With nVHE, the host currently creates all stage 1 hypervisor mappings at
EL1 during boot, installs them at EL2, and extends them as required
(e.g. when creating a new VM). But in a world where the host is no
longer trusted, it cannot have full control over the code mapped in the
hypervisor.
In preparation for enabling the hypervisor to create its own stage 1
mappings during boot, introduce an early page allocator, with minimal
functionality. This allocator is designed to be used only during early
bootstrap of the hyp code when memory protection is enabled, which will
then switch to using a full-fledged page allocator after init.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-11-qperret@google.com
In order to allow the usage of code shared by the host and the hyp in
static inline library functions, allow the usage of kvm_nvhe_sym() at
EL2 by defaulting to the raw symbol name.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-10-qperret@google.com
kvm_call_hyp() has some logic to issue a function call or a hypercall
depending on the EL at which the kernel is running. However, all the
code compiled under __KVM_NVHE_HYPERVISOR__ is guaranteed to only run
at EL2 which allows us to simplify.
Add ifdefery to kvm_host.h to simplify kvm_call_hyp() in .hyp.text.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-9-qperret@google.com
Currently, the hyp code cannot make full use of a bss, as the kernel
section is mapped read-only.
While this mapping could simply be changed to read-write, it would
intermingle even more the hyp and kernel state than they currently are.
Instead, introduce a __hyp_bss section, that uses reserved pages, and
create the appropriate RW hyp mappings during KVM init.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-8-qperret@google.com
In preparation for enabling the creation of page-tables at EL2, factor
all memory allocation out of the page-table code, hence making it
re-usable with any compatible memory allocator.
No functional changes intended.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-7-qperret@google.com
Currently, the KVM page-table allocator uses a mix of put_page() and
free_page() calls depending on the context even though page-allocation
is always achieved using variants of __get_free_page().
Make the code consistent by using put_page() throughout, and reduce the
memory management API surface used by the page-table code. This will
ease factoring out page-allocation from pgtable.c, which is a
pre-requisite to creating page-tables at EL2.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-6-qperret@google.com
Move the initialization of kvm_nvhe_init_params in a dedicated function
that is run early, and only once during KVM init, rather than every time
the KVM vectors are set and reset.
This also opens the opportunity for the hypervisor to change the init
structs during boot, hence simplifying the replacement of host-provided
page-table by the one the hypervisor will create for itself.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-5-qperret@google.com
We will soon need to synchronise multiple CPUs in the hyp text at EL2.
The qspinlock-based locking used by the host is overkill for this purpose
and relies on the kernel's "percpu" implementation for the MCS nodes.
Implement a simple ticket locking scheme based heavily on the code removed
by commit c11090474d ("arm64: locking: Replace ticket lock implementation
with qspinlock").
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-4-qperret@google.com
Pull clear_page(), copy_page(), memcpy() and memset() into the nVHE hyp
code and ensure that we always execute the '__pi_' entry point on the
offchance that it changes in future.
[ qperret: Commit title nits and added linker script alias ]
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-3-qperret@google.com
clear_page() and copy_page() are suitable for use outside of the kernel
address space, so annotate them as position-independent code.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-2-qperret@google.com
We re-enter the EL1 host with CPTR_EL2.TZ set in order to
be able to lazily restore ZCR_EL2 when required.
However, the same CPTR_EL2 configuration also leads to trapping
when ZCR_EL2 is accessed from EL2. Duh!
Clear CPTR_EL2.TZ *before* writing to ZCR_EL2.
Fixes: beed09067b ("KVM: arm64: Trap host SVE accesses when the FPSIMD state is dirty")
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Now that KVM is equipped to deal with SVE on nVHE, remove the code
preventing it from being used as well as the bits of documentation
that were mentioning the incompatibility.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Daniel Kiss <daniel.kiss@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Implement the SVE save/restore for nVHE, following a similar
logic to that of the VHE implementation:
- the SVE state is switched on trap from EL1 to EL2
- no further changes to ZCR_EL2 occur as long as the guest isn't
preempted or exit to userspace
- ZCR_EL2 is reset to its default value on the first SVE access from
the host EL1, and ZCR_EL1 restored to the default guest value in
vcpu_put()
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
ZCR_EL2 controls the upper bound for ZCR_EL1, and is set to
a potentially lower limit when the guest uses SVE. In order
to restore the SVE state on the EL1 host, we must first
reset ZCR_EL2 to its original value.
To make it as lazy as possible on the EL1 host side, set
the SVE trapping in place when exiting from the guest.
On the first EL1 access to SVE, ZCR_EL2 will be restored
to its full glory.
Suggested-by: Andrew Scull <ascull@google.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Make sure the guest's ZCR_EL1 is saved before we save/flush the
state. This will be useful in later patches.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
When running on nVHE, and that the vcpu supports SVE, map the
SVE state at EL2 so that KVM can access it.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
In order to keep the code readable, move the host-save/guest-restore
sequences in their own functions, with the following changes:
- the hypervisor ZCR is now set from C code
- ZCR_EL2 is always used as the EL2 accessor
This results in some minor assembler macro rework.
No functional change intended.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
A common pattern is to conditionally update ZCR_ELx in order
to avoid the "self-synchronizing" effect that writing to this
register has.
Let's provide an accessor that does exactly this.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The KVM code contains a number of "sve_vq_from_vl(vcpu->arch.sve_max_vl)"
instances, and we are about to add more.
Introduce vcpu_sve_vq() as a shorthand for this expression.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The vcpu_sve_pffr() returns a pointer, which can be an interesting
thing to do on nVHE. Wrap the pointer with kern_hyp_va(), and
take this opportunity to remove the unnecessary casts (sve_state
being a void *).
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Switch to the unified EL1 accessors for ZCR_EL1, which will make
things easier for nVHE support.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
as we are about to change the way KVM deals with SVE, provide
KVM with its own save/restore SVE primitives.
No functional change intended.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmBLsyoUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMpYgf/Zu1Byif+XZVdwm52wJN38ppUUVmn
4u8HvQ8Ht+P0cGg1IaNx9D5QXGRgdn72qEpWUF5aH03ahTANAuf6zXw+evKmiub/
RtJfxZWEcWeLdugLVHUSrR4MOox7uvFmCdcdht4sEPdjFdH/9JeceC3A1pZ/DYTR
+eS+E3dMWQjXnd2Omo/5f5H1LTZjNLEditnkcHT5unwKKukc008V/avgs8xOAKJB
xf3oqJF960IO+NYf8rRQb8WtyGeo0grrWjgeqvZ37gwGUaFB9ldVxchsVLsL66OR
bJRIoSiTgL+TUYSMQ5mKG4tmmBnPHUHfgfNoOXlWMoJHIjFeQ9oM6eTHhA==
=QTFW
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"More fixes for ARM and x86"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: LAPIC: Advancing the timer expiration on guest initiated write
KVM: x86/mmu: Skip !MMU-present SPTEs when removing SP in exclusive mode
KVM: kvmclock: Fix vCPUs > 64 can't be online/hotpluged
kvm: x86: annotate RCU pointers
KVM: arm64: Fix exclusive limit for IPA size
KVM: arm64: Reject VM creation when the default IPA size is unsupported
KVM: arm64: Ensure I-cache isolation between vcpus of a same VM
KVM: arm64: Don't use cbz/adr with external symbols
KVM: arm64: Fix range alignment when walking page tables
KVM: arm64: Workaround firmware wrongly advertising GICv2-on-v3 compatibility
KVM: arm64: Rename __vgic_v3_get_ich_vtr_el2() to __vgic_v3_get_gic_config()
KVM: arm64: Don't access PMSELR_EL0/PMUSERENR_EL0 when no PMU is available
KVM: arm64: Turn kvm_arm_support_pmu_v3() into a static key
KVM: arm64: Fix nVHE hyp panic host context restore
KVM: arm64: Avoid corrupting vCPU context register in guest exit
KVM: arm64: nvhe: Save the SPE context early
kvm: x86: use NULL instead of using plain integer as pointer
KVM: SVM: Connect 'npt' module param to KVM's internal 'npt_enabled'
KVM: x86: Ensure deadline timer has truly expired before posting its IRQ
When registering a memslot, we check the size and location of that
memslot against the IPA size to ensure that we can provide guest
access to the whole of the memory.
Unfortunately, this check rejects memslot that end-up at the exact
limit of the addressing capability for a given IPA size. For example,
it refuses the creation of a 2GB memslot at 0x8000000 with a 32bit
IPA space.
Fix it by relaxing the check to accept a memslot reaching the
limit of the IPA space.
Fixes: c3058d5da2 ("arm/arm64: KVM: Ensure memslots are within KVM_PHYS_SIZE")
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Reviewed-by: Andrew Jones <drjones@redhat.com>
Link: https://lore.kernel.org/r/20210311100016.3830038-3-maz@kernel.org
KVM/arm64 has forever used a 40bit default IPA space, partially
due to its 32bit heritage (where the only choice is 40bit).
However, there are implementations in the wild that have a *cough*
much smaller *cough* IPA space, which leads to a misprogramming of
VTCR_EL2, and a guest that is stuck on its first memory access
if userspace dares to ask for the default IPA setting (which most
VMMs do).
Instead, blundly reject the creation of such VM, as we can't
satisfy the requirements from userspace (with a one-off warning).
Also clarify the boot warning, and document that the VM creation
will fail when an unsupported IPA size is provided.
Although this is an ABI change, it doesn't really change much
for userspace:
- the guest couldn't run before this change, but no error was
returned. At least userspace knows what is happening.
- a memory slot that was accepted because it did fit the default
IPA space now doesn't even get a chance to be registered.
The other thing that is left doing is to convince userspace to
actually use the IPA space setting instead of relying on the
antiquated default.
Fixes: 233a7cb235 ("kvm: arm64: Allow tuning the physical address size for VM")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Link: https://lore.kernel.org/r/20210311100016.3830038-2-maz@kernel.org
These routines lost all existing users during the latest merge window so
we can remove them. This avoids the need to fix them in the context of
fixing a regression related to the ID map on 52-bit VA kernels.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210310171515.416643-3-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
52-bit VA kernels can run on hardware that is only 48-bit capable, but
configure the ID map as 52-bit by default. This was not a problem until
recently, because the special T0SZ value for a 52-bit VA space was never
programmed into the TCR register anwyay, and because a 52-bit ID map
happens to use the same number of translation levels as a 48-bit one.
This behavior was changed by commit 1401bef703 ("arm64: mm: Always update
TCR_EL1 from __cpu_set_tcr_t0sz()"), which causes the unsupported T0SZ
value for a 52-bit VA to be programmed into TCR_EL1. While some hardware
simply ignores this, Mark reports that Amberwing systems choke on this,
resulting in a broken boot. But even before that commit, the unsupported
idmap_t0sz value was exposed to KVM and used to program TCR_EL2 incorrectly
as well.
Given that we already have to deal with address spaces being either 48-bit
or 52-bit in size, the cleanest approach seems to be to simply default to
a 48-bit VA ID map, and only switch to a 52-bit one if the placement of the
kernel in DRAM requires it. This is guaranteed not to happen unless the
system is actually 52-bit VA capable.
Fixes: 90ec95cda9 ("arm64: mm: Introduce VA_BITS_MIN")
Reported-by: Mark Salter <msalter@redhat.com>
Link: http://lore.kernel.org/r/20210310003216.410037-1-msalter@redhat.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210310171515.416643-2-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Commit 0fdf1bb759 ("arm64: perf: Avoid PMXEV* indirection") changed
armv8pmu_read_evcntr() to return a u32 instead of u64. The result is
silent truncation of the event counter when using 64-bit counters. Given
the offending commit appears to have passed thru several folks, it seems
likely this was a bad rebase after v8.5 PMU 64-bit counters landed.
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: <stable@vger.kernel.org>
Fixes: 0fdf1bb759 ("arm64: perf: Avoid PMXEV* indirection")
Signed-off-by: Rob Herring <robh@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Link: https://lore.kernel.org/r/20210310004412.1450128-1-robh@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
As per ARM ARM DDI 0487G.a, when FEAT_LPA2 is implemented, ID_AA64MMFR0_EL1
might contain a range of values to describe supported translation granules
(4K and 16K pages sizes in particular) instead of just enabled or disabled
values. This changes __enable_mmu() function to handle complete acceptable
range of values (depending on whether the field is signed or unsigned) now
represented with ID_AA64MMFR0_TGRAN_SUPPORTED_[MIN..MAX] pair. While here,
also fix similar situations in EFI stub and KVM as well.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: kvmarm@lists.cs.columbia.edu
Cc: linux-efi@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/1615355590-21102-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
In a system supporting MTE, the linear map must allow reading/writing
allocation tags by setting the memory type as Normal Tagged. Currently,
this is only handled for memory present at boot. Hotplugged memory uses
Normal non-Tagged memory.
Introduce pgprot_mhp() for hotplugged memory and use it in
add_memory_resource(). The arm64 code maps pgprot_mhp() to
pgprot_tagged().
Note that ZONE_DEVICE memory should not be mapped as Tagged and
therefore setting the memory type in arch_add_memory() is not feasible.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 0178dc7613 ("arm64: mte: Use Normal Tagged attributes for the linear map")
Reported-by: Patrick Daly <pdaly@codeaurora.org>
Tested-by: Patrick Daly <pdaly@codeaurora.org>
Link: https://lore.kernel.org/r/1614745263-27827-1-git-send-email-pdaly@codeaurora.org
Cc: <stable@vger.kernel.org> # 5.10.x
Cc: Will Deacon <will@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20210309122601.5543-1-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
It recently became apparent that the ARMv8 architecture has interesting
rules regarding attributes being used when fetching instructions
if the MMU is off at Stage-1.
In this situation, the CPU is allowed to fetch from the PoC and
allocate into the I-cache (unless the memory is mapped with
the XN attribute at Stage-2).
If we transpose this to vcpus sharing a single physical CPU,
it is possible for a vcpu running with its MMU off to influence
another vcpu running with its MMU on, as the latter is expected to
fetch from the PoU (and self-patching code doesn't flush below that
level).
In order to solve this, reuse the vcpu-private TLB invalidation
code to apply the same policy to the I-cache, nuking it every time
the vcpu runs on a physical CPU that ran another vcpu of the same
VM in the past.
This involve renaming __kvm_tlb_flush_local_vmid() to
__kvm_flush_cpu_context(), and inserting a local i-cache invalidation
there.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20210303164505.68492-1-maz@kernel.org
When CONFIG_DEBUG_VIRTUAL is enabled, the default page_to_virt() macro
implementation from include/linux/mm.h is used. That definition doesn't
account for KASAN tags, which leads to no tags on page_alloc allocations.
Provide an arm64-specific definition for page_to_virt() when
CONFIG_DEBUG_VIRTUAL is enabled that takes care of KASAN tags.
Fixes: 2813b9c029 ("kasan, mm, arm64: tag non slab memory allocated via pagealloc")
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/4b55b35202706223d3118230701c6a59749d9b72.1615219501.git.andreyknvl@google.com
Signed-off-by: Will Deacon <will@kernel.org>
allmodconfig + CONFIG_LTO_CLANG_THIN=y fails to build due to following
linker errors:
ld.lld: error: irqbypass.c:(function __guest_enter: .text+0x21CC):
relocation R_AARCH64_CONDBR19 out of range: 2031220 is not in
[-1048576, 1048575]; references hyp_panic
>>> defined in vmlinux.o
ld.lld: error: irqbypass.c:(function __guest_enter: .text+0x21E0):
relocation R_AARCH64_ADR_PREL_LO21 out of range: 2031200 is not in
[-1048576, 1048575]; references hyp_panic
>>> defined in vmlinux.o
This is because with LTO, the compiler ends up placing hyp_panic()
more than 1MB away from __guest_enter(). Use an unconditional branch
and adr_l instead to fix the issue.
Link: https://github.com/ClangBuiltLinux/linux/issues/1317
Reported-by: Nathan Chancellor <nathan@kernel.org>
Suggested-by: Marc Zyngier <maz@kernel.org>
Suggested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Will Deacon <will@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210305202124.3768527-1-samitolvanen@google.com
There are multiple instances of pfn_to_section_nr() and __pfn_to_section()
when CONFIG_SPARSEMEM is enabled. This can be optimized if memory section
is fetched earlier. This replaces the open coded PFN and ADDR conversion
with PFN_PHYS() and PHYS_PFN() helpers. While there, also add a comment.
This does not cause any functional change.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/1614921898-4099-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
pfn_valid() validates a pfn but basically it checks for a valid struct page
backing for that pfn. It should always return positive for memory ranges
backed with struct page mapping. But currently pfn_valid() fails for all
ZONE_DEVICE based memory types even though they have struct page mapping.
pfn_valid() asserts that there is a memblock entry for a given pfn without
MEMBLOCK_NOMAP flag being set. The problem with ZONE_DEVICE based memory is
that they do not have memblock entries. Hence memblock_is_map_memory() will
invariably fail via memblock_search() for a ZONE_DEVICE based address. This
eventually fails pfn_valid() which is wrong. memblock_is_map_memory() needs
to be skipped for such memory ranges. As ZONE_DEVICE memory gets hotplugged
into the system via memremap_pages() called from a driver, their respective
memory sections will not have SECTION_IS_EARLY set.
Normal hotplug memory will never have MEMBLOCK_NOMAP set in their memblock
regions. Because the flag MEMBLOCK_NOMAP was specifically designed and set
for firmware reserved memory regions. memblock_is_map_memory() can just be
skipped as its always going to be positive and that will be an optimization
for the normal hotplug memory. Like ZONE_DEVICE based memory, all normal
hotplugged memory too will not have SECTION_IS_EARLY set for their sections
Skipping memblock_is_map_memory() for all non early memory sections would
fix pfn_valid() problem for ZONE_DEVICE based memory and also improve its
performance for normal hotplug memory as well.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Acked-by: David Hildenbrand <david@redhat.com>
Fixes: 73b20c84d4 ("arm64: mm: implement pte_devmap support")
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/1614921898-4099-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The documented behaviour for CMDLINE_EXTEND is that the arguments from
the bootloader are appended to the built-in kernel command line. This
also matches the option parsing behaviour for the EFI stub and early ID
register overrides.
Bizarrely, the fdt behaviour is the other way around: appending the
built-in command line to the bootloader arguments, resulting in a
command-line that doesn't necessarily line-up with the parsing order and
definitely doesn't line-up with the documented behaviour.
As it turns out, there is a proposal [1] to replace CMDLINE_EXTEND with
CMDLINE_PREPEND and CMDLINE_APPEND options which should hopefully make
the intended behaviour much clearer. While we wait for those to land,
drop CMDLINE_EXTEND for now as there appears to be little enthusiasm for
changing the current FDT behaviour.
[1] https://lore.kernel.org/lkml/20190319232448.45964-2-danielwa@cisco.com/
Cc: Max Uvarov <muvarov@gmail.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Doug Anderson <dianders@chromium.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/CAL_JsqJX=TCCs7=gg486r9TN4NYscMTCLNfqJF9crskKPq-bTg@mail.gmail.com
Link: https://lore.kernel.org/r/20210303134927.18975-3-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The built-in kernel commandline (CONFIG_CMDLINE) can be configured in
three different ways:
1. CMDLINE_FORCE: Use CONFIG_CMDLINE instead of any bootloader args
2. CMDLINE_EXTEND: Append the bootloader args to CONFIG_CMDLINE
3. CMDLINE_FROM_BOOTLOADER: Only use CONFIG_CMDLINE if there aren't
any bootloader args.
The early cmdline parsing to detect idreg overrides gets (2) and (3)
slightly wrong: in the case of (2) the bootloader args are parsed first
and in the case of (3) the CMDLINE is always parsed.
Fix these issues by moving the bootargs parsing out into a helper
function and following the same logic as that used by the EFI stub.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Fixes: 3320030355 ("arm64: cpufeature: Add an early command-line cpufeature override facility")
Link: https://lore.kernel.org/r/20210303134927.18975-2-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
When walking the page tables at a given level, and if the start
address for the range isn't aligned for that level, we propagate
the misalignment on each iteration at that level.
This results in the walker ignoring a number of entries (depending
on the original misalignment) on each subsequent iteration.
Properly aligning the address before the next iteration addresses
this issue.
Cc: stable@vger.kernel.org
Reported-by: Howard Zhang <Howard.Zhang@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Jia He <justin.he@arm.com>
Fixes: b1e57de62c ("KVM: arm64: Add stand-alone page-table walker infrastructure")
[maz: rewrite commit message]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210303024225.2591-1-justin.he@arm.com
Message-Id: <20210305185254.3730990-9-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It looks like we have broken firmware out there that wrongly advertises
a GICv2 compatibility interface, despite the CPUs not being able to deal
with it.
To work around this, check that the CPU initialising KVM is actually able
to switch to MMIO instead of system registers, and use that as a
precondition to enable GICv2 compatibility in KVM.
Note that the detection happens on a single CPU. If the firmware is
lying *and* that the CPUs are asymetric, all hope is lost anyway.
Reported-by: Shameerali Kolothum Thodi <shameerali.kolothum.thodi@huawei.com>
Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20210305185254.3730990-8-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As we are about to report a bit more information to the rest of
the kernel, rename __vgic_v3_get_ich_vtr_el2() to the more
explicit __vgic_v3_get_gic_config().
No functional change.
Tested-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20210305185254.3730990-7-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When running under a nesting hypervisor, it isn't guaranteed that
the virtual HW will include a PMU. In which case, let's not try
to access the PMU registers in the world switch, as that'd be
deadly.
Reported-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Link: https://lore.kernel.org/r/20210209114844.3278746-3-maz@kernel.org
Message-Id: <20210305185254.3730990-6-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We currently find out about the presence of a HW PMU (or the handling
of that PMU by perf, which amounts to the same thing) in a fairly
roundabout way, by checking the number of counters available to perf.
That's good enough for now, but we will soon need to find about about
that on paths where perf is out of reach (in the world switch).
Instead, let's turn kvm_arm_support_pmu_v3() into a static key.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Link: https://lore.kernel.org/r/20210209114844.3278746-2-maz@kernel.org
Message-Id: <20210305185254.3730990-5-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When panicking from the nVHE hyp and restoring the host context, x29 is
expected to hold a pointer to the host context. This wasn't being done
so fix it to make sure there's a valid pointer the host context being
used.
Rather than passing a boolean indicating whether or not the host context
should be restored, instead pass the pointer to the host context. NULL
is passed to indicate that no context should be restored.
Fixes: a2e102e20f ("KVM: arm64: nVHE: Handle hyp panics")
Cc: stable@vger.kernel.org
Signed-off-by: Andrew Scull <ascull@google.com>
[maz: partial rewrite to fit 5.12-rc1]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210219122406.1337626-1-ascull@google.com
Message-Id: <20210305185254.3730990-4-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 7db2153047 ("KVM: arm64: Restore hyp when panicking in guest
context") tracks the currently running vCPU, clearing the pointer to
NULL on exit from a guest.
Unfortunately, the use of 'set_loaded_vcpu' clobbers x1 to point at the
kvm_hyp_ctxt instead of the vCPU context, causing the subsequent RAS
code to go off into the weeds when it saves the DISR assuming that the
CPU context is embedded in a struct vCPU.
Leave x1 alone and use x3 as a temporary register instead when clearing
the vCPU on the guest exit path.
Cc: Marc Zyngier <maz@kernel.org>
Cc: Andrew Scull <ascull@google.com>
Cc: <stable@vger.kernel.org>
Fixes: 7db2153047 ("KVM: arm64: Restore hyp when panicking in guest context")
Suggested-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210226181211.14542-1-will@kernel.org
Message-Id: <20210305185254.3730990-3-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The nVHE KVM hyp drains and disables the SPE buffer, before
entering the guest, as the EL1&0 translation regime
is going to be loaded with that of the guest.
But this operation is performed way too late, because :
- The owning translation regime of the SPE buffer
is transferred to EL2. (MDCR_EL2_E2PB == 0)
- The guest Stage1 is loaded.
Thus the flush could use the host EL1 virtual address,
but use the EL2 translations instead of host EL1, for writing
out any cached data.
Fix this by moving the SPE buffer handling early enough.
The restore path is doing the right thing.
Fixes: 014c4c77aa ("KVM: arm64: Improve debug register save/restore flow")
Cc: stable@vger.kernel.org
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210302120345.3102874-1-suzuki.poulose@arm.com
Message-Id: <20210305185254.3730990-2-maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmA4JRkQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpoWqD/9dbbqe8L701U6May1A/4hRsqL4THTA2flx
vNCNRBl6XV3l/wBCtL6waKy6tyO4lyM8XdUdEvo3Kxl2kGPb8eVfpyYL/+77HqyH
ctT4RMrs+84Mxn+5N6cM97hS1qVI2moTxxyvOEl/JTB7BYrutz9gvAoeY3/Dto47
J66oSaPeuqJ32TyihxfQHVxQopJcqFzDjyoYHGDu6ATio1PXfaIdTu8ywVYSECAh
pWI4rwnqdurGuHMNpxyL1bA6CT/jC7s+sqU7bUYUCgtYI3eG0u3V0bp5gAQQIgl9
5sxxE3DidYGAkYZsosrelshBtzGddLdz4Qrt2ungMYv8RsGNpFQ095jDPKDwFaZj
bSvSsfplCo7iFsJByb1TtpNEOW8eAwi81PmBDVQ9Oq5P5ygTYno9GBDc/20ql0Fk
q6wcX28coE3IBw44ne0hIwvBOtXV4WJyluG/gqOxfbTH+kOy3pDsN8lWcY/P4X0U
yzdU2MLHe8BNMyYlUiBF47Amzt4ltr85P4XD3WZ4bX71iwri6HvrdGWLuuKwX+Ie
66QiIDDQIYZQ6NMMJWS9DGW3y3DBizpSXGxONbOw1J2bQdNmtToR0D2UnK/9UnKp
msnvkUNk8fkYGS4aptpJ6HxbmjMEG5YtbiGlPj6fz5/7MTvhRjPxt7A0LWrUIdqR
f88+sHUMqg==
=oc8u
-----END PGP SIGNATURE-----
Merge tag 'io_uring-worker.v3-2021-02-25' of git://git.kernel.dk/linux-block
Pull io_uring thread rewrite from Jens Axboe:
"This converts the io-wq workers to be forked off the tasks in question
instead of being kernel threads that assume various bits of the
original task identity.
This kills > 400 lines of code from io_uring/io-wq, and it's the worst
part of the code. We've had several bugs in this area, and the worry
is always that we could be missing some pieces for file types doing
unusual things (recent /dev/tty example comes to mind, userfaultfd
reads installing file descriptors is another fun one... - both of
which need special handling, and I bet it's not the last weird oddity
we'll find).
With these identical workers, we can have full confidence that we're
never missing anything. That, in itself, is a huge win. Outside of
that, it's also more efficient since we're not wasting space and code
on tracking state, or switching between different states.
I'm sure we're going to find little things to patch up after this
series, but testing has been pretty thorough, from the usual
regression suite to production. Any issue that may crop up should be
manageable.
There's also a nice series of further reductions we can do on top of
this, but I wanted to get the meat of it out sooner rather than later.
The general worry here isn't that it's fundamentally broken. Most of
the little issues we've found over the last week have been related to
just changes in how thread startup/exit is done, since that's the main
difference between using kthreads and these kinds of threads. In fact,
if all goes according to plan, I want to get this into the 5.10 and
5.11 stable branches as well.
That said, the changes outside of io_uring/io-wq are:
- arch setup, simple one-liner to each arch copy_thread()
implementation.
- Removal of net and proc restrictions for io_uring, they are no
longer needed or useful"
* tag 'io_uring-worker.v3-2021-02-25' of git://git.kernel.dk/linux-block: (30 commits)
io-wq: remove now unused IO_WQ_BIT_ERROR
io_uring: fix SQPOLL thread handling over exec
io-wq: improve manager/worker handling over exec
io_uring: ensure SQPOLL startup is triggered before error shutdown
io-wq: make buffered file write hashed work map per-ctx
io-wq: fix race around io_worker grabbing
io-wq: fix races around manager/worker creation and task exit
io_uring: ensure io-wq context is always destroyed for tasks
arch: ensure parisc/powerpc handle PF_IO_WORKER in copy_thread()
io_uring: cleanup ->user usage
io-wq: remove nr_process accounting
io_uring: flag new native workers with IORING_FEAT_NATIVE_WORKERS
net: remove cmsg restriction from io_uring based send/recvmsg calls
Revert "proc: don't allow async path resolution of /proc/self components"
Revert "proc: don't allow async path resolution of /proc/thread-self components"
io_uring: move SQPOLL thread io-wq forked worker
io-wq: make io_wq_fork_thread() available to other users
io-wq: only remove worker from free_list, if it was there
io_uring: remove io_identity
io_uring: remove any grabbing of context
...
I have a handful of new RISC-V related patches for this merge window:
* A check to ensure drivers are properly using uaccess. This isn't
manifesting with any of the drivers I'm currently using, but may catch
errors in new drivers.
* Some preliminary support for the FU740, along with the HiFive
Unleashed it will appear on.
* NUMA support for RISC-V, which involves making the arm64 code generic.
* Support for kasan on the vmalloc region.
* A handful of new drivers for the Kendryte K210, along with the DT
plumbing required to boot on a handful of K210-based boards.
* Support for allocating ASIDs.
* Preliminary support for kernels larger than 128MiB.
* Various other improvements to our KASAN support, including the
utilization of huge pages when allocating the KASAN regions.
We may have already found a bug with the KASAN_VMALLOC code, but it's
passing my tests. There's a fix in the works, but that will probably
miss the merge window.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmA4hXATHHBhbG1lckBk
YWJiZWx0LmNvbQAKCRAuExnzX7sYifryD/0SfXGOfj93Cxq7I7AYhhzCN7lJ5jvv
iEQScTlPqU9nfvYodo4EDq0fp+5LIPpTL/XBHtqVjzv0FqRNa28Ea0K7kO8HuXc4
BaUd0m/DqyB4Gfgm4qjc5bDneQ1ZYxVXprYERWNQ5Fj+tdWhaQGOW64N/TVodjjj
NgJtTqbIAcjJqjUtttM8TZN5U1TgwLo+KCqw3iYW12lV1YKBBuvrwvSdD6jnFdIQ
AzG/wRGZhxLoFxgBB/NEsZxDoSd6ztiwxLhS9lX4okZVsryyIdOE70Q/MflfiTlU
xE+AdxQXTMUiiqYSmHeDD6PDb57GT/K3hnjI1yP+lIZpbInsi29JKow1qjyYjfHl
9cSSKYCIXHL7jKU6pgt34G1O5N5+fgqHQhNbfKvlrQ2UPlfs/tWdKHpFIP/z9Jlr
0vCAou7NSEB9zZGqzO63uBLXoN8yfL8FT3uRnnRvoRpfpex5dQX2QqPLQ7327D7N
GUG31nd1PHTJPdxJ1cI4SO24PqPpWDWY9uaea+0jv7ivGClVadZPco/S3ZKloguT
lazYUvyA4oRrSAyln785Rd8vg4CinqTxMtIyZbRMbNkgzVQARi9a8rjvu4n9qms2
2wlXDFi8nR8B4ih5n79dSiiLM9ay9GJDxMcf9VxIxSAYZV2fJALnpK6gV2fzRBUe
+k/uv8BIsFmlwQ==
=CutX
-----END PGP SIGNATURE-----
Merge tag 'riscv-for-linus-5.12-mw0' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
"A handful of new RISC-V related patches for this merge window:
- A check to ensure drivers are properly using uaccess. This isn't
manifesting with any of the drivers I'm currently using, but may
catch errors in new drivers.
- Some preliminary support for the FU740, along with the HiFive
Unleashed it will appear on.
- NUMA support for RISC-V, which involves making the arm64 code
generic.
- Support for kasan on the vmalloc region.
- A handful of new drivers for the Kendryte K210, along with the DT
plumbing required to boot on a handful of K210-based boards.
- Support for allocating ASIDs.
- Preliminary support for kernels larger than 128MiB.
- Various other improvements to our KASAN support, including the
utilization of huge pages when allocating the KASAN regions.
We may have already found a bug with the KASAN_VMALLOC code, but it's
passing my tests. There's a fix in the works, but that will probably
miss the merge window.
* tag 'riscv-for-linus-5.12-mw0' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (75 commits)
riscv: Improve kasan population by using hugepages when possible
riscv: Improve kasan population function
riscv: Use KASAN_SHADOW_INIT define for kasan memory initialization
riscv: Improve kasan definitions
riscv: Get rid of MAX_EARLY_MAPPING_SIZE
soc: canaan: Sort the Makefile alphabetically
riscv: Disable KSAN_SANITIZE for vDSO
riscv: Remove unnecessary declaration
riscv: Add Canaan Kendryte K210 SD card defconfig
riscv: Update Canaan Kendryte K210 defconfig
riscv: Add Kendryte KD233 board device tree
riscv: Add SiPeed MAIXDUINO board device tree
riscv: Add SiPeed MAIX GO board device tree
riscv: Add SiPeed MAIX DOCK board device tree
riscv: Add SiPeed MAIX BiT board device tree
riscv: Update Canaan Kendryte K210 device tree
dt-bindings: add resets property to dw-apb-timer
dt-bindings: fix sifive gpio properties
dt-bindings: update sifive uart compatible string
dt-bindings: update sifive clint compatible string
...