e89d4ca1df
16220 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
|
e89d4ca1df |
Linux 5.8-rc7
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl8d8h4eHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGd0sH/2iktYhMwPxzzpnb eI3OuTX/mRn4vUFOfpx9dmGVleMfKkpbvnn3IY7wA62Qfv7J7lkFRa1Bd1DlqXfW yyGTGDSKG5chiRCOU3s9ni92M4xIzFlrojyt/dIK2lUGMzUPI9FGlZRGQLKqqwLh 2syOXRWbcQ7e52IHtDSy3YBNveKRsP4NyqV+GxGiex18SMB/M3Pw9EMH614eDPsE QAGQi5uGv4hPJtFHgXgUyBPLFHIyFAiVxhFRIj7u2DSEKY79+wO1CGWFiFvdTY4B CbqKXLffY3iQdFsLJkj9Dl8cnOQnoY44V0EBzhhORxeOp71StUVaRwQMFa5tp48G 171s5Hs= =BQIl -----END PGP SIGNATURE----- Merge tag 'v5.8-rc7' into perf/core, to pick up fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
|
d181d2da01 |
x86/dumpstack: Dump user space code correctly again
H.J. reported that post 5.7 a segfault of a user space task does not longer
dump the Code bytes when /proc/sys/debug/exception-trace is enabled. It
prints 'Code: Bad RIP value.' instead.
This was broken by a recent change which made probe_kernel_read() reject
non-kernel addresses.
Update show_opcodes() so it retrieves user space opcodes via
copy_from_user_nmi().
Fixes:
|
||
|
039a7a30ec |
x86/stacktrace: Fix reliable check for empty user task stacks
If a user task's stack is empty, or if it only has user regs, ORC
reports it as a reliable empty stack. But arch_stack_walk_reliable()
incorrectly treats it as unreliable.
That happens because the only success path for user tasks is inside the
loop, which only iterates on non-empty stacks. Generally, a user task
must end in a user regs frame, but an empty stack is an exception to
that rule.
Thanks to commit
|
||
|
372a8eaa05 |
x86/unwind/orc: Fix ORC for newly forked tasks
The ORC unwinder fails to unwind newly forked tasks which haven't yet run on the CPU. It correctly reads the 'ret_from_fork' instruction pointer from the stack, but it incorrectly interprets that value as a call stack address rather than a "signal" one, so the address gets incorrectly decremented in the call to orc_find(), resulting in bad ORC data. Fix it by forcing 'ret_from_fork' frames to be signal frames. Reported-by: Wang ShaoBo <bobo.shaobowang@huawei.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Wang ShaoBo <bobo.shaobowang@huawei.com> Link: https://lkml.kernel.org/r/f91a8778dde8aae7f71884b5df2b16d552040441.1594994374.git.jpoimboe@redhat.com |
||
|
de2b41be8f |
x86, vmlinux.lds: Page-align end of ..page_aligned sections
On x86-32 the idt_table with 256 entries needs only 2048 bytes. It is page-aligned, but the end of the .bss..page_aligned section is not guaranteed to be page-aligned. As a result, objects from other .bss sections may end up on the same 4k page as the idt_table, and will accidentially get mapped read-only during boot, causing unexpected page-faults when the kernel writes to them. This could be worked around by making the objects in the page aligned sections page sized, but that's wrong. Explicit sections which store only page aligned objects have an implicit guarantee that the object is alone in the page in which it is placed. That works for all objects except the last one. That's inconsistent. Enforcing page sized objects for these sections would wreckage memory sanitizers, because the object becomes artificially larger than it should be and out of bound access becomes legit. Align the end of the .bss..page_aligned and .data..page_aligned section on page-size so all objects places in these sections are guaranteed to have their own page. [ tglx: Amended changelog ] Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20200721093448.10417-1-joro@8bytes.org |
||
|
5714ee50bb |
copy_xstate_to_kernel: Fix typo which caused GDB regression
This fixes a regression encountered while running the
gdb.base/corefile.exp test in GDB's test suite.
In my testing, the typo prevented the sw_reserved field of struct
fxregs_state from being output to the kernel XSAVES area. Thus the
correct mask corresponding to XCR0 was not present in the core file for
GDB to interrogate, resulting in the following behavior:
[kev@f32-1 gdb]$ ./gdb -q testsuite/outputs/gdb.base/corefile/corefile testsuite/outputs/gdb.base/corefile/corefile.core
Reading symbols from testsuite/outputs/gdb.base/corefile/corefile...
[New LWP 232880]
warning: Unexpected size of section `.reg-xstate/232880' in core file.
With the typo fixed, the test works again as expected.
Signed-off-by: Kevin Buettner <kevinb@redhat.com>
Fixes:
|
||
|
efb9666e90 |
A pile of fixes for x86:
- Fix the I/O bitmap invalidation on XEN PV, which was overlooked in the recent ioperm/iopl rework. This caused the TSS and XEN's I/O bitmap to get out of sync. - Use the proper vectors for HYPERV. - Make disabling of stack protector for the entry code work with GCC builds which enable stack protector by default. Removing the option is not sufficient, it needs an explicit -fno-stack-protector to shut it off. - Mark check_user_regs() noinstr as it is called from noinstr code. The missing annotation causes it to be placed in the text section which makes it instrumentable. - Add the missing interrupt disable in exc_alignment_check() - Fixup a XEN_PV build dependency in the 32bit entry code - A few fixes to make the Clang integrated assembler happy - Move EFI stub build to the right place for out of tree builds - Make prepare_exit_to_usermode() static. It's not longer called from ASM code. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8UR+MTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoQCUD/4/9W5FFvdZvQPwmXsHPaVnW9hUsXxG 0tjc34xqDcgEl1U3khu+6jj+oHx+JM+4wGP/V49Wqx6xkrJ33/a8uYErAgI7+Pmp s3T2gXMWkgJtYFlDQdAMbeuuM2cOFZJw4BxxvTMth5EixQvk1EkX6QyBjLaSGo8y 78sWtZ6Oh5Ql9ua/9TOilewLsCsQSFIFn0o/hawwwPUMrwGvD29scha0XHom+AO7 uwejfU8klq2HJJaLaaiUaiNBkFz0TNGJtY+3mQpw8BPjCuuBQhYygrS0X4uQzo01 4XJzhDnOVbAYWqi0/T+mAEmuJ9NBZJwYiYrwBYCkZgELwJKLzhzO2GOgP9xEsFY4 VUNgqHFhKrQp10k2k4L/A5tmr+0GntiCQhdZi+/gty6oO/t3ni57pRcAhA9qBNOb 8ZqumBwgaaAIqcmdtoyXAIveWOHnzwKEg6wmIGFbyCwHjeLJKJG7KhpXIpEuX+j2 DC7EfYvRB+jllAk1CBypBvzD0DHfMZ0myPxCcZiW2wHTVAlkpY7hiIyPHqocjE9L OjOQ7FS6E2/p24lYVcLUFWcESxGFvQjjxwXk7htjpGUIZsQOhz/LOW+CIPCsfbqE HoEsHmNltksYYV9FDfevXRp5sbxpx3wQSLOgqNqiOpy4cTCG8boalUqHQ0OsN8Oa EgU067yF77ymRg== =QAeH -----END PGP SIGNATURE----- Merge tag 'x86-urgent-2020-07-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into master Pull x86 fixes from Thomas Gleixner: "A pile of fixes for x86: - Fix the I/O bitmap invalidation on XEN PV, which was overlooked in the recent ioperm/iopl rework. This caused the TSS and XEN's I/O bitmap to get out of sync. - Use the proper vectors for HYPERV. - Make disabling of stack protector for the entry code work with GCC builds which enable stack protector by default. Removing the option is not sufficient, it needs an explicit -fno-stack-protector to shut it off. - Mark check_user_regs() noinstr as it is called from noinstr code. The missing annotation causes it to be placed in the text section which makes it instrumentable. - Add the missing interrupt disable in exc_alignment_check() - Fixup a XEN_PV build dependency in the 32bit entry code - A few fixes to make the Clang integrated assembler happy - Move EFI stub build to the right place for out of tree builds - Make prepare_exit_to_usermode() static. It's not longer called from ASM code" * tag 'x86-urgent-2020-07-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/boot: Don't add the EFI stub to targets x86/entry: Actually disable stack protector x86/ioperm: Fix io bitmap invalidation on Xen PV x86: math-emu: Fix up 'cmp' insn for clang ias x86/entry: Fix vectors to IDTENTRY_SYSVEC for CONFIG_HYPERV x86/entry: Add compatibility with IAS x86/entry/common: Make prepare_exit_to_usermode() static x86/entry: Mark check_user_regs() noinstr x86/traps: Disable interrupts in exc_aligment_check() x86/entry/32: Fix XEN_PV build dependency |
||
|
cadfad8701 |
x86/ioperm: Fix io bitmap invalidation on Xen PV
tss_invalidate_io_bitmap() wasn't wired up properly through the pvop
machinery, so the TSS and Xen's io bitmap would get out of sync
whenever disabling a valid io bitmap.
Add a new pvop for tss_invalidate_io_bitmap() to fix it.
This is XSA-329.
Fixes:
|
||
|
baedb87d1b |
genirq/affinity: Handle affinity setting on inactive interrupts correctly
Setting interrupt affinity on inactive interrupts is inconsistent when
hierarchical irq domains are enabled. The core code should just store the
affinity and not call into the irq chip driver for inactive interrupts
because the chip drivers may not be in a state to handle such requests.
X86 has a hacky workaround for that but all other irq chips have not which
causes problems e.g. on GIC V3 ITS.
Instead of adding more ugly hacks all over the place, solve the problem in
the core code. If the affinity is set on an inactive interrupt then:
- Store it in the irq descriptors affinity mask
- Update the effective affinity to reflect that so user space has
a consistent view
- Don't call into the irq chip driver
This is the core equivalent of the X86 workaround and works correctly
because the affinity setting is established in the irq chip when the
interrupt is activated later on.
Note, that this is only effective when hierarchical irq domains are enabled
by the architecture. Doing it unconditionally would break legacy irq chip
implementations.
For hierarchial irq domains this works correctly as none of the drivers can
have a dependency on affinity setting in inactive state by design.
Remove the X86 workaround as it is not longer required.
Fixes:
|
||
|
e3beca48a4 |
irqdomain/treewide: Keep firmware node unconditionally allocated
Quite some non OF/ACPI users of irqdomains allocate firmware nodes of type
IRQCHIP_FWNODE_NAMED or IRQCHIP_FWNODE_NAMED_ID and free them right after
creating the irqdomain. The only purpose of these FW nodes is to convey
name information. When this was introduced the core code did not store the
pointer to the node in the irqdomain. A recent change stored the firmware
node pointer in irqdomain for other reasons and missed to notice that the
usage sites which do the alloc_fwnode/create_domain/free_fwnode sequence
are broken by this. Storing a dangling pointer is dangerous itself, but in
case that the domain is destroyed later on this leads to a double free.
Remove the freeing of the firmware node after creating the irqdomain from
all affected call sites to cure this.
Fixes:
|
||
|
bce9b042ec |
x86/traps: Disable interrupts in exc_aligment_check()
exc_alignment_check() fails to disable interrupts before returning to the
entry code.
Fixes:
|
||
|
ce711ea3ca |
perf/x86/intel/lbr: Support XSAVES/XRSTORS for LBR context switch
In the LBR call stack mode, LBR information is used to reconstruct a call stack. To get the complete call stack, perf has to save/restore all LBR registers during a context switch. Due to a large number of the LBR registers, this process causes a high CPU overhead. To reduce the CPU overhead during a context switch, use the XSAVES/XRSTORS instructions. Every XSAVE area must follow a canonical format: the legacy region, an XSAVE header and the extended region. Although the LBR information is only kept in the extended region, a space for the legacy region and XSAVE header is still required. Add a new dedicated structure for LBR XSAVES support. Before enabling XSAVES support, the size of the LBR state has to be sanity checked, because: - the size of the software structure is calculated from the max number of the LBR depth, which is enumerated by the CPUID leaf for Arch LBR. The size of the LBR state is enumerated by the CPUID leaf for XSAVE support of Arch LBR. If the values from the two CPUID leaves are not consistent, it may trigger a buffer overflow. For example, a hypervisor may unconsciously set inconsistent values for the two emulated CPUID. - unlike other state components, the size of an LBR state depends on the max number of LBRs, which may vary from generation to generation. Expose the function xfeature_size() for the sanity check. The LBR XSAVES support will be disabled if the size of the LBR state enumerated by CPUID doesn't match with the size of the software structure. The XSAVE instruction requires 64-byte alignment for state buffers. A new macro is added to reflect the alignment requirement. A 64-byte aligned kmem_cache is created for architecture LBR. Currently, the structure for each state component is maintained in fpu/types.h. The structure for the new LBR state component should be maintained in the same place. Move structure lbr_entry to fpu/types.h as well for broader sharing. Add dedicated lbr_save/lbr_restore functions for LBR XSAVES support, which invokes the corresponding xstate helpers to XSAVES/XRSTORS LBR information at the context switch when the call stack mode is enabled. Since the XSAVES/XRSTORS instructions will be eventually invoked, the dedicated functions is named with '_xsaves'/'_xrstors' postfix. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Link: https://lkml.kernel.org/r/1593780569-62993-23-git-send-email-kan.liang@linux.intel.com |
||
|
50f408d96d |
x86/fpu/xstate: Add helpers for LBR dynamic supervisor feature
The perf subsystem will only need to save/restore the LBR state. However, the existing helpers save all supported supervisor states to a kernel buffer, which will be unnecessary. Two helpers are introduced to only save/restore requested dynamic supervisor states. The supervisor features in XFEATURE_MASK_SUPERVISOR_SUPPORTED and XFEATURE_MASK_SUPERVISOR_UNSUPPORTED mask cannot be saved/restored using these helpers. The helpers will be used in the following patch. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Link: https://lkml.kernel.org/r/1593780569-62993-22-git-send-email-kan.liang@linux.intel.com |
||
|
f0dccc9da4 |
x86/fpu/xstate: Support dynamic supervisor feature for LBR
Last Branch Records (LBR) registers are used to log taken branches and other control flows. In perf with call stack mode, LBR information is used to reconstruct a call stack. To get the complete call stack, perf has to save/restore all LBR registers during a context switch. Due to the large number of the LBR registers, e.g., the current platform has 96 LBR registers, this process causes a high CPU overhead. To reduce the CPU overhead during a context switch, an LBR state component that contains all the LBR related registers is introduced in hardware. All LBR registers can be saved/restored together using one XSAVES/XRSTORS instruction. However, the kernel should not save/restore the LBR state component at each context switch, like other state components, because of the following unique features of LBR: - The LBR state component only contains valuable information when LBR is enabled in the perf subsystem, but for most of the time, LBR is disabled. - The size of the LBR state component is huge. For the current platform, it's 808 bytes. If the kernel saves/restores the LBR state at each context switch, for most of the time, it is just a waste of space and cycles. To efficiently support the LBR state component, it is desired to have: - only context-switch the LBR when the LBR feature is enabled in perf. - only allocate an LBR-specific XSAVE buffer on demand. (Besides the LBR state, a legacy region and an XSAVE header have to be included in the buffer as well. There is a total of (808+576) byte overhead for the LBR-specific XSAVE buffer. The overhead only happens when the perf is actively using LBRs. There is still a space-saving, on average, when it replaces the constant 808 bytes of overhead for every task, all the time on the systems that support architectural LBR.) - be able to use XSAVES/XRSTORS for accessing LBR at run time. However, the IA32_XSS should not be adjusted at run time. (The XCR0 | IA32_XSS are used to determine the requested-feature bitmap (RFBM) of XSAVES.) A solution, called dynamic supervisor feature, is introduced to address this issue, which - does not allocate a buffer in each task->fpu; - does not save/restore a state component at each context switch; - sets the bit corresponding to the dynamic supervisor feature in IA32_XSS at boot time, and avoids setting it at run time. - dynamically allocates a specific buffer for a state component on demand, e.g. only allocates LBR-specific XSAVE buffer when LBR is enabled in perf. (Note: The buffer has to include the LBR state component, a legacy region and a XSAVE header space.) (Implemented in a later patch) - saves/restores a state component on demand, e.g. manually invokes the XSAVES/XRSTORS instruction to save/restore the LBR state to/from the buffer when perf is active and a call stack is required. (Implemented in a later patch) A new mask XFEATURE_MASK_DYNAMIC and a helper xfeatures_mask_dynamic() are introduced to indicate the dynamic supervisor feature. For the systems which support the Architecture LBR, LBR is the only dynamic supervisor feature for now. For the previous systems, there is no dynamic supervisor feature available. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Link: https://lkml.kernel.org/r/1593780569-62993-21-git-send-email-kan.liang@linux.intel.com |
||
|
a063bf249b |
x86/fpu: Use proper mask to replace full instruction mask
When saving xstate to a kernel/user XSAVE area with the XSAVE family of instructions, the current code applies the 'full' instruction mask (-1), which tries to XSAVE all possible features. This method relies on hardware to trim 'all possible' down to what is enabled in the hardware. The code works well for now. However, there will be a problem, if some features are enabled in hardware, but are not suitable to be saved into all kernel XSAVE buffers, like task->fpu, due to performance consideration. One such example is the Last Branch Records (LBR) state. The LBR state only contains valuable information when LBR is explicitly enabled by the perf subsystem, and the size of an LBR state is large (808 bytes for now). To avoid both CPU overhead and space overhead at each context switch, the LBR state should not be saved into task->fpu like other state components. It should be saved/restored on demand when LBR is enabled in the perf subsystem. Current copy_xregs_to_* will trigger a buffer overflow for such cases. Three sites use the '-1' instruction mask which must be updated. Two are saving/restoring the xstate to/from a kernel-allocated XSAVE buffer and can use 'xfeatures_mask_all', which will save/restore all of the features present in a normal task FPU buffer. The last one saves the register state directly to a user buffer. It could also use 'xfeatures_mask_all'. Just as it was with the '-1' argument, any supervisor states in the mask will be filtered out by the hardware and not saved to the buffer. But, to be more explicit about what is expected to be saved, use xfeatures_mask_user() for the instruction mask. KVM includes the header file fpu/internal.h. To avoid 'undefined xfeatures_mask_all' compiling issue, move copy_fpregs_to_fpstate() to fpu/core.c and export it, because: - The xfeatures_mask_all is indirectly used via copy_fpregs_to_fpstate() by KVM. The function which is directly used by other modules should be exported. - The copy_fpregs_to_fpstate() is a function, while xfeatures_mask_all is a variable for the "internal" FPU state. It's safer to export a function than a variable, which may be implicitly changed by others. - The copy_fpregs_to_fpstate() is a big function with many checks. The removal of the inline keyword should not impact the performance. Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Link: https://lkml.kernel.org/r/1593780569-62993-20-git-send-email-kan.liang@linux.intel.com |
||
|
bb5a93aaf2 |
x86/ldt: use "pr_info_once()" instead of open-coding it badly
Using a mutex for "print this warning only once" is so overdesigned as to be actively offensive to my sensitive stomach. Just use "pr_info_once()" that already does this, although in a (harmlessly) racy manner that can in theory cause the message to be printed twice if more than one CPU races on that "is this the first time" test. [ If somebody really cares about that harmless data race (which sounds very unlikely indeed), that person can trivially fix printk_once() by using a simple atomic access, preferably with an optimistic non-atomic test first before even bothering to treat the pointless "make sure it is _really_ just once" case. A mutex is most definitely never the right primitive to use for something like this. ] Yes, this is a small and meaningless detail in a code path that hardly matters. But let's keep some code quality standards here, and not accept outrageously bad code. Link: https://lore.kernel.org/lkml/CAHk-=wgV9toS7GU3KmNpj8hCS9SeF+A0voHS8F275_mgLhL4Lw@mail.gmail.com/ Cc: Andy Lutomirski <luto@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
72674d4800 |
A series of fixes for x86:
- Reset MXCSR in kernel_fpu_begin() to prevent using a stale user space value. - Prevent writing MSR_TEST_CTRL on CPUs which are not explicitly whitelisted for split lock detection. Some CPUs which do not support it crash even when the MSR is written to 0 which is the default value. - Fix the XEN PV fallout of the entry code rework - Fix the 32bit fallout of the entry code rework - Add more selftests to ensure that these entry problems don't come back. - Disable 16 bit segments on XEN PV. It's not supported because XEN PV does not implement ESPFIX64 -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl8B9JoTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoV8LEAC6QJPDvqYUl4r0rNIRG+S6D99lQOse 1smxvgXX4UaRz5Tgz6kvYUcucqmmnTfvnO8cg82LASeFw1xfVPPAtl3GZjoClwhv 0NJkKYcMm5QUOSVjJmjkcbAld//FyRfxHuJ8HMEtrbvkys2qWBmLzMaUNhFDNhcc 73UMmyuyL4kef9v/iAeR5WXG5+b+j9lZDiC1lTWuEKs10d1EdTwt2O/wtSRRPpMn kL1qGTJAL+iRyRe7weLOkC2KZ9+Gq2NtyJQutkthZtGe5+pLT3AT6AlWxeg1HU8q pxaQP25oe8/8naIoOmwiuwAP2qmm5eHedzXoN0h7i2XmofYOJaWeF95K7oDro8Nj 2deCx1bk0wr/RUxbYlfUacs8S+wmMWe7+BPnHXZphkSq5Vx+oXIw6mJOqmNb7Yiv 7ld1QwSD5dyWCEk1af16XKsFvSIRiGh8FypfTiTxyk+z7HIWBNXlu8OWHn1A7Sra iaolCZfXtTJzm4w5+VVT2FX3s7jJrmMM4iSLtM2ISo2k+1HMlTbgLE6/yGjQ3ZaY U298W7Pm8CwBRgzyKBvZVfncm0U/B0FNo/8C0jsJKPIOdpoLhs+u7sjpyaNC+toz GE0skoWZxMhga4xPF84ua/l1VGncVUN1d5/dmnXz8xdyxFlktUtkt2iPE4G0rt3S Xgh2uLHOgST6Kw== =lI9c -----END PGP SIGNATURE----- Merge tag 'x86-urgent-2020-07-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: "A series of fixes for x86: - Reset MXCSR in kernel_fpu_begin() to prevent using a stale user space value. - Prevent writing MSR_TEST_CTRL on CPUs which are not explicitly whitelisted for split lock detection. Some CPUs which do not support it crash even when the MSR is written to 0 which is the default value. - Fix the XEN PV fallout of the entry code rework - Fix the 32bit fallout of the entry code rework - Add more selftests to ensure that these entry problems don't come back. - Disable 16 bit segments on XEN PV. It's not supported because XEN PV does not implement ESPFIX64" * tag 'x86-urgent-2020-07-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/ldt: Disable 16-bit segments on Xen PV x86/entry/32: Fix #MC and #DB wiring on x86_32 x86/entry/xen: Route #DB correctly on Xen PV x86/entry, selftests: Further improve user entry sanity checks x86/entry/compat: Clear RAX high bits on Xen PV SYSENTER selftests/x86: Consolidate and fix get/set_eflags() helpers selftests/x86/syscall_nt: Clear weird flags after each test selftests/x86/syscall_nt: Add more flag combinations x86/entry/64/compat: Fix Xen PV SYSENTER frame setup x86/entry: Move SYSENTER's regs->sp and regs->flags fixups into C x86/entry: Assert that syscalls are on the right stack x86/split_lock: Don't write MSR_TEST_CTRL on CPUs that aren't whitelisted x86/fpu: Reset MXCSR to default in kernel_fpu_begin() |
||
|
cc801833a1 |
x86/ldt: Disable 16-bit segments on Xen PV
Xen PV doesn't implement ESPFIX64, so they don't work right. Disable them. Also print a warning the first time anyone tries to use a 16-bit segment on a Xen PV guest that would otherwise allow it to help people diagnose this change in behavior. This gets us closer to having all x86 selftests pass on Xen PV. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/92b2975459dfe5929ecf34c3896ad920bd9e3f2d.1593795633.git.luto@kernel.org |
||
|
13cbc0cd4a |
x86/entry/32: Fix #MC and #DB wiring on x86_32
DEFINE_IDTENTRY_MCE and DEFINE_IDTENTRY_DEBUG were wired up as non-RAW on x86_32, but the code expected them to be RAW. Get rid of all the macro indirection for them on 32-bit and just use DECLARE_IDTENTRY_RAW and DEFINE_IDTENTRY_RAW directly. Also add a warning to make sure that we only hit the _kernel paths in kernel mode. Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/9e90a7ee8e72fd757db6d92e1e5ff16339c1ecf9.1593795633.git.luto@kernel.org |
||
|
f41f082422 |
x86/entry/xen: Route #DB correctly on Xen PV
On Xen PV, #DB doesn't use IST. It still needs to be correctly routed
depending on whether it came from user or kernel mode.
Get rid of DECLARE/DEFINE_IDTENTRY_XEN -- it was too hard to follow the
logic. Instead, route #DB and NMI through DECLARE/DEFINE_IDTENTRY_RAW on
Xen, and do the right thing for #DB. Also add more warnings to the
exc_debug* handlers to make this type of failure more obvious.
This fixes various forms of corruption that happen when usermode
triggers #DB on Xen PV.
Fixes:
|
||
|
78c2141b65 | Merge branch 'perf/vlbr' | ||
|
009bce1df0 |
x86/split_lock: Don't write MSR_TEST_CTRL on CPUs that aren't whitelisted
Choo! Choo! All aboard the Split Lock Express, with direct service to
Wreckage!
Skip split_lock_verify_msr() if the CPU isn't whitelisted as a possible
SLD-enabled CPU model to avoid writing MSR_TEST_CTRL. MSR_TEST_CTRL
exists, and is writable, on many generations of CPUs. Writing the MSR,
even with '0', can result in bizarre, undocumented behavior.
This fixes a crash on Haswell when resuming from suspend with a live KVM
guest. Because APs use the standard SMP boot flow for resume, they will
go through split_lock_init() and the subsequent RDMSR/WRMSR sequence,
which runs even when sld_state==sld_off to ensure SLD is disabled. On
Haswell (at least, my Haswell), writing MSR_TEST_CTRL with '0' will
succeed and _may_ take the SMT _sibling_ out of VMX root mode.
When KVM has an active guest, KVM performs VMXON as part of CPU onlining
(see kvm_starting_cpu()). Because SMP boot is serialized, the resulting
flow is effectively:
on_each_ap_cpu() {
WRMSR(MSR_TEST_CTRL, 0)
VMXON
}
As a result, the WRMSR can disable VMX on a different CPU that has
already done VMXON. This ultimately results in a #UD on VMPTRLD when
KVM regains control and attempt run its vCPUs.
The above voodoo was confirmed by reworking KVM's VMXON flow to write
MSR_TEST_CTRL prior to VMXON, and to serialize the sequence as above.
Further verification of the insanity was done by redoing VMXON on all
APs after the initial WRMSR->VMXON sequence. The additional VMXON,
which should VM-Fail, occasionally succeeded, and also eliminated the
unexpected #UD on VMPTRLD.
The damage done by writing MSR_TEST_CTRL doesn't appear to be limited
to VMX, e.g. after suspend with an active KVM guest, subsequent reboots
almost always hang (even when fudging VMXON), a #UD on a random Jcc was
observed, suspend/resume stability is qualitatively poor, and so on and
so forth.
kernel BUG at arch/x86/kvm/x86.c:386!
CPU: 1 PID: 2592 Comm: CPU 6/KVM Tainted: G D
Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
RIP: 0010:kvm_spurious_fault+0xf/0x20
Call Trace:
vmx_vcpu_load_vmcs+0x1fb/0x2b0
vmx_vcpu_load+0x3e/0x160
kvm_arch_vcpu_load+0x48/0x260
finish_task_switch+0x140/0x260
__schedule+0x460/0x720
_cond_resched+0x2d/0x40
kvm_arch_vcpu_ioctl_run+0x82e/0x1ca0
kvm_vcpu_ioctl+0x363/0x5c0
ksys_ioctl+0x88/0xa0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x4c/0x170
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes:
|
||
|
7ad816762f |
x86/fpu: Reset MXCSR to default in kernel_fpu_begin()
Previously, kernel floating point code would run with the MXCSR control register value last set by userland code by the thread that was active on the CPU core just before kernel call. This could affect calculation results if rounding mode was changed, or a crash if a FPU/SIMD exception was unmasked. Restore MXCSR to the kernel's default value. [ bp: Carve out from a bigger patch by Petteri, add feature check, add FNINIT call too (amluto). ] Signed-off-by: Petteri Aimonen <jpa@git.mail.kapsi.fi> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://bugzilla.kernel.org/show_bug.cgi?id=207979 Link: https://lkml.kernel.org/r/20200624114646.28953-2-bp@alien8.de |
||
|
098c793821 |
* AMD Memory bandwidth counter width fix, by Babu Moger.
* Use the proper length type in the 32-bit truncate() syscall variant, by Jiri Slaby. * Reinit IA32_FEAT_CTL during wakeup to fix the case where after resume, VMXON would #GP due to VMX not being properly enabled, by Sean Christopherson. * Fix a static checker warning in the resctrl code, by Dan Carpenter. * Add a CR4 pinning mask for bits which cannot change after boot, by Kees Cook. * Align the start of the loop of __clear_user() to 16 bytes, to improve performance on AMD zen1 and zen2 microarchitectures, by Matt Fleming. -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl74q8kACgkQEsHwGGHe VUqYig/8CRyHBweLnR9naD6uZ+rF83LXiTKOGLt60WRzNPCLpkwGD5aRiUwzRmFL FOn9g2YLDY32+SzPRkqwJioodfxXRhvjKMnEChgnDcWAtTkWfMXWQfj2w5E8sTLE /9cpc9rmfCQJmZFDPkL88lfH38t+Uye4Ydcur/HMetkoR4C8hGrUOGZpkG3nR8EJ PGmmQ1VpMmwKMUsdD+GgKC+wgyrHbhFcrr+ZH5quU3XIzuvxXsHBiK2MlqVnN1a/ 1xKglMHfQQ1MI7tmJth8s1xLQ1/Mr+ctxhC5nyyMpheDU9/257bVNKE1uF+yz7or KylFUcvYje49mm7fxyEDrX+NMJGT7ZBBK/Xn7Fw5sLSsGGNY2/2HwYRbnzMSTjNO JzY7HDkZuQgzLxlKSIKgRvz5f1j1m8D0UaG/q+JuJ6mJoPDS5qiPyshv4cW8v8iD t5mzEuj++dWfiyPR4sWruP36jNKqPnbe8bUGe4j+QJ+TZL0SsSlopCFxo3TEJ4Bo dlHUxXZcYE2/48wlP15X+jFultKcqi0HwO+rQm8uPN7O7X1xsWcO4PbTl/lngvg6 HxClDwmfDjoCmEXij3U9gqWvXmy++C5ljWCwhYNM60Fc1yIChfnwJHZBUvx3XGui DZqimVa+QIRNFwWqMVF1RmE1ZuyCMYGZulZPo68gEXNeeNZ0R6g= =hxkd -----END PGP SIGNATURE----- Merge tag 'x86_urgent_for_5.8_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Borislav Petkov: - AMD Memory bandwidth counter width fix, by Babu Moger. - Use the proper length type in the 32-bit truncate() syscall variant, by Jiri Slaby. - Reinit IA32_FEAT_CTL during wakeup to fix the case where after resume, VMXON would #GP due to VMX not being properly enabled, by Sean Christopherson. - Fix a static checker warning in the resctrl code, by Dan Carpenter. - Add a CR4 pinning mask for bits which cannot change after boot, by Kees Cook. - Align the start of the loop of __clear_user() to 16 bytes, to improve performance on AMD zen1 and zen2 microarchitectures, by Matt Fleming. * tag 'x86_urgent_for_5.8_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/asm/64: Align start of __clear_user() loop to 16-bytes x86/cpu: Use pinning mask for CR4 bits needing to be 0 x86/resctrl: Fix a NULL vs IS_ERR() static checker warning in rdt_cdp_peer_get() x86/cpu: Reinitialize IA32_FEAT_CTL MSR on BSP during wakeup syscalls: Fix offset type of ksys_ftruncate() x86/resctrl: Fix memory bandwidth counter width for AMD |
||
|
2c92d787cc |
Merge branch 'linus' into x86/entry, to resolve conflicts
Conflicts: arch/x86/kernel/traps.c Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
|
145a773aef |
x86/entry: Fix #UD vs WARN more
vmlinux.o: warning: objtool: exc_invalid_op()+0x47: call to probe_kernel_read() leaves .noinstr.text section
Since we use UD2 as a short-cut for 'CALL __WARN', treat it as such.
Have the bare exception handler do the report_bug() thing.
Fixes:
|
||
|
e3a9e681ad |
x86/entry: Fixup bad_iret vs noinstr
vmlinux.o: warning: objtool: fixup_bad_iret()+0x8e: call to memcpy() leaves .noinstr.text section Worse, when KASAN there is no telling what memcpy() actually is. Force the use of __memcpy() which is our assmebly implementation. Reported-by: Marco Elver <elver@google.com> Suggested-by: Marco Elver <elver@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Marco Elver <elver@google.com> Link: https://lkml.kernel.org/r/20200618144801.760070502@infradead.org |
||
|
26e122e97a |
All bugfixes except for a couple cleanup patches.
-----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl7x2lwUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroPiVAgAn/83Vx/YrF9sr0+TLzukzfOubJVK Majxb0I06De23VDExiDoZjh5CnCN3kDja0m2c543ZI1XOrHRbp09v1goJQkAgiT0 AQ8Npi1KB71io18SbZtrAhPLmSiUgRirF+XWHB38qjdbZixvZyWz8nvSITFY8aJQ ICgbm5jftzBdSOKEhqbHwZ+LcXjEGZsehwTiHpUBKUR/kNlRFV5UFAd5m+CT5i4O 3DydLIReATDCoZUKfkBjYtoR3c9DyWESyfWD4GZ/2xRKr/1QfiZ4dA0cd/P9hJYz 7MAG+ULvJGlasSzmcEQJ/X3o9QuIJzpQFpwbKeMX6gOsEsSVUQeriUHIFA== =jTFw -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm fixes from Paolo Bonzini: "All bugfixes except for a couple cleanup patches" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: VMX: Remove vcpu_vmx's defunct copy of host_pkru KVM: x86: allow TSC to differ by NTP correction bounds without TSC scaling KVM: X86: Fix MSR range of APIC registers in X2APIC mode KVM: VMX: Stop context switching MSR_IA32_UMWAIT_CONTROL KVM: nVMX: Plumb L2 GPA through to PML emulation KVM: x86/mmu: Avoid mixing gpa_t with gfn_t in walk_addr_generic() KVM: LAPIC: ensure APIC map is up to date on concurrent update requests kvm: lapic: fix broken vcpu hotplug Revert "KVM: VMX: Micro-optimize vmexit time when not exposing PMU" KVM: VMX: Add helpers to identify interrupt type from intr_info kvm/svm: disable KCSAN for svm_vcpu_run() KVM: MIPS: Fix a build error for !CPU_LOONGSON64 |
||
|
bf09fb6cba |
KVM: VMX: Stop context switching MSR_IA32_UMWAIT_CONTROL
Remove support for context switching between the guest's and host's
desired UMWAIT_CONTROL. Propagating the guest's value to hardware isn't
required for correct functionality, e.g. KVM intercepts reads and writes
to the MSR, and the latency effects of the settings controlled by the
MSR are not architecturally visible.
As a general rule, KVM should not allow the guest to control power
management settings unless explicitly enabled by userspace, e.g. see
KVM_CAP_X86_DISABLE_EXITS. E.g. Intel's SDM explicitly states that C0.2
can improve the performance of SMT siblings. A devious guest could
disable C0.2 so as to improve the performance of their workloads at the
detriment to workloads running in the host or on other VMs.
Wholesale removal of UMWAIT_CONTROL context switching also fixes a race
condition where updates from the host may cause KVM to enter the guest
with the incorrect value. Because updates are are propagated to all
CPUs via IPI (SMP function callback), the value in hardware may be
stale with respect to the cached value and KVM could enter the guest
with the wrong value in hardware. As above, the guest can't observe the
bad value, but it's a weird and confusing wart in the implementation.
Removal also fixes the unnecessary usage of VMX's atomic load/store MSR
lists. Using the lists is only necessary for MSRs that are required for
correct functionality immediately upon VM-Enter/VM-Exit, e.g. EFER on
old hardware, or for MSRs that need to-the-uop precision, e.g. perf
related MSRs. For UMWAIT_CONTROL, the effects are only visible in the
kernel via TPAUSE/delay(), and KVM doesn't do any form of delay in
vcpu_vmx_run(). Using the atomic lists is undesirable as they are more
expensive than direct RDMSR/WRMSR.
Furthermore, even if giving the guest control of the MSR is legitimate,
e.g. in pass-through scenarios, it's not clear that the benefits would
outweigh the overhead. E.g. saving and restoring an MSR across a VMX
roundtrip costs ~250 cycles, and if the guest diverged from the host
that cost would be paid on every run of the guest. In other words, if
there is a legitimate use case then it should be enabled by a new
per-VM capability.
Note, KVM still needs to emulate MSR_IA32_UMWAIT_CONTROL so that it can
correctly expose other WAITPKG features to the guest, e.g. TPAUSE,
UMWAIT and UMONITOR.
Fixes:
|
||
|
8b6ddd10d6 |
A few fixes and small cleanups for tracing:
- Have recordmcount work with > 64K sections (to support LTO) - kprobe RCU fixes - Correct a kprobe critical section with missing mutex - Remove redundant arch_disarm_kprobe() call - Fix lockup when kretprobe triggers within kprobe_flush_task() - Fix memory leak in fetch_op_data operations - Fix sleep in atomic in ftrace trace array sample code - Free up memory on failure in sample trace array code - Fix incorrect reporting of function_graph fields in format file - Fix quote within quote parsing in bootconfig - Fix return value of bootconfig tool - Add testcases for bootconfig tool - Fix maybe uninitialized warning in ftrace pid file code - Remove unused variable in tracing_iter_reset() - Fix some typos -----BEGIN PGP SIGNATURE----- iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXu1jrRQccm9zdGVkdEBn b29kbWlzLm9yZwAKCRAp5XQQmuv6qoCMAP91nOccE3X+Nvc3zET3isDWnl1tWJxk icsBgN/JwBRuTAD/dnWTHIWM2/5lTiagvyVsmINdJHP6JLr8T7dpN9tlxAQ= =Cuo7 -----END PGP SIGNATURE----- Merge tag 'trace-v5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing fixes from Steven Rostedt: - Have recordmcount work with > 64K sections (to support LTO) - kprobe RCU fixes - Correct a kprobe critical section with missing mutex - Remove redundant arch_disarm_kprobe() call - Fix lockup when kretprobe triggers within kprobe_flush_task() - Fix memory leak in fetch_op_data operations - Fix sleep in atomic in ftrace trace array sample code - Free up memory on failure in sample trace array code - Fix incorrect reporting of function_graph fields in format file - Fix quote within quote parsing in bootconfig - Fix return value of bootconfig tool - Add testcases for bootconfig tool - Fix maybe uninitialized warning in ftrace pid file code - Remove unused variable in tracing_iter_reset() - Fix some typos * tag 'trace-v5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: ftrace: Fix maybe-uninitialized compiler warning tools/bootconfig: Add testcase for show-command and quotes test tools/bootconfig: Fix to return 0 if succeeded to show the bootconfig tools/bootconfig: Fix to use correct quotes for value proc/bootconfig: Fix to use correct quotes for value tracing: Remove unused event variable in tracing_iter_reset tracing/probe: Fix memleak in fetch_op_data operations trace: Fix typo in allocate_ftrace_ops()'s comment tracing: Make ftrace packed events have align of 1 sample-trace-array: Remove trace_array 'sample-instance' sample-trace-array: Fix sleeping function called from invalid context kretprobe: Prevent triggering kretprobe from within kprobe_flush_task kprobes: Remove redundant arch_disarm_kprobe() call kprobes: Fix to protect kick_kprobe_optimizer() by kprobe_mutex kprobes: Use non RCU traversal APIs on kprobe_tables if possible kprobes: Suppress the suspicious RCU warning on kprobes recordmcount: support >64k sections |
||
|
0c389d89ab |
maccess: make get_kernel_nofault() check for minimal type compatibility
Now that we've renamed probe_kernel_address() to get_kernel_nofault() and made it look and behave more in line with get_user(), some of the subtle type behavior differences end up being more obvious and possibly dangerous. When you do get_user(val, user_ptr); the type of the access comes from the "user_ptr" part, and the above basically acts as val = *user_ptr; by design (except, of course, for the fact that the actual dereference is done with a user access). Note how in the above case, the type of the end result comes from the pointer argument, and then the value is cast to the type of 'val' as part of the assignment. So the type of the pointer is ultimately the more important type both for the access itself. But 'get_kernel_nofault()' may now _look_ similar, but it behaves very differently. When you do get_kernel_nofault(val, kernel_ptr); it behaves like val = *(typeof(val) *)kernel_ptr; except, of course, for the fact that the actual dereference is done with exception handling so that a faulting access is suppressed and returned as the error code. But note how different the casting behavior of the two superficially similar accesses are: one does the actual access in the size of the type the pointer points to, while the other does the access in the size of the target, and ignores the pointer type entirely. Actually changing get_kernel_nofault() to act like get_user() is almost certainly the right thing to do eventually, but in the meantime this patch adds logit to at least verify that the pointer type is compatible with the type of the result. In many cases, this involves just casting the pointer to 'void *' to make it obvious that the type of the pointer is not the important part. It's not how 'get_user()' acts, but at least the behavioral difference is now obvious and explicit. Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
25f12ae45f |
maccess: rename probe_kernel_address to get_kernel_nofault
Better describe what this helper does, and match the naming of copy_from_kernel_nofault. Also switch the argument order around, so that it acts and looks like get_user(). Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
a13b9d0b97 |
x86/cpu: Use pinning mask for CR4 bits needing to be 0
The X86_CR4_FSGSBASE bit of CR4 should not change after boot[1]. Older kernels should enforce this bit to zero, and newer kernels need to enforce it depending on boot-time configuration (e.g. "nofsgsbase"). To support a pinned bit being either 1 or 0, use an explicit mask in combination with the expected pinned bit values. [1] https://lore.kernel.org/lkml/20200527103147.GI325280@hirez.programming.kicks-ass.net Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/202006082013.71E29A42@keescook |
||
|
fe557319aa |
maccess: rename probe_kernel_{read,write} to copy_{from,to}_kernel_nofault
Better describe what these functions do. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
|
cc5277fe66 |
x86/resctrl: Fix a NULL vs IS_ERR() static checker warning in rdt_cdp_peer_get()
The callers don't expect *d_cdp to be set to an error pointer, they only
check for NULL. This leads to a static checker warning:
arch/x86/kernel/cpu/resctrl/rdtgroup.c:2648 __init_one_rdt_domain()
warn: 'd_cdp' could be an error pointer
This would not trigger a bug in this specific case because
__init_one_rdt_domain() calls it with a valid domain that would not have
a negative id and thus not trigger the return of the ERR_PTR(). If this
was a negative domain id then the call to rdt_find_domain() in
domain_add_cpu() would have returned the ERR_PTR() much earlier and the
creation of the domain with an invalid id would have been prevented.
Even though a bug is not triggered currently the right and safe thing to
do is to set the pointer to NULL because that is what can be checked for
when the caller is handling the CDP and non-CDP cases.
Fixes:
|
||
|
9b38cc704e |
kretprobe: Prevent triggering kretprobe from within kprobe_flush_task
Ziqian reported lockup when adding retprobe on _raw_spin_lock_irqsave.
My test was also able to trigger lockdep output:
============================================
WARNING: possible recursive locking detected
5.6.0-rc6+ #6 Not tainted
--------------------------------------------
sched-messaging/2767 is trying to acquire lock:
ffffffff9a492798 (&(kretprobe_table_locks[i].lock)){-.-.}, at: kretprobe_hash_lock+0x52/0xa0
but task is already holding lock:
ffffffff9a491a18 (&(kretprobe_table_locks[i].lock)){-.-.}, at: kretprobe_trampoline+0x0/0x50
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(kretprobe_table_locks[i].lock));
lock(&(kretprobe_table_locks[i].lock));
*** DEADLOCK ***
May be due to missing lock nesting notation
1 lock held by sched-messaging/2767:
#0: ffffffff9a491a18 (&(kretprobe_table_locks[i].lock)){-.-.}, at: kretprobe_trampoline+0x0/0x50
stack backtrace:
CPU: 3 PID: 2767 Comm: sched-messaging Not tainted 5.6.0-rc6+ #6
Call Trace:
dump_stack+0x96/0xe0
__lock_acquire.cold.57+0x173/0x2b7
? native_queued_spin_lock_slowpath+0x42b/0x9e0
? lockdep_hardirqs_on+0x590/0x590
? __lock_acquire+0xf63/0x4030
lock_acquire+0x15a/0x3d0
? kretprobe_hash_lock+0x52/0xa0
_raw_spin_lock_irqsave+0x36/0x70
? kretprobe_hash_lock+0x52/0xa0
kretprobe_hash_lock+0x52/0xa0
trampoline_handler+0xf8/0x940
? kprobe_fault_handler+0x380/0x380
? find_held_lock+0x3a/0x1c0
kretprobe_trampoline+0x25/0x50
? lock_acquired+0x392/0xbc0
? _raw_spin_lock_irqsave+0x50/0x70
? __get_valid_kprobe+0x1f0/0x1f0
? _raw_spin_unlock_irqrestore+0x3b/0x40
? finish_task_switch+0x4b9/0x6d0
? __switch_to_asm+0x34/0x70
? __switch_to_asm+0x40/0x70
The code within the kretprobe handler checks for probe reentrancy,
so we won't trigger any _raw_spin_lock_irqsave probe in there.
The problem is in outside kprobe_flush_task, where we call:
kprobe_flush_task
kretprobe_table_lock
raw_spin_lock_irqsave
_raw_spin_lock_irqsave
where _raw_spin_lock_irqsave triggers the kretprobe and installs
kretprobe_trampoline handler on _raw_spin_lock_irqsave return.
The kretprobe_trampoline handler is then executed with already
locked kretprobe_table_locks, and first thing it does is to
lock kretprobe_table_locks ;-) the whole lockup path like:
kprobe_flush_task
kretprobe_table_lock
raw_spin_lock_irqsave
_raw_spin_lock_irqsave ---> probe triggered, kretprobe_trampoline installed
---> kretprobe_table_locks locked
kretprobe_trampoline
trampoline_handler
kretprobe_hash_lock(current, &head, &flags); <--- deadlock
Adding kprobe_busy_begin/end helpers that mark code with fake
probe installed to prevent triggering of another kprobe within
this code.
Using these helpers in kprobe_flush_task, so the probe recursion
protection check is hit and the probe is never set to prevent
above lockup.
Link: http://lkml.kernel.org/r/158927059835.27680.7011202830041561604.stgit@devnote2
Fixes:
|
||
|
5d5103595e |
x86/cpu: Reinitialize IA32_FEAT_CTL MSR on BSP during wakeup
Reinitialize IA32_FEAT_CTL on the BSP during wakeup to handle the case
where firmware doesn't initialize or save/restore across S3. This fixes
a bug where IA32_FEAT_CTL is left uninitialized and results in VMXON
taking a #GP due to VMX not being fully enabled, i.e. breaks KVM.
Use init_ia32_feat_ctl() to "restore" IA32_FEAT_CTL as it already deals
with the case where the MSR is locked, and because APs already redo
init_ia32_feat_ctl() during suspend by virtue of the SMP boot flow being
used to reinitialize APs upon wakeup. Do the call in the early wakeup
flow to avoid dependencies in the syscore_ops chain, e.g. simply adding
a resume hook is not guaranteed to work, as KVM does VMXON in its own
resume hook, kvm_resume(), when KVM has active guests.
Fixes:
|
||
|
14d3b376b6 |
x86/entry, cpumask: Provide non-instrumented variant of cpu_is_offline()
vmlinux.o: warning: objtool: exc_nmi()+0x12: call to cpumask_test_cpu.constprop.0() leaves .noinstr.text section vmlinux.o: warning: objtool: mce_check_crashing_cpu()+0x12: call to cpumask_test_cpu.constprop.0()leaves .noinstr.text section cpumask_test_cpu() test_bit() instrument_atomic_read() arch_test_bit() Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> |
||
|
3e46bb40af |
perf/x86: Add perf text poke events for kprobes
Add perf text poke events for kprobes. That includes: - the replaced instruction(s) which are executed out-of-line i.e. arch_copy_kprobe() and arch_remove_kprobe() - the INT3 that activates the kprobe i.e. arch_arm_kprobe() and arch_disarm_kprobe() - optimised kprobe function i.e. arch_prepare_optimized_kprobe() and __arch_remove_optimized_kprobe() - optimised kprobe i.e. arch_optimize_kprobes() and arch_unoptimize_kprobe() Resulting in 8 possible text_poke events: 0: NULL -> probe.ainsn.insn (if ainsn.boostable && !kp.post_handler) arch_copy_kprobe() 1: old0 -> INT3 arch_arm_kprobe() // boosted kprobe active 2: NULL -> optprobe_trampoline arch_prepare_optimized_kprobe() 3: INT3,old1,old2,old3,old4 -> JMP32 arch_optimize_kprobes() // optprobe active 4: JMP32 -> INT3,old1,old2,old3,old4 // optprobe disabled and kprobe active (this sometimes goes back to 3) arch_unoptimize_kprobe() 5: optprobe_trampoline -> NULL arch_remove_optimized_kprobe() // boosted kprobe active 6: INT3 -> old0 arch_disarm_kprobe() 7: probe.ainsn.insn -> NULL (if ainsn.boostable && !kp.post_handler) arch_remove_kprobe() Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Link: https://lkml.kernel.org/r/20200512121922.8997-6-adrian.hunter@intel.com |
||
|
d769811ca9 |
perf/x86: Add support for perf text poke event for text_poke_bp_batch() callers
Add support for perf text poke event for text_poke_bp_batch() callers. That includes jump labels. See comments for more details. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200512121922.8997-3-adrian.hunter@intel.com |
||
|
2c18bd525c |
x86/resctrl: Fix memory bandwidth counter width for AMD
Memory bandwidth is calculated reading the monitoring counter
at two intervals and calculating the delta. It is the software’s
responsibility to read the count often enough to avoid having
the count roll over _twice_ between reads.
The current code hardcodes the bandwidth monitoring counter's width
to 24 bits for AMD. This is due to default base counter width which
is 24. Currently, AMD does not implement the CPUID 0xF.[ECX=1]:EAX
to adjust the counter width. But, the AMD hardware supports much
wider bandwidth counter with the default width of 44 bits.
Kernel reads these monitoring counters every 1 second and adjusts the
counter value for overflow. With 24 bits and scale value of 64 for AMD,
it can only measure up to 1GB/s without overflowing. For the rates
above 1GB/s this will fail to measure the bandwidth.
Fix the issue setting the default width to 44 bits by adjusting the
offset.
AMD future products will implement CPUID 0xF.[ECX=1]:EAX.
[ bp: Let the line stick out and drop {}-brackets around a single
statement. ]
Fixes:
|
||
|
a9429089d3 |
RAS updates from Borislav Petkov:
* Unmap a whole guest page if an MCE is encountered in it to avoid follow-on MCEs leading to the guest crashing, by Tony Luck. This change collided with the entry changes and the merge resolution would have been rather unpleasant. To avoid that the entry branch was merged in before applying this. The resulting code did not change over the rebase. * AMD MCE error thresholding machinery cleanup and hotplug sanitization, by Thomas Gleixner. * Change the MCE notifiers to denote whether they have handled the error and not break the chain early by returning NOTIFY_STOP, thus giving the opportunity for the later handlers in the chain to see it. By Tony Luck. * Add AMD family 0x17, models 0x60-6f support, by Alexander Monakov. * Last but not least, the usual round of fixes and improvements. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7j5m0THHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoXyMD/9GneajFaI5D0F59/btEGAx1X0PTDz1 LrGf79Y5NqSJrzggsnrdFzsGjJNcQ2KbfSgs9fhdsvvvIpK+YqZ+rVFAg7DcKc2n RwHd+X3TluKsc4oCuagZli7R4HHO5P9hbkHY6DD++F0eeMblLhNnq1hGUSdoENHN HFsZapQpvlpn3IYN1e07lFBVvujRL/pBez7tmhh6bPxmcLZFCBrIHuAXz7dbzz0Y BjhVRLNq6+9Yztvrt8uIgc1EAoMfprkY6nVtvkxC5gmVor3orkRC4rRNc/+jhgDK p0s1JxDgb3SNN79no9wvQaqRNs/rNlAx6xSA0gmW+SbxrFEsk6cUp1BVVRr031dk /QGedvpJzK7PjCX+d7Jvy+391q1YEsdnbQhXRdjSXQf+DihWm98O++wDodw9kgwt FgkZD4qICT3xtpGs1bqDgrm220g8d27nGjsXlvFfyVYAQAlE2vcx0NqySOTT7NeT Zu6GIvGcGCObJT2JTWbPkvbm2aNYXzYNZGRBLlEzy7qFXuVG4aKR6W1L6uSW3SmK UUo/F3KHgZWM/h1PyMbxzAvu60eojBcEXva8jDxBv0GCDJhzFV3yOVdgxrLPpGcZ 7EqiUtTrxvxGOFjpFFaZRiT0R89ZfvOxVyXGwMX8zph9NyPLSj9MspyQSkhFFREz 0FAfy/7wqDfMRg== =iWiy -----END PGP SIGNATURE----- Merge tag 'ras-core-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 RAS updates from Thomas Gleixner: "RAS updates from Borislav Petkov: - Unmap a whole guest page if an MCE is encountered in it to avoid follow-on MCEs leading to the guest crashing, by Tony Luck. This change collided with the entry changes and the merge resolution would have been rather unpleasant. To avoid that the entry branch was merged in before applying this. The resulting code did not change over the rebase. - AMD MCE error thresholding machinery cleanup and hotplug sanitization, by Thomas Gleixner. - Change the MCE notifiers to denote whether they have handled the error and not break the chain early by returning NOTIFY_STOP, thus giving the opportunity for the later handlers in the chain to see it. By Tony Luck. - Add AMD family 0x17, models 0x60-6f support, by Alexander Monakov. - Last but not least, the usual round of fixes and improvements" * tag 'ras-core-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits) x86/mce/dev-mcelog: Fix -Wstringop-truncation warning about strncpy() x86/{mce,mm}: Unmap the entire page if the whole page is affected and poisoned EDAC/amd64: Add AMD family 17h model 60h PCI IDs hwmon: (k10temp) Add AMD family 17h model 60h PCI match x86/amd_nb: Add AMD family 17h model 60h PCI IDs x86/mcelog: Add compat_ioctl for 32-bit mcelog support x86/mce: Drop bogus comment about mce.kflags x86/mce: Fixup exception only for the correct MCEs EDAC: Drop the EDAC report status checks x86/mce: Add mce=print_all option x86/mce: Change default MCE logger to check mce->kflags x86/mce: Fix all mce notifiers to update the mce->kflags bitmask x86/mce: Add a struct mce.kflags field x86/mce: Convert the CEC to use the MCE notifier x86/mce: Rename "first" function as "early" x86/mce/amd, edac: Remove report_gart_errors x86/mce/amd: Make threshold bank setting hotplug robust x86/mce/amd: Cleanup threshold device remove path x86/mce/amd: Straighten CPU hotplug path x86/mce/amd: Sanitize thresholding device creation hotplug path ... |
||
|
076f14be7f |
The X86 entry, exception and interrupt code rework
This all started about 6 month ago with the attempt to move the Posix CPU timer heavy lifting out of the timer interrupt code and just have lockless quick checks in that code path. Trivial 5 patches. This unearthed an inconsistency in the KVM handling of task work and the review requested to move all of this into generic code so other architectures can share. Valid request and solved with another 25 patches but those unearthed inconsistencies vs. RCU and instrumentation. Digging into this made it obvious that there are quite some inconsistencies vs. instrumentation in general. The int3 text poke handling in particular was completely unprotected and with the batched update of trace events even more likely to expose to endless int3 recursion. In parallel the RCU implications of instrumenting fragile entry code came up in several discussions. The conclusion of the X86 maintainer team was to go all the way and make the protection against any form of instrumentation of fragile and dangerous code pathes enforcable and verifiable by tooling. A first batch of preparatory work hit mainline with commit |
||
|
52cd0d972f |
MIPS:
- Loongson port PPC: - Fixes ARM: - Fixes x86: - KVM_SET_USER_MEMORY_REGION optimizations - Fixes - Selftest fixes The guest side of the asynchronous page fault work has been delayed to 5.9 in order to sync with Thomas's interrupt entry rework. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl7icj4UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroPHGQgAj9+5j+f5v06iMP/+ponWwsVfh+5/ UR1gPbpMSFMKF0U+BCFxsBeGKWPDiz9QXaLfy6UGfOFYBI475Su5SoZ8/i/o6a2V QjcKIJxBRNs66IG/774pIpONY8/mm/3b6vxmQktyBTqjb6XMGlOwoGZixj/RTp85 +uwSICxMlrijg+fhFMwC4Bo/8SFg+FeBVbwR07my88JaLj+3cV/NPolG900qLSa6 uPqJ289EQ86LrHIHXCEWRKYvwy77GFsmBYjKZH8yXpdzUlSGNexV8eIMAz50figu wYRJGmHrRqwuzFwEGknv8SA3s2HVggXO4WVkWWCeJyO8nIVfYFUhME5l6Q== =+Hh0 -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull more KVM updates from Paolo Bonzini: "The guest side of the asynchronous page fault work has been delayed to 5.9 in order to sync with Thomas's interrupt entry rework, but here's the rest of the KVM updates for this merge window. MIPS: - Loongson port PPC: - Fixes ARM: - Fixes x86: - KVM_SET_USER_MEMORY_REGION optimizations - Fixes - Selftest fixes" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (62 commits) KVM: x86: do not pass poisoned hva to __kvm_set_memory_region KVM: selftests: fix sync_with_host() in smm_test KVM: async_pf: Inject 'page ready' event only if 'page not present' was previously injected KVM: async_pf: Cleanup kvm_setup_async_pf() kvm: i8254: remove redundant assignment to pointer s KVM: x86: respect singlestep when emulating instruction KVM: selftests: Don't probe KVM_CAP_HYPERV_ENLIGHTENED_VMCS when nested VMX is unsupported KVM: selftests: do not substitute SVM/VMX check with KVM_CAP_NESTED_STATE check KVM: nVMX: Consult only the "basic" exit reason when routing nested exit KVM: arm64: Move hyp_symbol_addr() to kvm_asm.h KVM: arm64: Synchronize sysreg state on injecting an AArch32 exception KVM: arm64: Make vcpu_cp1x() work on Big Endian hosts KVM: arm64: Remove host_cpu_context member from vcpu structure KVM: arm64: Stop sparse from moaning at __hyp_this_cpu_ptr KVM: arm64: Handle PtrAuth traps early KVM: x86: Unexport x86_fpu_cache and make it static KVM: selftests: Ignore KVM 5-level paging support for VM_MODE_PXXV48_4K KVM: arm64: Save the host's PtrAuth keys in non-preemptible context KVM: arm64: Stop save/restoring ACTLR_EL1 KVM: arm64: Add emulation for 32bit guests accessing ACTLR2 ... |
||
|
71ed49d8fb |
x86/entry: Make NMI use IDTENTRY_RAW
For no reason other than beginning brainmelt, IDTENTRY_NMI was mapped to
IDTENTRY_IST.
This is not a problem on 64bit because the IST default entry point maps to
IDTENTRY_RAW which does not any entry handling. The surplus function
declaration for the noist C entry point is unused and as there is no ASM
code emitted for NMI this went unnoticed.
On 32bit IDTENTRY_IST maps to a regular IDTENTRY which does the normal
entry handling. That is clearly the wrong thing to do for NMI.
Map it to IDTENTRY_RAW to unbreak it. The IDTENTRY_NMI mapping needs to
stay to avoid emitting ASM code.
Fixes:
|
||
|
15a416e8aa |
x86/entry: Treat BUG/WARN as NMI-like entries
BUG/WARN are cleverly optimized using UD2 to handle the BUG/WARN out of line in an exception fixup. But if BUG or WARN is issued in a funny RCU context, then the idtentry_enter...() path might helpfully WARN that the RCU context is invalid, which results in infinite recursion. Split the BUG/WARN handling into an nmi_enter()/nmi_exit() path in exc_invalid_op() to increase the chance to survive the experience. [ tglx: Make the declaration match the implementation ] Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/f8fe40e0088749734b4435b554f73eee53dcf7a8.1591932307.git.luto@kernel.org |
||
|
b791d1bdf9 |
The Kernel Concurrency Sanitizer (KCSAN)
KCSAN is a dynamic race detector, which relies on compile-time instrumentation, and uses a watchpoint-based sampling approach to detect races. The feature was under development for quite some time and has already found legitimate bugs. Unfortunately it comes with a limitation, which was only understood late in the development cycle: It requires an up to date CLANG-11 compiler CLANG-11 is not yet released (scheduled for June), but it's the only compiler today which handles the kernel requirements and especially the annotations of functions to exclude them from KCSAN instrumentation correctly. These annotations really need to work so that low level entry code and especially int3 text poke handling can be completely isolated. A detailed discussion of the requirements and compiler issues can be found here: https://lore.kernel.org/lkml/CANpmjNMTsY_8241bS7=XAfqvZHFLrVEkv_uM4aDUWE_kh3Rvbw@mail.gmail.com/ We came to the conclusion that trying to work around compiler limitations and bugs again would end up in a major trainwreck, so requiring a working compiler seemed to be the best choice. For Continous Integration purposes the compiler restriction is manageable and that's where most xxSAN reports come from. For a change this limitation might make GCC people actually look at their bugs. Some issues with CSAN in GCC are 7 years old and one has been 'fixed' 3 years ago with a half baken solution which 'solved' the reported issue but not the underlying problem. The KCSAN developers also ponder to use a GCC plugin to become independent, but that's not something which will show up in a few days. Blocking KCSAN until wide spread compiler support is available is not a really good alternative because the continuous growth of lockless optimizations in the kernel demands proper tooling support. -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7im98THHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoQ3xD/9+q87OmwnyoRTs6O3GDDbWZYoJGolh rctDOAYW8RSS73Fiw23z8hKlLl9tJCya6/X8Q9qoonB1YeIEPPRVj5HJWAMUNEIs YgjlZJFmh+mnbP/KQFctm3AWpoX8kqt3ncqj6zG72oQ9qKui691BY/2NmGVSLxUV DqtUYSKmi51XEQtZuXRuHEf3zBxoyeD43DaSCdJAXd6f5O2X7tmrWDuazHVeKzHV lhijvkyBvGMWvPg0IBrXkkLmeOvS0++MTGm3o+L72XF6nWpzTkcV7N0E9GEDFg45 zwcidRVKD5d/1DoU5Tos96rCJpBEGh/wimlu0z14mcZpNiJgRQH5rzVEO9Y14UcP KL9FgRrb5dFw7yfX2zRQ070OFJ4AEDBMK0o5Lbu/QO5KLkvFkqnuWlQfmmtZJWCW DTRw/FgUgU7lvyPjRrao6HBvwy+yTb0u9K5seCOTRkuepR9nPJs0710pFiBsNCfV RY3cyggNBipAzgBOgLxixnq9+rHt70ton6S8Gijxpvt0dGGfO8k0wuEhFtA4zKrQ 6HGK+pidxnoVdEgyQZhS+qzMMkyiUL0FXdaGJ2IX+/DC+Ij1UrUPjZBn7v25M0hQ ESkvxWKCn7snH4/NJsNxqCV1zyEc3zAW/WvLJUc9I7H8zPwtVvKWPrKEMzrJJ5bA aneySilbRxBFUg== =iplm -----END PGP SIGNATURE----- Merge tag 'locking-kcsan-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull the Kernel Concurrency Sanitizer from Thomas Gleixner: "The Kernel Concurrency Sanitizer (KCSAN) is a dynamic race detector, which relies on compile-time instrumentation, and uses a watchpoint-based sampling approach to detect races. The feature was under development for quite some time and has already found legitimate bugs. Unfortunately it comes with a limitation, which was only understood late in the development cycle: It requires an up to date CLANG-11 compiler CLANG-11 is not yet released (scheduled for June), but it's the only compiler today which handles the kernel requirements and especially the annotations of functions to exclude them from KCSAN instrumentation correctly. These annotations really need to work so that low level entry code and especially int3 text poke handling can be completely isolated. A detailed discussion of the requirements and compiler issues can be found here: https://lore.kernel.org/lkml/CANpmjNMTsY_8241bS7=XAfqvZHFLrVEkv_uM4aDUWE_kh3Rvbw@mail.gmail.com/ We came to the conclusion that trying to work around compiler limitations and bugs again would end up in a major trainwreck, so requiring a working compiler seemed to be the best choice. For Continous Integration purposes the compiler restriction is manageable and that's where most xxSAN reports come from. For a change this limitation might make GCC people actually look at their bugs. Some issues with CSAN in GCC are 7 years old and one has been 'fixed' 3 years ago with a half baken solution which 'solved' the reported issue but not the underlying problem. The KCSAN developers also ponder to use a GCC plugin to become independent, but that's not something which will show up in a few days. Blocking KCSAN until wide spread compiler support is available is not a really good alternative because the continuous growth of lockless optimizations in the kernel demands proper tooling support" * tag 'locking-kcsan-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (76 commits) compiler_types.h, kasan: Use __SANITIZE_ADDRESS__ instead of CONFIG_KASAN to decide inlining compiler.h: Move function attributes to compiler_types.h compiler.h: Avoid nested statement expression in data_race() compiler.h: Remove data_race() and unnecessary checks from {READ,WRITE}_ONCE() kcsan: Update Documentation to change supported compilers kcsan: Remove 'noinline' from __no_kcsan_or_inline kcsan: Pass option tsan-instrument-read-before-write to Clang kcsan: Support distinguishing volatile accesses kcsan: Restrict supported compilers kcsan: Avoid inserting __tsan_func_entry/exit if possible ubsan, kcsan: Don't combine sanitizer with kcov on clang objtool, kcsan: Add kcsan_disable_current() and kcsan_enable_current_nowarn() kcsan: Add __kcsan_{enable,disable}_current() variants checkpatch: Warn about data_race() without comment kcsan: Use GFP_ATOMIC under spin lock Improve KCSAN documentation a bit kcsan: Make reporting aware of KCSAN tests kcsan: Fix function matching in report kcsan: Change data_race() to no longer require marking racing accesses kcsan: Move kcsan_{disable,enable}_current() to kcsan-checks.h ... |
||
|
6a45a65888 |
A set of fixes and updates for x86:
- Unbreak paravirt VDSO clocks. While the VDSO code was moved into lib for sharing a subtle check for the validity of paravirt clocks got replaced. While the replacement works perfectly fine for bare metal as the update of the VDSO clock mode is synchronous, it fails for paravirt clocks because the hypervisor can invalidate them asynchronous. Bring it back as an optional function so it does not inflict this on architectures which are free of PV damage. - Fix the jiffies to jiffies64 mapping on 64bit so it does not trigger an ODR violation on newer compilers - Three fixes for the SSBD and *IB* speculation mitigation maze to ensure consistency, not disabling of some *IB* variants wrongly and to prevent a rogue cross process shutdown of SSBD. All marked for stable. - Add yet more CPU models to the splitlock detection capable list !@#%$! - Bring the pr_info() back which tells that TSC deadline timer is enabled. - Reboot quirk for MacBook6,1 -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl7ie1oTHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYofXrEACDD0mNBU2c4vQiR+n4d41PqW1p15DM /wG7dYqYt2RdR6qOAspmNL5ilUP+L+eoT/86U9y0g4j3FtTREqyy6mpWE4MQzqaQ eKWVoeYt7l9QbR1kP4eks1CN94OyVBUPo3P78UPruWMB11iyKjyrkEdsDmRSLOdr 6doqMFGHgowrQRwsLPFUt7b2lls6ssOSYgM/ChHi2Iga431ZuYYcRe2mNVsvqx3n 0N7QZlJ/LivXdCmdpe3viMBsDaomiXAloKUo+HqgrCLYFXefLtfOq09U7FpddYqH ztxbGW/7gFn2HEbmdeaiufux263MdHtnjvdPhQZKHuyQmZzzxDNBFgOILSrBJb5y qLYJGhMa0sEwMBM9MMItomNgZnOITQ3WGYAdSCg3mG3jK4EXzr6aQm/Qz5SI+Cte bQKB2dgR53Gw/1uc7F5qMGQ2NzeUbKycT0ZbF3vkUPVh1kdU3juIntsovv2lFeBe Rog/rZliT1xdHrGAHRbubb2/3v66CSodMoYz0eQtr241Oz0LGwnyFqLN3qcZVLDt OtxHQ3bbaxevDEetJXfSh3CfHKNYMToAcszmGDse3MJxC7DL5AA51OegMa/GYOX6 r5J99MUsEzZQoQYyXFf1MjwgxH4CQK1xBBUXYaVG65AcmhT21YbNWnCbxgf7hW+V hqaaUSig4V3NLw== =VlBk -----END PGP SIGNATURE----- Merge tag 'x86-urgent-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull more x86 updates from Thomas Gleixner: "A set of fixes and updates for x86: - Unbreak paravirt VDSO clocks. While the VDSO code was moved into lib for sharing a subtle check for the validity of paravirt clocks got replaced. While the replacement works perfectly fine for bare metal as the update of the VDSO clock mode is synchronous, it fails for paravirt clocks because the hypervisor can invalidate them asynchronously. Bring it back as an optional function so it does not inflict this on architectures which are free of PV damage. - Fix the jiffies to jiffies64 mapping on 64bit so it does not trigger an ODR violation on newer compilers - Three fixes for the SSBD and *IB* speculation mitigation maze to ensure consistency, not disabling of some *IB* variants wrongly and to prevent a rogue cross process shutdown of SSBD. All marked for stable. - Add yet more CPU models to the splitlock detection capable list !@#%$! - Bring the pr_info() back which tells that TSC deadline timer is enabled. - Reboot quirk for MacBook6,1" * tag 'x86-urgent-2020-06-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/vdso: Unbreak paravirt VDSO clocks lib/vdso: Provide sanity check for cycles (again) clocksource: Remove obsolete ifdef x86_64: Fix jiffies ODR violation x86/speculation: PR_SPEC_FORCE_DISABLE enforcement for indirect branches. x86/speculation: Prevent rogue cross-process SSBD shutdown x86/speculation: Avoid force-disabling IBPB based on STIBP and enhanced IBRS. x86/cpu: Add Sapphire Rapids CPU model number x86/split_lock: Add Icelake microserver and Tigerlake CPU models x86/apic: Make TSC deadline timer detection message visible x86/reboot/quirks: Add MacBook6,1 reboot quirk |
||
|
37d1a04b13 |
Rebase locking/kcsan to locking/urgent
Merge the state of the locking kcsan branch before the read/write_once() and the atomics modifications got merged. Squash the fallout of the rebase on top of the read/write once and atomic fallback work into the merge. The history of the original branch is preserved in tag locking-kcsan-2020-06-02. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> |
||
|
7ccddc4613 |
x86/mce/dev-mcelog: Fix -Wstringop-truncation warning about strncpy()
The kbuild test robot reported this warning:
arch/x86/kernel/cpu/mce/dev-mcelog.c: In function 'dev_mcelog_init_device':
arch/x86/kernel/cpu/mce/dev-mcelog.c:346:2: warning: 'strncpy' output \
truncated before terminating nul copying 12 bytes from a string of the \
same length [-Wstringop-truncation]
This is accurate, but I don't care that the trailing NUL character isn't
copied. The string being copied is just a magic number signature so that
crash dump tools can be sure they are decoding the right blob of memory.
Use memcpy() instead of strncpy().
Fixes:
|