forked from Minki/linux
ea08816d5b
14 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Kirill A. Shutemov
|
44b04912fa |
x86/mpx: Do not allow MPX if we have mappings above 47-bit
MPX (without MAWA extension) cannot handle addresses above 47 bits, so we need to make sure that MPX cannot be enabled if we already have a VMA above the boundary and forbid creating such VMAs once MPX is enabled. The patch implements mpx_unmapped_area_check() which is called from all variants of get_unmapped_area() to check if the requested address fits mpx. On enabling MPX, we check if we already have any vma above 47-bit boundary and forbit the enabling if we do. As long as DEFAULT_MAP_WINDOW is equal to TASK_SIZE_MAX, the change is nop. It will change when we allow userspace to have mappings above 47-bits. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20170716225954.74185-6-kirill.shutemov@linux.intel.com [ Readability edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
589ee62844 |
sched/headers: Prepare to remove the <linux/mm_types.h> dependency from <linux/sched.h>
Update code that relied on sched.h including various MM types for them. This will allow us to remove the <linux/mm_types.h> include from <linux/sched.h>. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mark Rutland
|
cb02de96ec |
x86/mpx: Move bd_addr to mm_context_t
Currently bd_addr lives in mm_struct, which is otherwise architecture independent. Architecture-specific data is supposed to live within mm_context_t (itself contained in mm_struct). Other x86-specific context like the pkey accounting data lives in mm_context_t, and there's no readon the MPX data can't also live there. So as to keep the arch-specific data togather, and to set a good example for others, this patch moves bd_addr into x86's mm_context_t. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1481892055-24596-1-git-send-email-mark.rutland@arm.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Dave Hansen
|
613fcb7d3c |
x86/mpx: Support 32-bit binaries on 64-bit kernels
Right now, the kernel can only switch between 64-bit and 32-bit binaries at compile time. This patch adds support for 32-bit binaries on 64-bit kernels when we support ia32 emulation. We essentially choose which set of table sizes to use when doing arithmetic for the bounds table calculations. This also uses a different approach for calculating the table indexes than before. I think the new one makes it much more clear what is going on, and allows us to share more code between the 32-bit and 64-bit cases. Based-on-patch-by: Qiaowei Ren <qiaowei.ren@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20150607183705.E01F21E2@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Dave Hansen
|
5458765390 |
x86/mpx: Introduce new 'directory entry' to 'addr' helper function
Currently, to get from a bounds directory entry to the virtual address of a bounds table, we simply mask off a few low bits. However, the set of bits we mask off is different for 32-bit and 64-bit binaries. This breaks the operation out in to a helper function and also adds a temporary variable to store the result until we are sure we are returning one. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20150607183704.007686CE@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Qiaowei Ren
|
3c1d323009 |
x86/mpx: Remove redundant MPX_BNDCFG_ADDR_MASK
MPX_BNDCFG_ADDR_MASK is defined two times, so this patch removes redundant one. Signed-off-by: Qiaowei Ren <qiaowei.ren@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20150607183702.5F129376@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Dave Hansen
|
46a6e0cf1c |
x86/mpx: Clean up the code by not passing a task pointer around when unnecessary
The MPX code can only work on the current task. You can not, for instance, enable MPX management in another process or thread. You can also not handle a fault for another process or thread. Despite this, we pass a task_struct around prolifically. This patch removes all of the task struct passing for code paths where the code can not deal with another task (which turns out to be all of them). This has no functional changes. It's just a cleanup. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave@sr71.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: bp@alien8.de Link: http://lkml.kernel.org/r/20150607183702.6A81DA2C@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Dave Hansen
|
a84eeaa96b |
x86/mpx: Use the new get_xsave_field_ptr()API
The MPX registers (bndcsr/bndcfgu/bndstatus) are not directly accessible via normal instructions. They essentially act as if they were floating point registers and are saved/restored along with those registers. There are two main paths in the MPX code where we care about the contents of these registers: 1. #BR (bounds) faults 2. the prctl() code where we are setting MPX up Both of those paths _might_ be called without the FPU having been used. That means that 'tsk->thread.fpu.state' might never be allocated. Also, fpu_save_init() is not preempt-safe. It was a bug to call it without disabling preemption. The new get_xsave_addr() calls unlazy_fpu() instead and properly disables preemption. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave@sr71.net> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Suresh Siddha <sbsiddha@gmail.com> Cc: bp@alien8.de Link: http://lkml.kernel.org/r/20150607183701.BC0D37CF@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
c47ada305d |
x86/fpu: Harmonize FPU register state types
Use these consistent names: struct fregs_state # was: i387_fsave_struct struct fxregs_state # was: i387_fxsave_struct struct swregs_state # was: i387_soft_struct struct xregs_state # was: xsave_struct union fpregs_state # was: thread_xstate Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Dave Hansen
|
1de4fa14ee |
x86, mpx: Cleanup unused bound tables
The previous patch allocates bounds tables on-demand. As noted in an earlier description, these can add up to *HUGE* amounts of memory. This has caused OOMs in practice when running tests. This patch adds support for freeing bounds tables when they are no longer in use. There are two types of mappings in play when unmapping tables: 1. The mapping with the actual data, which userspace is munmap()ing or brk()ing away, etc... 2. The mapping for the bounds table *backing* the data (is tagged with VM_MPX, see the patch "add MPX specific mmap interface"). If userspace use the prctl() indroduced earlier in this patchset to enable the management of bounds tables in kernel, when it unmaps the first type of mapping with the actual data, the kernel needs to free the mapping for the bounds table backing the data. This patch hooks in at the very end of do_unmap() to do so. We look at the addresses being unmapped and find the bounds directory entries and tables which cover those addresses. If an entire table is unused, we clear associated directory entry and free the table. Once we unmap the bounds table, we would have a bounds directory entry pointing at empty address space. That address space might now be allocated for some other (random) use, and the MPX hardware might now try to walk it as if it were a bounds table. That would be bad. So any unmapping of an enture bounds table has to be accompanied by a corresponding write to the bounds directory entry to invalidate it. That write to the bounds directory can fault, which causes the following problem: Since we are doing the freeing from munmap() (and other paths like it), we hold mmap_sem for write. If we fault, the page fault handler will attempt to acquire mmap_sem for read and we will deadlock. To avoid the deadlock, we pagefault_disable() when touching the bounds directory entry and use a get_user_pages() to resolve the fault. The unmapping of bounds tables happends under vm_munmap(). We also (indirectly) call vm_munmap() to _do_ the unmapping of the bounds tables. We avoid unbounded recursion by disallowing freeing of bounds tables *for* bounds tables. This would not occur normally, so should not have any practical impact. Being strict about it here helps ensure that we do not have an exploitable stack overflow. Based-on-patch-by: Qiaowei Ren <qiaowei.ren@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: linux-mm@kvack.org Cc: linux-mips@linux-mips.org Cc: Dave Hansen <dave@sr71.net> Link: http://lkml.kernel.org/r/20141114151831.E4531C4A@viggo.jf.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Dave Hansen
|
fe3d197f84 |
x86, mpx: On-demand kernel allocation of bounds tables
This is really the meat of the MPX patch set. If there is one patch to review in the entire series, this is the one. There is a new ABI here and this kernel code also interacts with userspace memory in a relatively unusual manner. (small FAQ below). Long Description: This patch adds two prctl() commands to provide enable or disable the management of bounds tables in kernel, including on-demand kernel allocation (See the patch "on-demand kernel allocation of bounds tables") and cleanup (See the patch "cleanup unused bound tables"). Applications do not strictly need the kernel to manage bounds tables and we expect some applications to use MPX without taking advantage of this kernel support. This means the kernel can not simply infer whether an application needs bounds table management from the MPX registers. The prctl() is an explicit signal from userspace. PR_MPX_ENABLE_MANAGEMENT is meant to be a signal from userspace to require kernel's help in managing bounds tables. PR_MPX_DISABLE_MANAGEMENT is the opposite, meaning that userspace don't want kernel's help any more. With PR_MPX_DISABLE_MANAGEMENT, the kernel won't allocate and free bounds tables even if the CPU supports MPX. PR_MPX_ENABLE_MANAGEMENT will fetch the base address of the bounds directory out of a userspace register (bndcfgu) and then cache it into a new field (->bd_addr) in the 'mm_struct'. PR_MPX_DISABLE_MANAGEMENT will set "bd_addr" to an invalid address. Using this scheme, we can use "bd_addr" to determine whether the management of bounds tables in kernel is enabled. Also, the only way to access that bndcfgu register is via an xsaves, which can be expensive. Caching "bd_addr" like this also helps reduce the cost of those xsaves when doing table cleanup at munmap() time. Unfortunately, we can not apply this optimization to #BR fault time because we need an xsave to get the value of BNDSTATUS. ==== Why does the hardware even have these Bounds Tables? ==== MPX only has 4 hardware registers for storing bounds information. If MPX-enabled code needs more than these 4 registers, it needs to spill them somewhere. It has two special instructions for this which allow the bounds to be moved between the bounds registers and some new "bounds tables". They are similar conceptually to a page fault and will be raised by the MPX hardware during both bounds violations or when the tables are not present. This patch handles those #BR exceptions for not-present tables by carving the space out of the normal processes address space (essentially calling the new mmap() interface indroduced earlier in this patch set.) and then pointing the bounds-directory over to it. The tables *need* to be accessed and controlled by userspace because the instructions for moving bounds in and out of them are extremely frequent. They potentially happen every time a register pointing to memory is dereferenced. Any direct kernel involvement (like a syscall) to access the tables would obviously destroy performance. ==== Why not do this in userspace? ==== This patch is obviously doing this allocation in the kernel. However, MPX does not strictly *require* anything in the kernel. It can theoretically be done completely from userspace. Here are a few ways this *could* be done. I don't think any of them are practical in the real-world, but here they are. Q: Can virtual space simply be reserved for the bounds tables so that we never have to allocate them? A: As noted earlier, these tables are *HUGE*. An X-GB virtual area needs 4*X GB of virtual space, plus 2GB for the bounds directory. If we were to preallocate them for the 128TB of user virtual address space, we would need to reserve 512TB+2GB, which is larger than the entire virtual address space today. This means they can not be reserved ahead of time. Also, a single process's pre-popualated bounds directory consumes 2GB of virtual *AND* physical memory. IOW, it's completely infeasible to prepopulate bounds directories. Q: Can we preallocate bounds table space at the same time memory is allocated which might contain pointers that might eventually need bounds tables? A: This would work if we could hook the site of each and every memory allocation syscall. This can be done for small, constrained applications. But, it isn't practical at a larger scale since a given app has no way of controlling how all the parts of the app might allocate memory (think libraries). The kernel is really the only place to intercept these calls. Q: Could a bounds fault be handed to userspace and the tables allocated there in a signal handler instead of in the kernel? A: (thanks to tglx) mmap() is not on the list of safe async handler functions and even if mmap() would work it still requires locking or nasty tricks to keep track of the allocation state there. Having ruled out all of the userspace-only approaches for managing bounds tables that we could think of, we create them on demand in the kernel. Based-on-patch-by: Qiaowei Ren <qiaowei.ren@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: linux-mm@kvack.org Cc: linux-mips@linux-mips.org Cc: Dave Hansen <dave@sr71.net> Link: http://lkml.kernel.org/r/20141114151829.AD4310DE@viggo.jf.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Dave Hansen
|
fcc7ffd679 |
x86, mpx: Decode MPX instruction to get bound violation information
This patch sets bound violation fields of siginfo struct in #BR exception handler by decoding the user instruction and constructing the faulting pointer. We have to be very careful when decoding these instructions. They are completely controlled by userspace and may be changed at any time up to and including the point where we try to copy them in to the kernel. They may or may not be MPX instructions and could be completely invalid for all we know. Note: This code is based on Qiaowei Ren's specialized MPX decoder, but uses the generic decoder whenever possible. It was tested for robustness by generating a completely random data stream and trying to decode that stream. I also unmapped random pages inside the stream to test the "partial instruction" short read code. We kzalloc() the siginfo instead of stack allocating it because we need to memset() it anyway, and doing this makes it much more clear when it got initialized by the MPX instruction decoder. Changes from the old decoder: * Use the generic decoder instead of custom functions. Saved ~70 lines of code overall. * Remove insn->addr_bytes code (never used??) * Make sure never to possibly overflow the regoff[] array, plus check the register range correctly in 32 and 64-bit modes. * Allow get_reg() to return an error and have mpx_get_addr_ref() handle when it sees errors. * Only call insn_get_*() near where we actually use the values instead if trying to call them all at once. * Handle short reads from copy_from_user() and check the actual number of read bytes against what we expect from insn_get_length(). If a read stops in the middle of an instruction, we error out. * Actually check the opcodes intead of ignoring them. * Dynamically kzalloc() siginfo_t so we don't leak any stack data. * Detect and handle decoder failures instead of ignoring them. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Based-on-patch-by: Qiaowei Ren <qiaowei.ren@intel.com> Cc: linux-mm@kvack.org Cc: linux-mips@linux-mips.org Cc: Dave Hansen <dave@sr71.net> Link: http://lkml.kernel.org/r/20141114151828.5BDD0915@viggo.jf.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
Qiaowei Ren
|
57319d80e1 |
x86, mpx: Add MPX-specific mmap interface
We have chosen to perform the allocation of bounds tables in kernel (See the patch "on-demand kernel allocation of bounds tables") and to mark these VMAs with VM_MPX. However, there is currently no suitable interface to actually do this. Existing interfaces, like do_mmap_pgoff(), have no way to set a modified ->vm_ops or ->vm_flags and don't hold mmap_sem long enough to let a caller do it. This patch wraps mmap_region() and hold mmap_sem long enough to make the modifications to the VMA which we need. Also note the 32/64-bit #ifdef in the header. We actually need to do this at runtime eventually. But, for now, we don't support running 32-bit binaries on 64-bit kernels. Support for this will come in later patches. Signed-off-by: Qiaowei Ren <qiaowei.ren@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: linux-mm@kvack.org Cc: linux-mips@linux-mips.org Cc: Dave Hansen <dave@sr71.net> Link: http://lkml.kernel.org/r/20141114151827.CE440F67@viggo.jf.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |