This pull request adds initial support for the Tegra114 SoC, which
integrates a quad-core ARM Cortex-A15 CPU. I'm proud to observe that we
posted the initial versions of these patches before the final official
announcement of this chip.
These patches are enough to boot with a UART-based console, support the
Dalmore and Pluto reference/evaluation boards, instantiate the GPIO and
pinctrl drivers, and enable a cpuidle state. As yet, no clocks or
storage devices are supported, but patches for those will follow shortly.
This pull request is based on (most of) the previous pull request with
tag tegra-for-3.9-soc-cpuidle, followed by a merge of the previous pull
request with tag tegra-for-3.9-scu-base-rework.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJRCY47AAoJEMzrak5tbycxiCEQAKokAbR2acuzR1BC3o+pQAsv
6/2TkGdZXhgmf7COXkjHLQSnQn5MLSiHSQxVfc8rwpJ7Tma0BaZ1QhoeYKU718ix
S9htYgCurcU6XUuRW6THw3nF1a7S6Z7WX63DS6d1LcGzAHLRAc3Y6Kb1pHCDTThy
Hqf0SvIrpIB6dLpBT63sbbGQjauwd+pvWMFanHwyrKJFOURqMQngzCcXeFqKw8cI
DRS5JWeTZfhOKosnme9lNkWiXM7zYzedtErBcWg3TbtSz8I3DB/I4Zi3lQcwO/hj
K/loW99/tg4mL90FaOtNrO33y1qc/4PAWSLdAvcSs00TvrIPGZ9HULybyY3NYPEK
48XT/3WAS7NtD42MA78DbBDyX4sw2vIz7LZLdTukG/gjIckOE4oapIq4QvIK6OwM
9GkYe8Zx6kASVEKQEntW3iax/VyhU04xpmCYpAVcUkBW260zbHPA95Ltqr6R4vdq
HKezEUq7Gq/kLiiMlnUcotaZY6MHyTOR1SXBN3ai71pAQzhsrHUPOQZoxvoERW7Q
vIN7unQ4lqgmBY4mUnPvFB0pXQ7Y939EGtYK59s7uuQraVe3TI0G/KUlKwbxVzDX
iTtkeu54bfla39kxMaYVUzNhy0mh/TA8PonefgYqZW7QPw4PhfgzYItzOvU6g/XC
cDSQluEEjqwn1vfSBaI1
=bIIe
-----END PGP SIGNATURE-----
Merge tag 'tegra-for-3.9-soc-t114' of git://git.kernel.org/pub/scm/linux/kernel/git/swarren/linux-tegra into next/soc
From Stepen Warren:
ARM: tegra: add Tegra114 SoC support
This pull request adds initial support for the Tegra114 SoC, which
integrates a quad-core ARM Cortex-A15 CPU. I'm proud to observe that we
posted the initial versions of these patches before the final official
announcement of this chip.
These patches are enough to boot with a UART-based console, support the
Dalmore and Pluto reference/evaluation boards, instantiate the GPIO and
pinctrl drivers, and enable a cpuidle state. As yet, no clocks or
storage devices are supported, but patches for those will follow shortly.
This pull request is based on (most of) the previous pull request with
tag tegra-for-3.9-soc-cpuidle, followed by a merge of the previous pull
request with tag tegra-for-3.9-scu-base-rework.
* tag 'tegra-for-3.9-soc-t114' of git://git.kernel.org/pub/scm/linux/kernel/git/swarren/linux-tegra: (24 commits)
ARM: DT: tegra114: add pinmux DT entry
ARM: DT: tegra114: add GPIO DT entry
ARM: tegra114: select PINCTRL for Tegra114 SoC
ARM: tegra: add Tegra114 ARM_CPUIDLE_WFI_STATE support
ARM: tegra: Add SMMU entry to Tegra114 DT
ARM: tegra: add AHB entry to Tegra114 DT
ARM: tegra: Add initial support for Tegra114 SoC.
ARM: dt: tegra114: Add new board, Pluto
ARM: dt: tegra114: Add new board, Dalmore
ARM: dt: tegra114: Add new SoC base, Tegra114 SoC
ARM: tegra: fuse: Add chip ID Tegra114 0x35
ARM: OMAP: Make use of available scu_a9_get_base() interface
ARM: tegra: Skip scu_enable(scu_base) if not Cortex A9
ARM: Add API to detect SCU base address from CP15
ARM: tegra: Use DT /cpu node to detect number of CPU core
ARM: tegra: Add CPU nodes to Tegra30 device tree
ARM: tegra: Add CPU nodes to Tegra20 device tree
ARM: perf: simplify __hw_perf_event_init err handling
ARM: perf: remove unnecessary checks for idx < 0
ARM: perf: handle armpmu_register failing
...
Signed-off-by: Olof Johansson <olof@lixom.net>
Remove/add conflict in arch/arm/mach-tegra/common.c resolved.
Remove/remove conflict in arch/arm/mach-tegra/platsmp.c. Leave the empty
stub function for now since removing it in the merge commit is confusing;
will be cleaned up in a separate commit. # # It looks like you may be
committing a merge. # If this is not correct, please remove the file #
.git/MERGE_HEAD # and try again.
Drop the define and make use of scu_a9_get_base() which reads
the physical address of SCU from CP15 register.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Now that we have GIC moved to drivers/irqchip and all GIC DT init for
platforms using irqchip_init, move gic.h and update the remaining
includes.
Signed-off-by: Rob Herring <rob.herring@calxeda.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Anton Vorontsov <avorontsov@mvista.com>
Cc: Kukjin Kim <kgene.kim@samsung.com>
Cc: Sascha Hauer <kernel@pengutronix.de>
Cc: David Brown <davidb@codeaurora.org>
Cc: Daniel Walker <dwalker@fifo99.com>
Cc: Bryan Huntsman <bryanh@codeaurora.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Cc: Viresh Kumar <viresh.linux@gmail.com>
Cc: Shiraz Hashim <shiraz.hashim@st.com>
Cc: Stephen Warren <swarren@wwwdotorg.org>
Cc: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Samuel Ortiz <sameo@linux.intel.com>
In preparation of moving gic code to drivers/irqchip, remove the direct
platform dependencies on gic_raise_softirq. Move the setup of
smp_cross_call into the gic code and use arch_send_wakeup_ipi_mask
function to trigger wake-up IPIs.
Signed-off-by: Rob Herring <rob.herring@calxeda.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Kukjin Kim <kgene.kim@samsung.com>
Cc: Sascha Hauer <kernel@pengutronix.de>
Cc: David Brown <davidb@codeaurora.org>
Cc: Daniel Walker <dwalker@fifo99.com>
Cc: Bryan Huntsman <bryanh@codeaurora.org>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Magnus Damm <magnus.damm@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Shiraz Hashim <shiraz.hashim@st.com>
Acked-by: Stephen Warren <swarren@nvidia.com>
Cc: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
commit c9621844 (ARM: OMAP4: PM: add errata support) introduced errata
handling for OMAP4, but was broken when CONFIG_PM=n.
When CONFIG_PM=n, pm44xx.c is not compiled, yet that is where pm44xx_errata
is defined. However, these errata are needed for the SMP boot/hotplug case
also, and are primarily used in omap-smp.c.
Move the definition of pm44xx_errata to omap-smp.c so that it's available
even in the CONFIG_PM=n case.
Cc: Tero Kristo <t-kristo@ti.com>
Signed-off-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
'Workaround for ROM bug because of CA9 r2pX gic control'
register change disables the gic distributor while the secondary
cpu is being booted. If a localtimer interrupt on the primary cpu
occurs when the distributor is turned off, the interrupt is lost,
and the localtimer never fires again.
Make the primary cpu wait for the secondary cpu to reenable the
gic distributor (with interrupts off for safety), and then
check if the pending bit is set in the localtimer but not the
gic. If so, ack it in the localtimer, and reset the timer with
the minimum timeout to trigger a new timer interrupt.
Signed-off-by: Colin Cross <ccross@android.com>
[s-jan@ti.com: adapted to k3.4 + validated functionality]
Signed-off-by: Sebastien Jan <s-jan@ti.com>
[t-kristo@ti.com: dropped generic ARM kernel exports from the code, rebased
to mainline]
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Signed-off-by: Kevin Hilman <khilman@ti.com>
On OMAP4+ devices, GIC register context is lost when MPUSS hits
the OSWR(Open Switch Retention). On the CPU wakeup path, ROM code
gets executed and one of the steps in it is to restore the
saved context of the GIC. The ROM Code GIC distributor restoration
is split in two parts: CPU specific register done by each CPU and
common register done by only one CPU.
Below is the abstract flow.
...............................................................
- MPUSS in OSWR state.
- CPU0 wakes up on the event(interrupt) and start executing ROM code.
[..]
- CPU0 executes "GIC Restoration:"
[...]
- CPU0 swicthes to non-secure mode and jumps to OS resume code.
[...]
- CPU0 is online in OS
- CPU0 enables the GIC distributor. GICD.Enable Non-secure = 1
- CPU0 wakes up CPU1 with clock-domain force wakeup method.
- CPU0 continues it's execution.
[..]
- CPU1 wakes up and start executing ROM code.
[..]
- CPU1 executes "GIC Restoration:"
[..]
- CPU1 swicthes to non-secure mode and jumps to OS resume code.
[...]
- CPU1 is online in OS and start executing.
[...] -
GIC Restoration: /* Common routine for HS and GP devices */
{
if (GICD != 1) { /* This will be true in OSWR state */
if (GIC_SAR_BACKUP_STATE == SAVED)
- CPU restores GIC distributor
else
- reconfigure GIC distributor to boot values.
GICD.Enable secure = 1
}
if (GIC_SAR_BACKUP_STATE == SAVED)
- CPU restore its GIC CPU interface registers if saved.
else
- reconfigure its GIC CPU interface registers to boot
values.
}
...............................................................
So as mentioned in the flow, GICD != 1 condition decides how
the GIC registers are handled in ROM code wakeup path from
OSWR. As evident from the flow, ROM code relies on the entire
GICD register value and not specific register bits.
The assumption was valid till CortexA9 r1pX version since there
was only one banked bit to control secure and non-secure GICD.
Secure view which ROM code sees:
bit 0 == Enable Non-secure
Non-secure view which HLOS sees:
bit 0 == Enable secure
But GICD register has changed between CortexA9 r1pX and r2pX.
On r2pX GICD register is composed of 2 bits.
Secure view which ROM code sees:
bit 1 == Enable Non-secure
bit 0 == Enable secure
Non-secure view which HLOS sees:
bit 0 == Enable Non-secure
Hence on OMAP4460(r2pX) devices, if you go through the
above flow again during CPU1 wakeup, GICD == 3 and hence
ROM code fails to understand the real wakeup power state
and reconfigures GIC distributor to boot values. This is
nasty since you loose the entire interrupt controller
context in a live system.
The ROM code fix done on next OMAP4 device (OMAP4470 - r2px) is to
check "GICD.Enable secure != 1" for GIC restoration in OSWR wakeup path.
Since ROM code can't be fixed on OMAP4460 devices, a work around
needs to be implemented. As evident from the flow, as long as
CPU1 sees GICD == 1 in it's wakeup path from OSWR, the issue
won't happen. Below is the flow with the work-around.
...............................................................
- MPUSS in OSWR state.
- CPU0 wakes up on the event(interrupt) and start executing ROM code.
[..]
- CPU0 executes "GIC Restoration:"
[..]
- CPU0 swicthes to non-secure mode and jumps to OS resume code.
[..]
- CPU0 is online in OS.
- CPU0 does GICD.Enable Non-secure = 0
- CPU0 wakes up CPU1 with clock domain force wakeup method.
- CPU0 waits for GICD.Enable Non-secure = 1
- CPU0 coninues it's execution.
[..]
- CPU1 wakes up and start executing ROM code.
[..]
- CPU1 executes "GIC Restoration:"
[..]
- CPU1 swicthes to non-secure mode and jumps to OS resume code.
[..]
- CPU1 is online in OS
- CPU1 does GICD.Enable Non-secure = 1
- CPU1 start executing
[...]
...............................................................
With this procedure, the GIC configuration done between the
CPU0 wakeup and CPU1 wakeup will not be lost but during this
short windows, the CPU0 will not receive interrupts.
The BUG is applicable to only OMAP4460(r2pX) devices.
OMAP4470 (also r2pX) is not affected by this bug because
ROM code has been fixed.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Signed-off-by: Kevin Hilman <khilman@ti.com>
Convert OMAP4 to use struct smp_operations to provide its SMP
and CPU hotplug operations.
Tested on both Panda and IGEPv2 (MULTI_OMAP kernel)
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
As the plat and mach includes need to disappear for single zImage work,
we need to remove plat/hardware.h.
Do this by splitting plat/hardware.h into omap1 and omap2+ specific files.
The old plat/hardware.h already has omap1 only defines, so it gets moved
to mach/hardware.h for omap1. For omap2+, we use the local soc.h
that for now just includes the related SoC headers to keep this patch more
readable.
Note that the local soc.h still includes plat/cpu.h that can be dealt
with in later patches. Let's also include plat/serial.h from common.h for
all the board-*.c files. This allows making the include files local later
on without patching these files again.
Note that only minimal changes are done in this patch for the
drivers/watchdog/omap_wdt.c driver to keep things compiling. Further
patches are needed to eventually remove cpu_is_omap usage in the drivers.
Also only minimal changes are done to sound/soc/omap/* to remove the
unneeded includes and to define OMAP44XX_MCPDM_L3_BASE locally so there's
no need to include omap44xx.h.
While at it, also sort some of the includes in the standard way.
Cc: linux-watchdog@vger.kernel.org
Cc: alsa-devel@alsa-project.org
Cc: Peter Ujfalusi <peter.ujfalusi@ti.com>
Cc: Jarkko Nikula <jarkko.nikula@bitmer.com>
Cc: Liam Girdwood <lrg@ti.com>
Acked-by: Wim Van Sebroeck <wim@iguana.be>
Acked-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Pull ARM updates from Russell King:
"First ARM push of this merge window, post me coming back from holiday.
This is what has been in linux-next for the last few weeks. Not much
to say which isn't described by the commit summaries."
* 'for-linus' of git://git.linaro.org/people/rmk/linux-arm: (32 commits)
ARM: 7463/1: topology: Update cpu_power according to DT information
ARM: 7462/1: topology: factorize the update of sibling masks
ARM: 7461/1: topology: Add arch_scale_freq_power function
ARM: 7456/1: ptrace: provide separate functions for tracing syscall {entry,exit}
ARM: 7455/1: audit: move syscall auditing until after ptrace SIGTRAP handling
ARM: 7454/1: entry: don't bother with syscall tracing on ret_from_fork path
ARM: 7453/1: audit: only allow syscall auditing for pure EABI userspace
ARM: 7452/1: delay: allow timer-based delay implementation to be selected
ARM: 7451/1: arch timer: implement read_current_timer and get_cycles
ARM: 7450/1: dcache: select DCACHE_WORD_ACCESS for little-endian ARMv6+ CPUs
ARM: 7449/1: use generic strnlen_user and strncpy_from_user functions
ARM: 7448/1: perf: remove arm_perf_pmu_ids global enumeration
ARM: 7447/1: rwlocks: remove unused branch labels from trylock routines
ARM: 7446/1: spinlock: use ticket algorithm for ARMv6+ locking implementation
ARM: 7445/1: mm: update CONTEXTIDR register to contain PID of current process
ARM: 7444/1: kernel: add arch-timer C3STOP feature
ARM: 7460/1: remove asm/locks.h
ARM: 7439/1: head.S: simplify initial page table mapping
ARM: 7437/1: zImage: Allow DTB command line concatenation with ATAG_CMDLINE
ARM: 7436/1: Do not map the vectors page as write-through on UP systems
...
Add OMAP5 SMP boot support using OMAP4 SMP code. The relevant code paths
are runtime checked using cpu id
Signed-off-by: R Sricharan <r.sricharan@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
OMAP4 and OMAP5 share same WakeupGen IP with below few udpates on OMAP5.
- Additional 32 interrupt support is added w.r.t OMAP4 design.
- The AUX CORE boot registers are now made accessible from non-secure SW.
- SAR offset are changed and PTMSYNC* registers are removed from SAR.
Patch updates the WakeupGen code accordingly.
Signed-off-by: R Sricharan <r.sricharan@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
There's no need to have these defines in plat/io.h.
Note that we now need to ifdef omap_read/write calls
as they will be available for omap1 only.
While at it, clean up the includes to group them like
they typically are grouped.
Signed-off-by: Tony Lindgren <tony@atomide.com>
The SGI(Software Generated Interrupts) are not wakeup capable from
low power states. This is known limitation on OMAP4 and needs to be
worked around by using software forced clockdomain wake-up. CPU0 forces
the CPU1 clockdomain to software force wakeup.
More details can be found in OMAP4430 TRM - Version J
Section :
4.3.4.2 Power States of CPU0 and CPU1
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Jean Pihet <j-pihet@ti.com>
Reviewed-by: Kevin Hilman <khilman@ti.com>
Tested-by: Vishwanath BS <vishwanath.bs@ti.com>
Signed-off-by: Kevin Hilman <khilman@ti.com>
This patch adds the CPU0 and CPU1 off mode support. CPUX close switch
retention (CSWR) is not supported by hardware design.
The CPUx OFF mode isn't supported on OMAP4430 ES1.0
CPUx sleep code is common for hotplug, suspend and CPUilde.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Jean Pihet <j-pihet@ti.com>
Reviewed-by: Kevin Hilman <khilman@ti.com>
Tested-by: Vishwanath BS <vishwanath.bs@ti.com>
Signed-off-by: Kevin Hilman <khilman@ti.com>
This patch exports APIs to get base address for GIC
distributor, CPU interface, SCU and PL310 L2 Cache which
are used in OMAP4 PM code.
This was suggested by Kevin Hilman <khilman@ti.com> during
OMAP4 PM code review.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Jean Pihet <j-pihet@ti.com>
Reviewed-by: Kevin Hilman <khilman@ti.com>
Tested-by: Vishwanath BS <vishwanath.bs@ti.com>
Signed-off-by: Kevin Hilman <khilman@ti.com>
As suggested by Russell King - ARM Linux <linux@arm.linux.org.uk>,
there's no need to keep local prototypes in non-local headers.
Add mach-omap1/common.h and mach-omap2/common.h and move the
local prototypes there from plat/common.h and mach/omap4-common.h.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* 'next/cleanup2' of git://git.linaro.org/people/arnd/arm-soc: (31 commits)
ARM: OMAP: Warn if omap_ioremap is called before SoC detection
ARM: OMAP: Move set_globals initialization to happen in init_early
ARM: OMAP: Map SRAM later on with ioremap_exec()
ARM: OMAP: Remove calls to SRAM allocations for framebuffer
ARM: OMAP: Avoid cpu_is_omapxxxx usage until map_io is done
ARM: OMAP1: Use generic map_io, init_early and init_irq
arm/dts: OMAP3+: Add mpu, dsp and iva nodes
arm/dts: OMAP4: Add a main ocp entry bound to l3-noc driver
ARM: OMAP2+: l3-noc: Add support for device-tree
ARM: OMAP2+: board-generic: Add i2c static init
ARM: OMAP2+: board-generic: Add DT support to generic board
arm/dts: Add support for OMAP3 Beagle board
arm/dts: Add initial device tree support for OMAP3 SoC
arm/dts: Add support for OMAP4 SDP board
arm/dts: Add support for OMAP4 PandaBoard
arm/dts: Add initial device tree support for OMAP4 SoC
ARM: OMAP: omap_device: Add a method to build an omap_device from a DT node
ARM: OMAP: omap_device: Add omap_device_[alloc|delete] for DT integration
of: Add helpers to get one string in multiple strings property
ARM: OMAP2+: devices: Remove all omap_device_pm_latency structures
...
Fix up trivial header file conflicts in arch/arm/mach-omap2/board-generic.c
Rather than clipping the number of CPUs using the compile-time NR_CPUS
constant, use the runtime nr_cpu_ids value instead. This allows the
nr_cpus command line option to work as expected.
Cc: <stable@kernel.org>
Reported-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Otherwise we can't do generic map_io as we currently rely on
static mappings that work only because of arch_ioremap.
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
If an ARM system has multiple cpus in the same socket and the
kernel is booted with maxcpus=1, secondary cpus are possible but
not present due to how platform_smp_prepare_cpus() is called.
Since most typical ARM processors don't actually support physical
hotplug, initialize the present map to be equal to the possible
map in generic ARM SMP code. Also, always call
platform_smp_prepare_cpus() as long as max_cpus is non-zero (0
means no SMP) to allow platform code to do any SMP setup.
After applying this patch it's possible to boot an ARM system
with maxcpus=1 on the command line and then hotplug in secondary
cpus via sysfs. This is more in line with how x86 does things.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kukjin Kim <kgene.kim@samsung.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
Cc: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Rather than having each platform class provide a mach/smp.h header for
smp_cross_call(), arrange for them to register the function with the
core ARM SMP code instead.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
All platforms call trace_hardirqs_off() in their secondary startup code,
so move this into the core SMP code - it doesn't need to be in the
per-platform code.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
There is a certain amount of smp_prepare_cpus() which doesn't belong
in the platform support code - that is, code which is invariant to the
SMP implementation. Move this code into arch/arm/kernel/smp.c, and
add a platform_ prefix to the original function.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
scu_get_core_count() never returns zero cores, so we don't need to
check and correct if ncores is zero.
Tegra was missing the check against NR_CPUS, leading to a potential
bitfield overflow if this becomes the case.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Ensure that the number of CPUs is sanity checked before setting
the number of possible CPUs. This avoids any chance of overflowing
the cpu_possible bitmap.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We don't need to re-pass the base address for the CPU interfaces to the
GIC for secondary CPUs, as it will never be different from the boot CPU
- and even if it was, we'd overwrite the boot CPU's base address.
Get rid of this argument, and rename to gic_secondary_init().
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Abhijeet Dharmapurikar <adharmap@codeaurora.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This allows us to use smp_cross_call() to trigger a number of different
software generated interrupts, rather than combining them all on one
SGI. Recover the SGI number via do_IPI.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Otherwise we get the following error with omap3_defconfig and CONFIG_SMP:
Error: selected processor does not support `sev'
Signed-off-by: Tony Lindgren <tony@atomide.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
This patch adds cpu hotplug support for OMAP4430. Only CPU inactive
state is supported as a low power state in the basic hot-plug support
Signed-off-by: Rajendra Nayak <rnayak@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Kevin Hilman <khilman@deeprootsystems.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
This patch moves OMAP4 soc specific code from 4430sdp board file.
The change is necessary so that newer board support can be added
with minimal changes. This will be also problematic for
multi-board, multi-omap builds.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
The secondary cores wakes up in time so the wait loop is not
necessary anymore.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
The AuxCoreBoot0 and AuxCoreBoot1 can be only accessed in secure
mode. Replace the current code with secure monitor API's to access/modify
these registers.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Move the remaining headers under plat-omap/include/mach
to plat-omap/include/plat. Also search and replace the
files using these headers to include using the right path.
This was done with:
#!/bin/bash
mach_dir_old="arch/arm/plat-omap/include/mach"
plat_dir_new="arch/arm/plat-omap/include/plat"
headers=$(cd $mach_dir_old && ls *.h)
omap_dirs="arch/arm/*omap*/ \
drivers/video/omap \
sound/soc/omap"
other_files="drivers/leds/leds-ams-delta.c \
drivers/mfd/menelaus.c \
drivers/mfd/twl4030-core.c \
drivers/mtd/nand/ams-delta.c"
for header in $headers; do
old="#include <mach\/$header"
new="#include <plat\/$header"
for dir in $omap_dirs; do
find $dir -type f -name \*.[chS] | \
xargs sed -i "s/$old/$new/"
done
find drivers/ -type f -name \*omap*.[chS] | \
xargs sed -i "s/$old/$new/"
for file in $other_files; do
sed -i "s/$old/$new/" $file
done
done
for header in $(ls $mach_dir_old/*.h); do
git mv $header $plat_dir_new/
done
Signed-off-by: Tony Lindgren <tony@atomide.com>
Search and replace OMAP_IO_ADDRESS with OMAP1_IO_ADDRESS and OMAP2_IO_ADDRESS,
and convert omap_read/write into a functions instead of a macros.
Also rename OMAP_MPUIO_VBASE to OMAP1_MPUIO_VBASE.
In the long run, most code should use ioremap + __raw_read/write instead.
Signed-off-by: Tony Lindgren <tony@atomide.com>
This patch adds SMP platform files support for OMAP4430SDP. TI's OMAP4430
SOC is based on ARM Cortex-A9 SMP architecture. It's a dual core SOC
with GIC used for interrupt handling and SCU for cache coherency.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>