If wait_task_inactive() returns success the task was deactivated. In that
case schedule() always increments ->nvcsw which alone can be used as a
"generation counter".
If the next call returns the same number, we can be sure that the task was
unscheduled. Otherwise, because we know that .on_rq == 0 again, ->nvcsw
should have been changed in between.
Q: perhaps it is better to do "ncsw = (p->nvcsw << 1) | 1" ? This
decreases the possibility of "was it unscheduled" false positive when
->nvcsw == 0.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Change do_wait_for_common() to use signal_pending_state() instead of open
coding.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Switch /proc/irq/*/smp_affinity , /proc/irq/default_smp_affinity to
seq_files.
cat(1) reads with 1024 chunks by default, with high enough NR_CPUS, there
will be -EINVAL.
As side effect, there are now two less users of the ->read_proc interface.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Mike Travis <travis@sgi.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
s390 doesn't support the additional_cpus kernel parameter anymore since a
long time. So we better update the code and documentation to reflect
that.
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'core-fixes-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
generic-ipi: fix stack and rcu interaction bug in smp_call_function_mask(), fix
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus:
fix spinlock recursion in hvc_console
stop_machine: remove unused variable
modules: extend initcall_debug functionality to the module loader
export virtio_rng.h
lguest: use get_user_pages_fast() instead of get_user_pages()
mm: Make generic weak get_user_pages_fast and EXPORT_GPL it
lguest: don't set MAC address for guest unless specified
> > Nick Piggin (1):
> > generic-ipi: fix stack and rcu interaction bug in
> > smp_call_function_mask()
>
> I'm still not 100% sure that I have this patch right... I might have seen
> a lockup trace implicating the smp call function path... which may have
> been due to some other problem or a different bug in the new call function
> code, but if some more people can take a look at it before merging?
OK indeed it did have a couple of bugs. Firstly, I wasn't freeing the
data properly in the alloc && wait case. Secondly, I wasn't resetting
CSD_FLAG_WAIT in the for each cpu loop (so only the first CPU would
wait).
After those fixes, the patch boots and runs with the kmalloc commented
out (so it always executes the slowpath).
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The kernel has this really nice facility where if you put "initcall_debug"
on the kernel commandline, it'll print which function it's going to
execute just before calling an initcall, and then after the call completes
it will
1) print if it had an error code
2) checks for a few simple bugs (like leaving irqs off)
and
3) print how long the init call took in milliseconds.
While trying to optimize the boot speed of my laptop, I have been loving
number 3 to figure out what to optimize... ... and then I wished that
the same thing was done for module loading.
This patch makes the module loader use this exact same functionality; it's
a logical extension in my view (since modules are just sort of late
binding initcalls anyway) and so far I've found it quite useful in finding
where things are too slow in my boot.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
* 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched, cpu hotplug: fix set_cpus_allowed() use in hotplug callbacks
sched: fix mysql+oltp regression
sched_clock: delay using sched_clock()
sched clock: couple local and remote clocks
sched clock: simplify __update_sched_clock()
sched: eliminate scd->prev_raw
sched clock: clean up sched_clock_cpu()
sched clock: revert various sched_clock() changes
sched: move sched_clock before first use
sched: test runtime rather than period in global_rt_runtime()
sched: fix SCHED_HRTICK dependency
sched: fix warning in hrtick_start_fair()
* 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
posix-timers: fix posix_timer_event() vs dequeue_signal() race
posix-timers: do_schedule_next_timer: fix the setting of ->si_overrun
When we enable DEBUG_LOCK_ALLOC but do not enable PROVE_LOCKING and or
LOCK_STAT, lock_alloc() and lock_release() turn into nops, even though
we should be doing hlock checking (check=1).
This causes a false warning and a lockdep self-disable.
Rectify this.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Mark Langsdorf reported:
> One of my co-workers noticed that the powernow-k8
> driver no longer restarts when a CPU core is
> hot-disabled and then hot-enabled on AMD quad-core
> systems.
>
> The following comands work fine on 2.6.26 and fail
> on 2.6.27-rc1:
>
> echo 0 > /sys/devices/system/cpu/cpu3/online
> echo 1 > /sys/devices/system/cpu/cpu3/online
> find /sys -name cpufreq
>
> For 2.6.26, the find will return a cpufreq
> directory for each processor. In 2.6.27-rc1,
> the cpu3 directory is missing.
>
> After digging through the code, the following
> logic is failing when the core is hot-enabled
> at runtime. The code works during the boot
> sequence.
>
> cpumask_t = current->cpus_allowed;
> set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
> if (smp_processor_id() != cpu)
> return -ENODEV;
So set the CPU active before calling the CPU_ONLINE notifier chain,
there are a handful of notifiers that use set_cpus_allowed().
This fix also solves the problem with x86-microcode. I've sent
alternative patches for microcode, but as this "rely on
set_cpus_allowed_ptr() being workable in cpu-hotplug(CPU_ONLINE, ...)"
assumption seems to be more broad than what we thought, perhaps this fix
should be applied.
With this patch we define that by the moment CPU_ONLINE is being sent,
a 'cpu' is online and ready for tasks to be migrated onto it.
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Reported-by: Mark Langsdorf <mark.langsdorf@amd.com>
Tested-by: Mark Langsdorf <mark.langsdorf@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Venki Pallipadi <venkatesh.pallipadi@intel.com> wrote:
> Found a OOPS on a big SMP box during an overnight reboot test with
> upstream git.
>
> Suresh and I looked at the oops and looks like the root cause is in
> generic_smp_call_function_interrupt() and smp_call_function_mask() with
> wait parameter.
>
> The actual oops looked like
>
> [ 11.277260] BUG: unable to handle kernel paging request at ffff8802ffffffff
> [ 11.277815] IP: [<ffff8802ffffffff>] 0xffff8802ffffffff
> [ 11.278155] PGD 202063 PUD 0
> [ 11.278576] Oops: 0010 [1] SMP
> [ 11.279006] CPU 5
> [ 11.279336] Modules linked in:
> [ 11.279752] Pid: 0, comm: swapper Not tainted 2.6.27-rc2-00020-g685d87f #290
> [ 11.280039] RIP: 0010:[<ffff8802ffffffff>] [<ffff8802ffffffff>] 0xffff8802ffffffff
> [ 11.280692] RSP: 0018:ffff88027f1f7f70 EFLAGS: 00010086
> [ 11.280976] RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 0000000000000000
> [ 11.281264] RDX: 0000000000004f4e RSI: 0000000000000001 RDI: 0000000000000000
> [ 11.281624] RBP: ffff88027f1f7f98 R08: 0000000000000001 R09: ffffffff802509af
> [ 11.281925] R10: ffff8800280c2780 R11: 0000000000000000 R12: ffff88027f097d48
> [ 11.282214] R13: ffff88027f097d70 R14: 0000000000000005 R15: ffff88027e571000
> [ 11.282502] FS: 0000000000000000(0000) GS:ffff88027f1c3340(0000) knlGS:0000000000000000
> [ 11.283096] CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b
> [ 11.283382] CR2: ffff8802ffffffff CR3: 0000000000201000 CR4: 00000000000006e0
> [ 11.283760] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
> [ 11.284048] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
> [ 11.284337] Process swapper (pid: 0, threadinfo ffff88027f1f2000, task ffff88027f1f0640)
> [ 11.284936] Stack: ffffffff80250963 0000000000000212 0000000000ee8c78 0000000000ee8a66
> [ 11.285802] ffff88027e571550 ffff88027f1f7fa8 ffffffff8021adb5 ffff88027f1f3e40
> [ 11.286599] ffffffff8020bdd6 ffff88027f1f3e40 <EOI> ffff88027f1f3ef8 0000000000000000
> [ 11.287120] Call Trace:
> [ 11.287768] <IRQ> [<ffffffff80250963>] ? generic_smp_call_function_interrupt+0x61/0x12c
> [ 11.288354] [<ffffffff8021adb5>] smp_call_function_interrupt+0x17/0x27
> [ 11.288744] [<ffffffff8020bdd6>] call_function_interrupt+0x66/0x70
> [ 11.289030] <EOI> [<ffffffff8024ab3b>] ? clockevents_notify+0x19/0x73
> [ 11.289380] [<ffffffff803b9b75>] ? acpi_idle_enter_simple+0x18b/0x1fa
> [ 11.289760] [<ffffffff803b9b6b>] ? acpi_idle_enter_simple+0x181/0x1fa
> [ 11.290051] [<ffffffff8053aeca>] ? cpuidle_idle_call+0x70/0xa2
> [ 11.290338] [<ffffffff80209f61>] ? cpu_idle+0x5f/0x7d
> [ 11.290723] [<ffffffff8060224a>] ? start_secondary+0x14d/0x152
> [ 11.291010]
> [ 11.291287]
> [ 11.291654] Code: Bad RIP value.
> [ 11.292041] RIP [<ffff8802ffffffff>] 0xffff8802ffffffff
> [ 11.292380] RSP <ffff88027f1f7f70>
> [ 11.292741] CR2: ffff8802ffffffff
> [ 11.310951] ---[ end trace 137c54d525305f1c ]---
>
> The problem is with the following sequence of events:
>
> - CPU A calls smp_call_function_mask() for CPU B with wait parameter
> - CPU A sets up the call_function_data on the stack and does an rcu add to
> call_function_queue
> - CPU A waits until the WAIT flag is cleared
> - CPU B gets the call function interrupt and starts going through the
> call_function_queue
> - CPU C also gets some other call function interrupt and starts going through
> the call_function_queue
> - CPU C, which is also going through the call_function_queue, starts referencing
> CPU A's stack, as that element is still in call_function_queue
> - CPU B finishes the function call that CPU A set up and as there are no other
> references to it, rcu deletes the call_function_data (which was from CPU A
> stack)
> - CPU B sees the wait flag and just clears the flag (no call_rcu to free)
> - CPU A which was waiting on the flag continues executing and the stack
> contents change
>
> - CPU C is still in rcu_read section accessing the CPU A's stack sees
> inconsistent call_funation_data and can try to execute
> function with some random pointer, causing stack corruption for A
> (by clearing the bits in mask field) and oops.
Nice debugging work.
I'd suggest something like the attached (boot tested) patch as the simple
fix for now.
I expect the benefits from the less synchronized, multiple-in-flight-data
global queue will still outweigh the costs of dynamic allocations. But
if worst comes to worst then we just go back to a globally synchronous
one-at-a-time implementation, but that would be pretty sad!
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Defer commit 6d299f1b53 to the next release.
Testing of the tip/sched/clock tree revealed a mysql+oltp regression
which bisection eventually traced back to this commit in mainline.
Pertinent test results: Three run sysbench averages, throughput units
in read/write requests/sec.
clients 1 2 4 8 16 32 64
6e0534f 9646 17876 34774 33868 32230 30767 29441
2.6.26.1 9112 17936 34652 33383 31929 30665 29232
6d299f1 9112 14637 28370 33339 32038 30762 29204
Note: subsequent commits hide the majority of this regression until you
apply the clock fixes, at which time it reemerges at full magnitude.
We cannot see anything bad about the change itself so we defer it to the
next release until this problem is fully analysed.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
the names were too generic:
drivers/uio/uio.c:87: error: expected identifier or '(' before 'do'
drivers/uio/uio.c:87: error: expected identifier or '(' before 'while'
drivers/uio/uio.c:113: error: 'map_release' undeclared here (not in a function)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Solve this by marking the classes as unused and not printing information
about the unused classes.
Reported-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: Rabin Vincent <rabin@rab.in>
Acked-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Expose the new lock protection lock.
This can be used to annotate places where we take multiple locks of the
same class and avoid deadlocks by always taking another (top-level) lock
first.
NOTE: we're still bound to the MAX_LOCK_DEPTH (48) limit.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Fri, 2008-08-01 at 16:26 -0700, Linus Torvalds wrote:
> On Fri, 1 Aug 2008, David Miller wrote:
> >
> > Taking more than a few locks of the same class at once is bad
> > news and it's better to find an alternative method.
>
> It's not always wrong.
>
> If you can guarantee that anybody that takes more than one lock of a
> particular class will always take a single top-level lock _first_, then
> that's all good. You can obviously screw up and take the same lock _twice_
> (which will deadlock), but at least you cannot get into ABBA situations.
>
> So maybe the right thing to do is to just teach lockdep about "lock
> protection locks". That would have solved the multi-queue issues for
> networking too - all the actual network drivers would still have taken
> just their single queue lock, but the one case that needs to take all of
> them would have taken a separate top-level lock first.
>
> Never mind that the multi-queue locks were always taken in the same order:
> it's never wrong to just have some top-level serialization, and anybody
> who needs to take <n> locks might as well do <n+1>, because they sure as
> hell aren't going to be on _any_ fastpaths.
>
> So the simplest solution really sounds like just teaching lockdep about
> that one special case. It's not "nesting" exactly, although it's obviously
> related to it.
Do as Linus suggested. The lock protection lock is called nest_lock.
Note that we still have the MAX_LOCK_DEPTH (48) limit to consider, so anything
that spills that it still up shit creek.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Most the free-standing lock_acquire() usages look remarkably similar, sweep
them into a new helper.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of using a per-rq lock class, use the regular nesting operations.
However, take extra care with double_lock_balance() as it can release the
already held rq->lock (and therefore change its nesting class).
So what can happen is:
spin_lock(rq->lock); // this rq subclass 0
double_lock_balance(rq, other_rq);
// release rq
// acquire other_rq->lock subclass 0
// acquire rq->lock subclass 1
spin_unlock(other_rq->lock);
leaving you with rq->lock in subclass 1
So a subsequent double_lock_balance() call can try to nest a subclass 1
lock while already holding a subclass 1 lock.
Fix this by introducing double_unlock_balance() which releases the other
rq's lock, but also re-sets the subclass for this rq's lock to 0.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
this can be used to reset a held lock's subclass, for arbitrary-depth
iterated data structures such as trees or lists which have per-node
locks.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Some arch's can't handle sched_clock() being called too early - delay
this until sched_clock_init() has been called.
Reported-by: Bill Gatliff <bgat@billgatliff.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Nishanth Aravamudan <nacc@us.ibm.com>
CC: Russell King - ARM Linux <linux@arm.linux.org.uk>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
A documentation cleanup patch. With a minor tweak to clarify units for
kbs.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: mark gross <mgross@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_order() takes byte-sized input, not a page-granular one.
Irrespective of this fix I'm inclined to believe that this doesn't work
right anyway - bitmap_allocate_region() has an implicit assumption of
'pos' being suitable for 'order', which this function doesn't seem to
enforce (and since it's being called with a byte-granular value there's no
reason to believe that the callers would make sure device_addr is passed
accordingly - it's also not documented that way).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Dmitry Baryshkov <dbaryshkov@gmail.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While I'm glad to finally see the hole fixed whereby passing an invalid
IRQ trigger type to request_irq() would be ignored, the current diagnostic
isn't quite useful. Fixed by also listing the trigger type which was
rejected.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Acked-by: Uwe Kleine-König <Uwe.Kleine-Koenig@digi.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change __down_common() to use signal_pending_state() instead of open
coding.
The changes in kernel/semaphore.o are just artifacts, the state checks are
optimized away.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In relay's current read implementation, if the buffer is completely full
but hasn't triggered the buffer-full condition (i.e. the last write
didn't cross the subbuffer boundary) and the last subbuffer is exactly
full, the subbuffer accounting code erroneously finds nothing available.
This patch fixes the problem.
Signed-off-by: Tom Zanussi <tzanussi@gmail.com>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org>
Cc: Andrea Righi <righi.andrea@gmail.com>
Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'audit.b56' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/audit-current:
Re: [PATCH] Fix the kernel panic of audit_filter_task when key field is set
The "user" parameter to __sched_setscheduler indicates whether the
change is being done on behalf of a user process or not. If not, we
shouldn't apply any permissions checks, so don't call
security_task_setscheduler().
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sorry, I miss a blank between if and "(".
And I add "unlikely" to check "ctx" in audit_match_perm() and audit_match_filetype().
This is a new patch for it.
Signed-off-by: Zhang Xiliang <zhangxiliang@cn.fujitsu.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
My commit 2b2a1ff64a introduced a regression
(sorry about that) for the odd case of exit_signal=0 (e.g. clone_flags=0).
This is not a normal use, but it's used by a case in the glibc test suite.
Dying with exit_signal=0 sends no signal, but it's supposed to wake up a
parent's blocked wait*() calls (unlike the delayed_group_leader case).
This fixes tracehook_notify_death() and its caller to distinguish a
"signal 0" wakeup from the delayed_group_leader case (with no wakeup).
Signed-off-by: Roland McGrath <roland@redhat.com>
Tested-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/linux-2.6-kgdb:
kgdb: fix gdb serial thread queries
kgdb: fix kgdb_validate_break_address to perform a mem write
kgdb: remove the requirement for CONFIG_FRAME_POINTER
When the "status_get->mask" is "AUDIT_STATUS_RATE_LIMIT || AUDIT_STATUS_BACKLOG_LIMIT".
If "audit_set_rate_limit" fails and "audit_set_backlog_limit" succeeds, the "err" value
will be greater than or equal to 0. It will miss the failure of rate set.
Signed-off-by: Zhang Xiliang <zhangxiliang@cn.fujitsu.com>
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When calling audit_filter_task(), it calls audit_filter_rules() with audit_context is NULL.
If the key field is set, the result in audit_filter_rules() will be set to 1 and
ctx->filterkey will be set to key.
But the ctx is NULL in this condition, so kernel will panic.
Signed-off-by: Zhang Xiliang <zhangxiliang@cn.fujitsu.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
> shouldn't these be using the "audit_get_loginuid(current)" and if we
> are going to output loginuid we also should be outputting sessionid
Thanks for your detailed explanation.
I have made a new patch for outputing "loginuid" and "sessionid" by audit_get_loginuid(current) and audit_get_sessionid(current).
If there are some deficiencies, please give me your indication.
Signed-off-by: Zhang Xiliang <zhangxiliang@cn.fujitsu.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Hello,
According to my understanding there is an off-by-one bug in the
function:
audit_string_contains_control()
in:
kernel/audit.c
Patch is included.
I do not know from how many places the function is called from, but for
example, SELinux Access Vector Cache tries to log untrusted filenames via
call path:
avc_audit()
audit_log_untrustedstring()
audit_log_n_untrustedstring()
audit_string_contains_control()
If audit_string_contains_control() detects control characters, then the
string is hex-encoded. But the hex=0x7f dec=127, DEL-character, is not
detected.
I guess this could have at least some minor security implications, since a
user can create a filename with 0x7f in it, causing logged filename to
possibly look different when someone reads it on the terminal.
Signed-off-by: Vesa-Matti Kari <vmkari@cc.helsinki.fi>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Makes the kernel audit subsystem collect information about the sending
process when that process sends SIGUSR2 to the userspace audit daemon.
SIGUSR2 is a new interesting signal to auditd telling auditd that it
should try to start logging to disk again and the error condition which
caused it to stop logging to disk (usually out of space) has been
rectified.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The command "info threads" did not work correctly with kgdb. It would
result in a silent kernel hang if used.
This patach addresses several problems.
- Fix use of deprecated NR_CPUS
- Fix kgdb to not walk linearly through the pid space
- Correctly implement shadow pids
- Change the threads per query to a #define
- Fix kgdb_hex2long to work with negated values
The threads 0 and -1 are reserved to represent the current task. That
means that CPU 0 will start with a shadow thread id of -2, and CPU 1
will have a shadow thread id of -3, etc...
From the debugger you can switch to a shadow thread to see what one of
the other cpus was doing, however it is not possible to execute run
control operations on any other cpu execept the cpu executing the
kgdb_handle_exception().
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
A regression to the kgdb core was found in the case of using the
CONFIG_DEBUG_RODATA kernel option. When this option is on, a breakpoint
cannot be written into any readonly memory page. When an external
debugger requests a breakpoint to get set, the
kgdb_validate_break_address() was only checking to see if the address
to place the breakpoint was readable and lacked a write check.
This patch changes the validate routine to try reading (via the
breakpoint set request) and also to try immediately writing the break
point. If either fails, an error is correctly returned and the
debugger behaves correctly. Then an end user can make the
descision to use hardware breakpoints.
Also update the documentation to reflect that using
CONFIG_DEBUG_RODATA will inhibit the use of software breakpoints.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
While thinking about David's graph walk lockdep patch it _finally_
dawned on me that there is no reason we have a lock class per cpu ...
Sorry for being dense :-/
The below changes the annotation from a lock class per cpu, to a single
nested lock, as the scheduler never holds more that 2 rq locks at a time
anyway.
If there was code requiring holding all rq locks this would not work and
the original annotation would be the only option, but that not being the
case, this is a much lighter one.
Compiles and boots on a 2-way x86_64.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When we traverse the graph, either forwards or backwards, we
are interested in whether a certain property exists somewhere
in a node reachable in the graph.
Therefore it is never necessary to traverse through a node more
than once to get a correct answer to the given query.
Take advantage of this property using a global ID counter so that we
need not clear all the markers in all the lock_class entries before
doing a traversal. A new ID is choosen when we start to traverse, and
we continue through a lock_class only if it's ID hasn't been marked
with the new value yet.
This short-circuiting is essential especially for high CPU count
systems. The scheduler has a runqueue per cpu, and needs to take
two runqueue locks at a time, which leads to long chains of
backwards and forwards subgraphs from these runqueue lock nodes.
Without the short-circuit implemented here, a graph traversal on
a runqueue lock can take up to (1 << (N - 1)) checks on a system
with N cpus.
For anything more than 16 cpus or so, lockdep will eventually bring
the machine to a complete standstill.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>