencrypted() function
in kernel/dma/direct.c. Since the function is now non-trivial and
SME/SEV specific, update the DMA direct support to add an arch override
for the force_dma_unencrypted() function. The arch override is selected
when CONFIG_AMD_MEM_ENCRYPT is set. The arch override function resides in
the arch/x86/mm/mem_encrypt.c file and forces unencrypted DMA when either
SEV is active or SME is active and the device does not support DMA to
physical addresses that include the encryption bit.
Fixes: fafadcd165 ("swiotlb: don't dip into swiotlb pool for coherent allocations")
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
[hch: moved the force_dma_unencrypted declaration to dma-mapping.h,
fold the s390 fix from Halil Pasic]
Signed-off-by: Christoph Hellwig <hch@lst.de>
On s390, protected virtualization guests have to use bounced I/O
buffers. That requires some plumbing.
Let us make sure, any device that uses DMA API with direct ops correctly
is spared from the problems, that a hypervisor attempting I/O to a
non-shared page would bring.
Signed-off-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Michael Mueller <mimu@linux.ibm.com>
Tested-by: Michael Mueller <mimu@linux.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
All callers of arch_remove_memory() ignore errors. And we should really
try to remove any errors from the memory removal path. No more errors are
reported from __remove_pages(). BUG() in s390x code in case
arch_remove_memory() is triggered. We may implement that properly later.
WARN in case powerpc code failed to remove the section mapping, which is
better than ignoring the error completely right now.
Link: http://lkml.kernel.org/r/20190409100148.24703-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arch_add_memory, __add_pages take a want_memblock which controls whether
the newly added memory should get the sysfs memblock user API (e.g.
ZONE_DEVICE users do not want/need this interface). Some callers even
want to control where do we allocate the memmap from by configuring
altmap.
Add a more generic hotplug context for arch_add_memory and __add_pages.
struct mhp_restrictions contains flags which contains additional features
to be enabled by the memory hotplug (MHP_MEMBLOCK_API currently) and
altmap for alternative memmap allocator.
This patch shouldn't introduce any functional change.
[akpm@linux-foundation.org: build fix]
Link: http://lkml.kernel.org/r/20190408082633.2864-3-osalvador@suse.de
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Various architectures including x86 poison the freed initrd memory. Do
the same in the generic free_initrd_mem implementation and switch a few
more architectures that are identical to the generic code over to it now.
Link: http://lkml.kernel.org/r/20190213174621.29297-9-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Cc: Steven Price <steven.price@arm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following warning occurred on s390:
WARNING: CPU: 0 PID: 804 at kernel/locking/lockdep.c:1025 lockdep_register_key+0x30/0x150
This is because the check in static_obj() assumes that all memory within
[_stext, _end] belongs to static objects, which at least for s390 isn't
true. The init section is also part of this range, and freeing it allows
the buddy allocator to allocate memory from it. We have virt == phys for
the kernel on s390, so that such allocations would then have addresses
within the range [_stext, _end].
To fix this, introduce arch_is_kernel_initmem_freed(), similar to
arch_is_kernel_text/data(), and add it to the checks in static_obj().
This will always return 0 on architectures that do not define
arch_is_kernel_initmem_freed. On s390, it will return 1 if initmem has
been freed and the address is in the range [__init_begin, __init_end].
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Patch series "Do not touch pages in hot-remove path", v2.
This patchset aims for two things:
1) A better definition about offline and hot-remove stage
2) Solving bugs where we can access non-initialized pages
during hot-remove operations [2] [3].
This is achieved by moving all page/zone handling to the offline
stage, so we do not need to access pages when hot-removing memory.
[1] https://patchwork.kernel.org/cover/10691415/
[2] https://patchwork.kernel.org/patch/10547445/
[3] https://www.spinics.net/lists/linux-mm/msg161316.html
This patch (of 5):
This is a preparation for the following-up patches. The idea of passing
the nid is that it will allow us to get rid of the zone parameter
afterwards.
Link: http://lkml.kernel.org/r/20181127162005.15833-2-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
totalram_pages and totalhigh_pages are made static inline function.
Main motivation was that managed_page_count_lock handling was complicating
things. It was discussed in length here,
https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes
better to remove the lock and convert variables to atomic, with preventing
poteintial store-to-read tearing as a bonus.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org
Signed-off-by: Arun KS <arunks@codeaurora.org>
Suggested-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kasan initialization code is changed to populate persistent shadow
first, save allocator position into pgalloc_freeable and proceed with
early identity mapping creation. This way early identity mapping paging
structures could be freed at once after switching to swapper_pg_dir
when early identity mapping is not needed anymore.
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Kasan needs 1/8 of kernel virtual address space to be reserved as the
shadow area. And eventually it requires the shadow memory offset to be
known at compile time (passed to the compiler when full instrumentation
is enabled). Any value picked as the shadow area offset for 3-level
paging would eat up identity mapping on 4-level paging (with 1PB
shadow area size). So, the kernel sticks to 3-level paging when kasan
is enabled. 3TB border is picked as the shadow offset. The memory
layout is adjusted so, that physical memory border does not exceed
KASAN_SHADOW_START and vmemmap does not go below KASAN_SHADOW_END.
Due to the fact that on s390 paging is set up very late and to cover
more code with kasan instrumentation, temporary identity mapping and
final shadow memory are set up early. The shadow memory mapping is
later carried over to init_mm.pgd during paging_init.
For the needs of paging structures allocation and shadow memory
population a primitive allocator is used, which simply chops off
memory blocks from the end of the physical memory.
Kasan currenty doesn't track vmemmap and vmalloc areas.
Current memory layout (for 3-level paging, 2GB physical memory).
---[ Identity Mapping ]---
0x0000000000000000-0x0000000000100000
---[ Kernel Image Start ]---
0x0000000000100000-0x0000000002b00000
---[ Kernel Image End ]---
0x0000000002b00000-0x0000000080000000 2G <- physical memory border
0x0000000080000000-0x0000030000000000 3070G PUD I
---[ Kasan Shadow Start ]---
0x0000030000000000-0x0000030010000000 256M PMD RW X <- shadow for 2G memory
0x0000030010000000-0x0000037ff0000000 523776M PTE RO NX <- kasan zero ro page
0x0000037ff0000000-0x0000038000000000 256M PMD RW X <- shadow for 2G modules
---[ Kasan Shadow End ]---
0x0000038000000000-0x000003d100000000 324G PUD I
---[ vmemmap Area ]---
0x000003d100000000-0x000003e080000000
---[ vmalloc Area ]---
0x000003e080000000-0x000003ff80000000
---[ Modules Area ]---
0x000003ff80000000-0x0000040000000000 2G
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
We can just pass this on instead of having to do a radix tree lookup
without proper locking 2 levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We can just pass this on instead of having to do a radix tree lookup
without proper locking 2 levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The vdso code for the getcpu() and the clock_gettime() call use the access
register mode to access the per-CPU vdso data page with the current code.
An alternative to the complicated AR mode is to use the secondary space
mode. This makes the vdso faster and quite a bit simpler. The downside is
that the uaccess code has to be changed quite a bit.
Which instructions are used depends on the machine and what kind of uaccess
operation is requested. The instruction dictates which ASCE value needs
to be loaded into %cr1 and %cr7.
The different cases:
* User copy with MVCOS for z10 and newer machines
The MVCOS instruction can copy between the primary space (aka user) and
the home space (aka kernel) directly. For set_fs(KERNEL_DS) the kernel
ASCE is loaded into %cr1. For set_fs(USER_DS) the user space is already
loaded in %cr1.
* User copy with MVCP/MVCS for older machines
To be able to execute the MVCP/MVCS instructions the kernel needs to
switch to primary mode. The control register %cr1 has to be set to the
kernel ASCE and %cr7 to either the kernel ASCE or the user ASCE dependent
on set_fs(KERNEL_DS) vs set_fs(USER_DS).
* Data access in the user address space for strnlen / futex
To use "normal" instruction with data from the user address space the
secondary space mode is used. The kernel needs to switch to primary mode,
%cr1 has to contain the kernel ASCE and %cr7 either the user ASCE or the
kernel ASCE, dependent on set_fs.
To load a new value into %cr1 or %cr7 is an expensive operation, the kernel
tries to be lazy about it. E.g. for multiple user copies in a row with
MVCP/MVCS the replacement of the vdso ASCE in %cr7 with the user ASCE is
done only once. On return to user space a CPU bit is checked that loads the
vdso ASCE again.
To enable and disable the data access via the secondary space two new
functions are added, enable_sacf_uaccess and disable_sacf_uaccess. The fact
that a context is in secondary space uaccess mode is stored in the
mm_segment_t value for the task. The code of an interrupt may use set_fs
as long as it returns to the previous state it got with get_fs with another
call to set_fs. The code in finish_arch_post_lock_switch simply has to do a
set_fs with the current mm_segment_t value for the task.
For CPUs with MVCOS:
CPU running in | %cr1 ASCE | %cr7 ASCE |
--------------------------------------|-----------|-----------|
user space | user | vdso |
kernel, USER_DS, normal-mode | user | vdso |
kernel, USER_DS, normal-mode, lazy | user | user |
kernel, USER_DS, sacf-mode | kernel | user |
kernel, KERNEL_DS, normal-mode | kernel | vdso |
kernel, KERNEL_DS, normal-mode, lazy | kernel | kernel |
kernel, KERNEL_DS, sacf-mode | kernel | kernel |
For CPUs without MVCOS:
CPU running in | %cr1 ASCE | %cr7 ASCE |
--------------------------------------|-----------|-----------|
user space | user | vdso |
kernel, USER_DS, normal-mode | user | vdso |
kernel, USER_DS, normal-mode lazy | kernel | user |
kernel, USER_DS, sacf-mode | kernel | user |
kernel, KERNEL_DS, normal-mode | kernel | vdso |
kernel, KERNEL_DS, normal-mode, lazy | kernel | kernel |
kernel, KERNEL_DS, sacf-mode | kernel | kernel |
The lines with "lazy" refer to the state after a copy via the secondary
space with a delayed reload of %cr1 and %cr7.
There are three hardware address spaces that can cause a DAT exception,
primary, secondary and home space. The exception can be related to
four different fault types: user space fault, vdso fault, kernel fault,
and the gmap faults.
Dependent on the set_fs state and normal vs. sacf mode there are a number
of fault combinations:
1) user address space fault via the primary ASCE
2) gmap address space fault via the primary ASCE
3) kernel address space fault via the primary ASCE for machines with
MVCOS and set_fs(KERNEL_DS)
4) vdso address space faults via the secondary ASCE with an invalid
address while running in secondary space in problem state
5) user address space fault via the secondary ASCE for user-copy
based on the secondary space mode, e.g. futex_ops or strnlen_user
6) kernel address space fault via the secondary ASCE for user-copy
with secondary space mode with set_fs(KERNEL_DS)
7) kernel address space fault via the primary ASCE for user-copy
with secondary space mode with set_fs(USER_DS) on machines without
MVCOS.
8) kernel address space fault via the home space ASCE
Replace user_space_fault() with a new function get_fault_type() that
can distinguish all four different fault types.
With these changes the futex atomic ops from the kernel and the
strnlen_user will get a little bit slower, as well as the old style
uaccess with MVCP/MVCS. All user accesses based on MVCOS will be as
fast as before. On the positive side, the user space vdso code is a
lot faster and Linux ceases to use the complicated AR mode.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Pull s390 updates from Heiko Carstens:
"Since Martin is on vacation you get the s390 pull request for the
v4.15 merge window this time from me.
Besides a lot of cleanups and bug fixes these are the most important
changes:
- a new regset for runtime instrumentation registers
- hardware accelerated AES-GCM support for the aes_s390 module
- support for the new CEX6S crypto cards
- support for FORTIFY_SOURCE
- addition of missing z13 and new z14 instructions to the in-kernel
disassembler
- generate opcode tables for the in-kernel disassembler out of a
simple text file instead of having to manually maintain those
tables
- fast memset16, memset32 and memset64 implementations
- removal of named saved segment support
- hardware counter support for z14
- queued spinlocks and queued rwlocks implementations for s390
- use the stack_depth tracking feature for s390 BPF JIT
- a new s390_sthyi system call which emulates the sthyi (store
hypervisor information) instruction
- removal of the old KVM virtio transport
- an s390 specific CPU alternatives implementation which is used in
the new spinlock code"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (88 commits)
MAINTAINERS: add virtio-ccw.h to virtio/s390 section
s390/noexec: execute kexec datamover without DAT
s390: fix transactional execution control register handling
s390/bpf: take advantage of stack_depth tracking
s390: simplify transactional execution elf hwcap handling
s390/zcrypt: Rework struct ap_qact_ap_info.
s390/virtio: remove unused header file kvm_virtio.h
s390: avoid undefined behaviour
s390/disassembler: generate opcode tables from text file
s390/disassembler: remove insn_to_mnemonic()
s390/dasd: avoid calling do_gettimeofday()
s390: vfio-ccw: Do not attempt to free no-op, test and tic cda.
s390: remove named saved segment support
s390/archrandom: Reconsider s390 arch random implementation
s390/pci: do not require AIS facility
s390/qdio: sanitize put_indicator
s390/qdio: use atomic_cmpxchg
s390/nmi: avoid using long-displacement facility
s390: pass endianness info to sparse
s390/decompressor: remove informational messages
...
At a couple of places smatch emits warnings like this:
arch/s390/mm/vmem.c:409 vmem_map_init() warn:
right shifting more than type allows
In fact shifting a signed type right is undefined. Avoid this and add
an unsigned long cast. The shifted values are always positive.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Memory blocks that contain areas for the contiguous memory allocator
(cma) should not be allowed to go offline. Otherwise this would render
cma completely useless.
This might make sense on other architectures where memory might be
taken offline due to hardware errors, but not on architectures which
support memory hotplug for load balancing.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The ESSA instruction has a new option that allows to tag pages that
are not used as a page table. Without the tag the hypervisor has to
assume that any guest page could be used in a page table inside the
guest. This forces the hypervisor to flush all guest TLB entries
whenever a host page table entry is invalidated. With the tag
the host can skip the TLB flush if the page is tagged as normal page.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
arch_add_memory gets for_device argument which then controls whether we
want to create memblocks for created memory sections. Simplify the
logic by telling whether we want memblocks directly rather than going
through pointless negation. This also makes the api easier to
understand because it is clear what we want rather than nothing telling
for_device which can mean anything.
This shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170515085827.16474-13-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current memory hotplug implementation relies on having all the
struct pages associate with a zone/node during the physical hotplug
phase (arch_add_memory->__add_pages->__add_section->__add_zone). In the
vast majority of cases this means that they are added to ZONE_NORMAL.
This has been so since 9d99aaa31f ("[PATCH] x86_64: Support memory
hotadd without sparsemem") and it wasn't a big deal back then because
movable onlining didn't exist yet.
Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable
onlining 511c2aba8f ("mm, memory-hotplug: dynamic configure movable
memory and portion memory") and then things got more complicated.
Rather than reconsidering the zone association which was no longer
needed (because the memory hotplug already depended on SPARSEMEM) a
convoluted semantic of zone shifting has been developed. Only the
currently last memblock or the one adjacent to the zone_movable can be
onlined movable. This essentially means that the online type changes as
the new memblocks are added.
Let's simulate memory hot online manually
$ echo 0x100000000 > /sys/devices/system/memory/probe
$ grep . /sys/devices/system/memory/memory32/valid_zones
Normal Movable
$ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe
$ grep . /sys/devices/system/memory/memory3?/valid_zones
/sys/devices/system/memory/memory32/valid_zones:Normal
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
$ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe
$ grep . /sys/devices/system/memory/memory3?/valid_zones
/sys/devices/system/memory/memory32/valid_zones:Normal
/sys/devices/system/memory/memory33/valid_zones:Normal
/sys/devices/system/memory/memory34/valid_zones:Normal Movable
$ echo online_movable > /sys/devices/system/memory/memory34/state
$ grep . /sys/devices/system/memory/memory3?/valid_zones
/sys/devices/system/memory/memory32/valid_zones:Normal
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable Normal
This is an awkward semantic because an udev event is sent as soon as the
block is onlined and an udev handler might want to online it based on
some policy (e.g. association with a node) but it will inherently race
with new blocks showing up.
This patch changes the physical online phase to not associate pages with
any zone at all. All the pages are just marked reserved and wait for
the onlining phase to be associated with the zone as per the online
request. There are only two requirements
- existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap
- ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses
the latter one is not an inherent requirement and can be changed in the
future. It preserves the current behavior and made the code slightly
simpler. This is subject to change in future.
This means that the same physical online steps as above will lead to the
following state: Normal Movable
/sys/devices/system/memory/memory32/valid_zones:Normal Movable
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory32/valid_zones:Normal Movable
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Normal Movable
/sys/devices/system/memory/memory32/valid_zones:Normal Movable
/sys/devices/system/memory/memory33/valid_zones:Normal Movable
/sys/devices/system/memory/memory34/valid_zones:Movable
Implementation:
The current move_pfn_range is reimplemented to check the above
requirements (allow_online_pfn_range) and then updates the respective
zone (move_pfn_range_to_zone), the pgdat and links all the pages in the
pfn range with the zone/node. __add_pages is updated to not require the
zone and only initializes sections in the range. This allowed to
simplify the arch_add_memory code (s390 could get rid of quite some of
code).
devm_memremap_pages is the only user of arch_add_memory which relies on
the zone association because it only hooks into the memory hotplug only
half way. It uses it to associate the new memory with ZONE_DEVICE but
doesn't allow it to be {on,off}lined via sysfs. This means that this
particular code path has to call move_pfn_range_to_zone explicitly.
The original zone shifting code is kept in place and will be removed in
the follow up patch for an easier review.
Please note that this patch also changes the original behavior when
offlining a memory block adjacent to another zone (Normal vs. Movable)
used to allow to change its movable type. This will be handled later.
[richard.weiyang@gmail.com: simplify zone_intersects()]
Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com
[richard.weiyang@gmail.com: remove duplicate call for set_page_links]
Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com
[akpm@linux-foundation.org: remove unused local `i']
Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Device memory hotplug hooks into regular memory hotplug only half way.
It needs memory sections to track struct pages but there is no
need/desire to associate those sections with memory blocks and export
them to the userspace via sysfs because they cannot be onlined anyway.
This is currently expressed by for_device argument to arch_add_memory
which then makes sure to associate the given memory range with
ZONE_DEVICE. register_new_memory then relies on is_zone_device_section
to distinguish special memory hotplug from the regular one. While this
works now, later patches in this series want to move __add_zone outside
of arch_add_memory path so we have to come up with something else.
Add want_memblock down the __add_pages path and use it to control
whether the section->memblock association should be done.
arch_add_memory then just trivially want memblock for everything but
for_device hotplug.
remove_memory_section doesn't need is_zone_device_section either. We
can simply skip all the memblock specific cleanup if there is no
memblock for the given section.
This shouldn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170515085827.16474-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename a couple of the struct psw_bits members so it is more obvious
for what they are good. Initially I thought using the single character
names from the PoP would be sufficient and obvious, but admittedly
that is not true.
The current implementation is not easy to use, if one has to look into
the source file to figure out which member represents the 'per' bit
(which is the 'r' member).
Therefore rename the members to sane names that are identical to the
uapi psw mask defines:
r -> per
i -> io
e -> ext
t -> dat
m -> mcheck
w -> wait
p -> pstate
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The address space enums that must be used when modifying the address
space part of a psw with the psw_bits() macro can easily be confused
with the psw defines that are used to mask and compare directly the
mask part of a psw.
We have e.g. PSW_AS_PRIMARY vs PSW_ASC_PRIMARY.
To avoid confusion rename the PSW_AS_* enums to PSW_BITS_AS_*.
In addition also rename the PSW_AMODE_* enums, so they also follow the
same naming scheme: PSW_BITS_AMODE_*.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Right now the kernel uses the primary address space until finally the
switch to the correct home address space will be done when the idle
PSW will be loaded within psw_idle().
Correct this and simply use the home address space when DAT is enabled
for the first time.
This doesn't really fix a bug, but fixes odd behavior.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
set_memory_* functions have moved to set_memory.h. Switch to this
explicitly
Link: http://lkml.kernel.org/r/1488920133-27229-5-git-send-email-labbott@redhat.com
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix this compile error for !MEMORY_HOTPLUG && NUMA:
arch/s390/built-in.o: In function `emu_setup_size_adjust':
arch/s390/numa/mode_emu.c:477: undefined reference to `memory_block_size_bytes'
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Bit 0x100 of a page table, segment table of region table entry
can be used to disallow code execution for the virtual addresses
associated with the entry.
There is one tricky bit, the system call to return from a signal
is part of the signal frame written to the user stack. With a
non-executable stack this would stop working. To avoid breaking
things the protection fault handler checks the opcode that caused
the fault for 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn)
and injects a system call. This is preferable to the alternative
solution with a stub function in the vdso because it works for
vdso=off and statically linked binaries as well.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Standby (hotplug) memory should be added to ZONE_MOVABLE on s390. After
commit 199071f1 "s390/mm: make arch_add_memory() NUMA aware",
arch_add_memory() used memblock_end_of_DRAM() to find out the end of
ZONE_NORMAL and the beginning of ZONE_MOVABLE. However, commit 7f36e3e5
"memory-hotplug: add hot-added memory ranges to memblock before allocate
node_data for a node." moved the call of memblock_add_node() before
the call of arch_add_memory() in add_memory_resource(), and thus changed
the return value of memblock_end_of_DRAM() when called in
arch_add_memory(). As a result, arch_add_memory() will think that all
memory blocks should be added to ZONE_NORMAL.
Fix this by changing the logic in arch_add_memory() so that it will
manually iterate over all zones of a given node to find out which zone
a memory block should be added to.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
On s390 __ro_after_init is currently mapped to __read_mostly which
means that data marked as __ro_after_init will not be protected.
Reason for this is that the common code __ro_after_init implementation
is x86 centric: the ro_after_init data section was added to rodata,
since x86 enables write protection to kernel text and rodata very
late. On s390 we have write protection for these sections enabled with
the initial page tables. So adding the ro_after_init data section to
rodata does not work on s390.
In order to make __ro_after_init work properly on s390 move the
ro_after_init data, right behind rodata. Unlike the rodata section it
will be marked read-only later after all init calls happened.
This s390 specific implementation adds new __start_ro_after_init and
__end_ro_after_init labels. Everything in between will be marked
read-only after the init calls happened. In addition to the
__ro_after_init data move also the exception table there, since from a
practical point of view it fits the __ro_after_init requirements.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
ptep_flush_lazy and pmdp_flush_lazy use mm->context.attach_count to
decide between a lazy TLB flush vs an immediate TLB flush. The field
contains two 16-bit counters, the number of CPUs that have the mm
attached and can create TLB entries for it and the number of CPUs in
the middle of a page table update.
The __tlb_flush_asce, ptep_flush_direct and pmdp_flush_direct functions
use the attach counter and a mask check with mm_cpumask(mm) to decide
between a local flush local of the current CPU and a global flush.
For all these functions the decision between lazy vs immediate and
local vs global TLB flush can be based on CPU masks. There are two
masks: the mm->context.cpu_attach_mask with the CPUs that are actively
using the mm, and the mm_cpumask(mm) with the CPUs that have used the
mm since the last full flush. The decision between lazy vs immediate
flush is based on the mm->context.cpu_attach_mask, to decide between
local vs global flush the mm_cpumask(mm) is used.
With this patch all checks will use the CPU masks, the old counter
mm->context.attach_count with its two 16-bit values is turned into a
single counter mm->context.flush_count that keeps track of the number
of CPUs with incomplete page table updates. The sole user of this
counter is finish_arch_post_lock_switch() which waits for the end of
all page table updates.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The segment/region table that is part of the kernel image must be
properly aligned to 16k in order to make the crdte inline assembly
work.
Otherwise it will calculate a wrong segment/region table start address
and access incorrect memory locations if the swapper_pg_dir is not
aligned to 16k.
Therefore define BSS_FIRST_SECTIONS in order to put the swapper_pg_dir
at the beginning of the bss section and also align the bss section to
16k just like other architectures did.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
There is a race with multi-threaded applications between context switch and
pagetable upgrade. In switch_mm() a new user_asce is built from mm->pgd and
mm->context.asce_bits, w/o holding any locks. A concurrent mmap with a
pagetable upgrade on another thread in crst_table_upgrade() could already
have set new asce_bits, but not yet the new mm->pgd. This would result in a
corrupt user_asce in switch_mm(), and eventually in a kernel panic from a
translation exception.
Fix this by storing the complete asce instead of just the asce_bits, which
can then be read atomically from switch_mm(), so that it either sees the
old value or the new value, but no mixture. Both cases are OK. Having the
old value would result in a page fault on access to the higher level memory,
but the fault handler would see the new mm->pgd, if it was a valid access
after the mmap on the other thread has completed. So as worst-case scenario
we would have a page fault loop for the racing thread until the next time
slice.
Also remove dead code and simplify the upgrade/downgrade path, there are no
upgrades from 2 levels, and only downgrades from 3 levels for compat tasks.
There are also no concurrent upgrades, because the mmap_sem is held with
down_write() in do_mmap, so the flush and table checks during upgrade can
be removed.
Reported-by: Michael Munday <munday@ca.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
git commit d2aa1acad2 ("mm/init: Add 'rodata=off' boot cmdline
parameter to disable read-only kernel mappings") adds a bogus warning
to the console which states that s390 does not support kernel memory
protection.
This however is not true. We do support that since a couple of years
however in a different way than the author of the above named patch
expected.
To get rid of the misleading message implement the mark_rodata_ro
function and emit a message which states the amount of memory which
was write protected already earlier.
This is the same what parisc currently does.
We currently do not support the kernel parameter "rodata=off" which
would allow to write to the rodata section again. However since we
have this feature since years without any problems there is no reason
to add support for this.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The ssm instruction takes longer that stnsm/stosm as it is often
used to modify DAT and PER. We know that irqsave/irqrestore only
deals with external and I/O interrupts and we know that irqrestore
can transition only from disabled->disabled or disabled->enabled,
so we can use the faster stosm.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
commit 1f6b83e5e4 ("s390: avoid z13 cache aliasing") checks for the
machine type to optimize address space randomization and zero page
allocation to avoid cache aliases.
This check might fail under a hypervisor with migration support.
z/VMs "Single System Image and Live Guest Relocation" facility will
"fake" the machine type of the oldest system in the group. For example
in a group of zEC12 and Z13 the guest appears to run on a zEC12
(architecture fencing within the relocation domain)
Remove the machine type detection and always use cache aliasing
rules that are known to work for all machines. These are the z13
aliasing rules.
Suggested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map. This facility is used by the pmem driver to
enable pfn_to_page() operations on the page frames returned by DAX
('direct_access' in 'struct block_device_operations'). For now, the
'memmap' allocation for these "device" pages comes from "System
RAM". Support for allocating the memmap from device memory will
arrive in a later kernel.
2/ Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3. Completion of
the conversion is targeted for v4.4.
3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
5/ Miscellaneous updates and fixes to libnvdimm including support
for issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5
JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R
OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C
nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ
NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e
zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR
1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA
sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb
bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1
o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz
dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn
slsw6DkrWT60CRE42nbK
=o57/
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This update has successfully completed a 0day-kbuild run and has
appeared in a linux-next release. The changes outside of the typical
drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
the introduction of ZONE_DEVICE + devm_memremap_pages().
Summary:
- Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map.
This facility is used by the pmem driver to enable pfn_to_page()
operations on the page frames returned by DAX ('direct_access' in
'struct block_device_operations').
For now, the 'memmap' allocation for these "device" pages comes
from "System RAM". Support for allocating the memmap from device
memory will arrive in a later kernel.
- Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3.
Completion of the conversion is targeted for v4.4.
- Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
- Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
- Miscellaneous updates and fixes to libnvdimm including support for
issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes"
* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
libnvdimm, pmem: direct map legacy pmem by default
libnvdimm, pmem: 'struct page' for pmem
libnvdimm, pfn: 'struct page' provider infrastructure
x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
add devm_memremap_pages
mm: ZONE_DEVICE for "device memory"
mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
dax: drop size parameter to ->direct_access()
nd_blk: change aperture mapping from WC to WB
nvdimm: change to use generic kvfree()
pmem, dax: have direct_access use __pmem annotation
dax: update I/O path to do proper PMEM flushing
pmem: add copy_from_iter_pmem() and clear_pmem()
pmem, x86: clean up conditional pmem includes
pmem: remove layer when calling arch_has_wmb_pmem()
pmem, x86: move x86 PMEM API to new pmem.h header
libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
pmem: switch to devm_ allocations
devres: add devm_memremap
libnvdimm, btt: write and validate parent_uuid
...
While pmem is usable as a block device or via DAX mappings to userspace
there are several usage scenarios that can not target pmem due to its
lack of struct page coverage. In preparation for "hot plugging" pmem
into the vmemmap add ZONE_DEVICE as a new zone to tag these pages
separately from the ones that are subject to standard page allocations.
Importantly "device memory" can be removed at will by userspace
unbinding the driver of the device.
Having a separate zone prevents allocation and otherwise marks these
pages that are distinct from typical uniform memory. Device memory has
different lifetime and performance characteristics than RAM. However,
since we have run out of ZONES_SHIFT bits this functionality currently
depends on sacrificing ZONE_DMA.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Jerome Glisse <j.glisse@gmail.com>
[hch: various simplifications in the arch interface]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>