Gen1 chips use a 16 bit mailbox extension register, for upto 48 bit
mailbox commands. The newer generation chips use a 32 bit mailbox
extension register instead, for upto 64 bit mailbox commands.
Handle writing the larger mailboxes.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The different RF module seems to require a different AGC table as well
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Newer chips seem to have some different mac registers, requiring
a different init table.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
So far this is just for 8723BU. It includes writing to a number of
registers I have seen no description for so far.
0x0064
0x0930
0x0944
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Add 8723bu 1T radio init table. The vendor driver indicates that some
registers need special treatment for TFBGA90, TFBGA80, and TFBGA79
packaging. However the vendor driver never actually checks the package
type, so just stick to default values here.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Only 1st generation chips do provide USB interrupts, so do not try to
setup interrupts for newer chips (8192eu and 8723bu).
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The 8723bu, like the 8192eu, can also handle 1024 byte block writes.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Implement first stab at parsing the 8723bu's efuse.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
This provides initial detection of 8723bu devices, and selects the
correct firmware image to load.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The newer generation chips have different interrupt registers.
Initialize this correct registers on 8192eu.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The 8192eu (and some other parts) will report an incorrect USB OUT
EP. This tells the chip to drop it - as per the vendor driver.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The logic for testing auto load failure in rtl8xxxu_auto_llt_table()
was inverted.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
To match the flow of the vendor driver, move the LLT init to after the
firmware is started.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
This reorganizes the device initialization to init page boundaries
before starting the firmware. This matches the flow in the 8192eu
vendor driver.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Newer chips can auto load the LLT table, it is no longer necessary to
build it manually in the driver.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
This implements the rtl8192eu power on sequence, and splits it off
from the rtl8192cu/rtl8723au power on sequence.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
The rtl8192eu can handle 1024 byte block writes, unlike it's
predecessors (8192cu/8188cu).
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
This identifies the chip vendors correctly and also picks the correct
firmware for rtl8192eu.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
This is the start of 8192eu support. For now just detect the device
and parse the efuse.
Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Add debugfs key (under CFG80211_CERTIFICATION_ONUS
configuration) to set/clear radar_debug_mode.
In this mode, the driver simply ignores radar
events (but prints them).
The fw is notified about this mode through
a special generic_cfg_feature command.
This mode is relevant only for ap mode. look for
it when initializing ap vif.
Signed-off-by: Eliad Peller <eliad@wizery.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
When working with AP + P2P, it's possible to get into
a state when the AP is in ROC (due to assiciating station)
while trying to ROC on the P2P interface.
Replace the WARN_ON with wl1271_error to avoid warnings
in this case.
Signed-off-by: Eliad Peller <eliad@wizery.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
In cfg80211 suspend handler, stop the netif queue and
wait until all the Tx queues become empty. Start the
queues in resume handler.
Signed-off-by: Amitkumar Karwar <akarwar@marvell.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
We met a problem of pm_suspend when repeated closing/opening the lid
on a Lenovo laptop (1/20 reproduce rate), below is the log:
[ 199.735876] PM: Entering mem sleep
[ 199.750516] e1000e: EEE TX LPI TIMER: 00000011
[ 199.856638] Trying to free nonexistent resource <000000000000d000-000000000000d0ff>
[ 201.753566] brcmfmac: brcmf_pcie_suspend: Timeout on response for entering D3 substate
[ 201.753581] pci_legacy_suspend(): brcmf_pcie_suspend+0x0/0x1f0 [brcmfmac] returns -5
[ 201.753585] dpm_run_callback(): pci_pm_suspend+0x0/0x160 returns -5
[ 201.753589] PM: Device 0000:04:00.0 failed to suspend async: error -5
Through debugging, we found when problem happens, it is not the device
fails to enter D3, but the signal D3_ACK comes too early to pass the
waitqueue_active() check.
Just like this:
brcmf_pcie_send_mb_data(devinfo, BRCMF_H2D_HOST_D3_INFORM);
// signal is triggered here
wait_event_timeout(devinfo->mbdata_resp_wait, devinfo->mbdata_completed,
BRCMF_PCIE_MBDATA_TIMEOUT);
So far I think it is safe to remove waitqueue_active check since there
is only one place to trigger this signal (sending
BRCMF_H2D_HOST_D3_INFORM). And it is not a problem calling wake_up
event earlier than calling wait_event.
Cc: Brett Rudley <brudley@broadcom.com>
Cc: Hante Meuleman <meuleman@broadcom.com>
Cc: Franky (Zhenhui) Lin <frankyl@broadcom.com>
Cc: Pieter-Paul Giesberts <pieterpg@broadcom.com>
Cc: Arend van Spriel <arend@broadcom.com>
Signed-off-by: Hui Wang <hui.wang@canonical.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
We accidentally return success instead of a negative error code.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
* fix AES-CMAC in AP mode (Johannes)
* adapt prints to new firmware API
* rx path improvements (Sara and Gregory)
* fixes for the thermal / cooling device code (Chaya Rachel)
* fixes for GO uAPSD handling
* more code for the 9000 device family (Sara)
* infrastructure work for firmware notification (Chaya Rachel)
* improve association reliablity (Sara)
* runtime PM fixes
* fixes for ROC (HS2.0)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW4HQ5AAoJEC0Llv5uNjIBfHIP/j68hRW4reTJdYo0Q7MG1WPa
47ir4d/+Yz7nnXj4RFY9s8Sv6irC8gsY1bFFTZCNXDTB/BeJjvszBMGVwHuUPq+w
wg8zz8uhiAb8IlmPKnEPhuiwRrdcgqy443m06k89VNjz/kKv4/iRDQ+bL3P4O9En
LrKz9md91k5svLOuLmUXMdP+6eXKip4LBVeCgIIt2lkMNW1jYDi1Af2YEXp7Ifad
u5ow9n5aAe16QKTnMUtnShlCrdflYsBHzcxza9jKXO8hqxrHXNg9TmBNL0ZguPlQ
AdqzFmEDeUzv7GDTE4Po/DrJT13sto5gn2v36XMXLDgwS26hSqoLX1amyZ7baQyh
J986recmF5JGx/y67QE6KgSfpdDPI2E4a28d0Y4ZsFHL32SgaD0qCcOiiszjjrCD
zFYDYTPZdU9Cz6nwP27wwze0FcCCB2pOvtW5oGZb0eW1hWNb0BQlSdYIjfup7P/y
wzMIg6a5k7mGEbXpUIPpVriasTBLwNe3rmU413sm9vZkR5T5r4f3FYWHtg7dc3Rt
jP2Nb78hMC0KH/+KPBuTPdgf8hrz8JBQIJaisnfEpYjqPE1auTAsNyVNlgssHtbC
XA2l78tRe9lZNjrp6oJIon+XYGuPDzVX6geT1P9qYB7PnSI8C/rL96GVjjohqeko
1nFwhlAk0WvWjr/0NHJx
=j8++
-----END PGP SIGNATURE-----
Merge tag 'iwlwifi-next-for-kalle-2016-03-09_2' of https://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi/iwlwifi-next
* update GSCAN capabilities (Ayala)
* fix AES-CMAC in AP mode (Johannes)
* adapt prints to new firmware API
* rx path improvements (Sara and Gregory)
* fixes for the thermal / cooling device code (Chaya Rachel)
* fixes for GO uAPSD handling
* more code for the 9000 device family (Sara)
* infrastructure work for firmware notification (Chaya Rachel)
* improve association reliablity (Sara)
* runtime PM fixes
* fixes for ROC (HS2.0)
In case of CAN2.0 EFF frame, the controller handles frame IDs in a
rather bizzare way. The ID is split into an extended part, IDX[28:11]
and standard part, ID[10:0]. In the TX path, the core first sends the
top 11 bits of the IDX, followed by ID and finally the rest of IDX.
In the RX path, the core stores the ID the LSbit part of IDX field,
followed by the LSbit parts of real IDX. The MSbit parts of IDX are
stored in ID field of the register.
This patch implements the necessary bit shuffling to mitigate this
obscure behavior. In case two of these controllers are connected
together, the RX and TX bit swapping nullifies itself and the issue
does not manifest. The issue only manifests when talking to another
different CAN controller.
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Oliver Hartkopp <socketcan@hartkopp.net>
Cc: Wolfgang Grandegger <wg@grandegger.com>
Reviewed-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The RX and TX ID mask for CAN2.0 is 11 bits wide. This patch fixes
the incorrect mask, which caused the CAN IDs to miss the MSBit both
on receive and transmit.
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Oliver Hartkopp <socketcan@hartkopp.net>
Cc: Wolfgang Grandegger <wg@grandegger.com>
Reviewed-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The TX DLC, the transmission length information, was not written
into the transmit configuration register. When using the CAN core
with different CAN controller, the receiving CAN controller will
receive only the ID part of the CAN frame, but no data at all.
This patch adds the TX DLC into the register to fix this issue.
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Oliver Hartkopp <socketcan@hartkopp.net>
Cc: Wolfgang Grandegger <wg@grandegger.com>
Reviewed-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The clock generation does not match reality when using the CAN IP
core outside of the FPGA design. This patch fixes the computation
of values which are programmed into the clock generator registers.
First, there are some off-by-one errors which manifest themselves
only when communicating with different controller, so those are
fixed.
Second, the bits in the clock generator registers have different
meaning depending on whether the core is in ISO CANFD mode or any
of the other modes (BOSCH CANFD or CAN2.0). Detect the ISO CANFD
mode and fix handling of this special case of clock configuration.
Finally, the CAN clock speed is in CANCLOCK register, not SYSCLOCK
register, so fix this as well.
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Oliver Hartkopp <socketcan@hartkopp.net>
Cc: Wolfgang Grandegger <wg@grandegger.com>
Reviewed-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Lots of places in the kernel use memcpy(buf, comm, TASK_COMM_LEN); but
the result is typically passed to print("%s", buf) and extra bytes
after zero don't cause any harm.
In bpf the result of bpf_get_current_comm() is used as the part of
map key and was causing spurious hash map mismatches.
Use strlcpy() to guarantee zero-terminated string.
bpf verifier checks that output buffer is zero-initialized,
so even for short task names the output buffer don't have junk bytes.
Note it's not a security concern, since kprobe+bpf is root only.
Fixes: ffeedafbf0 ("bpf: introduce current->pid, tgid, uid, gid, comm accessors")
Reported-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
0-day bot reported build error:
kernel/built-in.o: In function `map_lookup_elem':
>> kernel/bpf/.tmp_syscall.o:(.text+0x329b3c): undefined reference to `bpf_stackmap_copy'
when CONFIG_BPF_SYSCALL is set and CONFIG_PERF_EVENTS is not.
Add weak definition to resolve it.
This code path in map_lookup_elem() is never taken
when CONFIG_PERF_EVENTS is not set.
Fixes: 557c0c6e7d ("bpf: convert stackmap to pre-allocation")
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Willem de Bruijn says:
====================
net: validate variable length ll headers
Allow device-specific validation of link layer headers. Existing
checks drop all packets shorter than hard_header_len. For variable
length protocols, such packets can be valid.
patch 1 adds header_ops.validate and dev_validate_header
patch 2 implements the protocol specific callback for AX25
patch 3 replaces ll_header_truncated with dev_validate_header
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Replace link layer header validation check ll_header_truncate with
more generic dev_validate_header.
Validation based on hard_header_len incorrectly drops valid packets
in variable length protocols, such as AX25. dev_validate_header
calls header_ops.validate for such protocols to ensure correctness
below hard_header_len.
See also http://comments.gmane.org/gmane.linux.network/401064
Fixes 9c7077622d ("packet: make packet_snd fail on len smaller than l2 header")
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As variable length protocol, AX25 fails link layer header validation
tests based on a minimum length. header_ops.validate allows protocols
to validate headers that are shorter than hard_header_len. Implement
this callback for AX25.
See also http://comments.gmane.org/gmane.linux.network/401064
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Netdevice parameter hard_header_len is variously interpreted both as
an upper and lower bound on link layer header length. The field is
used as upper bound when reserving room at allocation, as lower bound
when validating user input in PF_PACKET.
Clarify the definition to be maximum header length. For validation
of untrusted headers, add an optional validate member to header_ops.
Allow bypassing of validation by passing CAP_SYS_RAWIO, for instance
for deliberate testing of corrupt input. In this case, pad trailing
bytes, as some device drivers expect completely initialized headers.
See also http://comments.gmane.org/gmane.linux.network/401064
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Originally I only wanted to drop the unneeded inclusion of
<linux/i2c.h>, but then noticed that struct
microread_nfc_platform_data isn't actually used, and
MICROREAD_DRIVER_NAME is redefined in the only file where it is used,
so we can get rid of the header file and dead code altogether.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Cc: Lauro Ramos Venancio <lauro.venancio@openbossa.org>
Cc: Aloisio Almeida Jr <aloisio.almeida@openbossa.org>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Tom Herbert says:
====================
kcm: Kernel Connection Multiplexor (KCM)
Kernel Connection Multiplexor (KCM) is a facility that provides a
message based interface over TCP for generic application protocols.
The motivation for this is based on the observation that although
TCP is byte stream transport protocol with no concept of message
boundaries, a common use case is to implement a framed application
layer protocol running over TCP. To date, most TCP stacks offer
byte stream API for applications, which places the burden of message
delineation, message I/O operation atomicity, and load balancing
in the application. With KCM an application can efficiently send
and receive application protocol messages over TCP using a
datagram interface.
In order to delineate message in a TCP stream for receive in KCM, the
kernel implements a message parser. For this we chose to employ BPF
which is applied to the TCP stream. BPF code parses application layer
messages and returns a message length. Nearly all binary application
protocols are parsable in this manner, so KCM should be applicable
across a wide range of applications. Other than message length
determination in receive, KCM does not require any other application
specific awareness. KCM does not implement any other application
protocol semantics-- these are are provided in userspace or could be
implemented in a kernel module layered above KCM.
KCM implements an NxM multiplexor in the kernel as diagrammed below:
+------------+ +------------+ +------------+ +------------+
| KCM socket | | KCM socket | | KCM socket | | KCM socket |
+------------+ +------------+ +------------+ +------------+
| | | |
+-----------+ | | +----------+
| | | |
+----------------------------------+
| Multiplexor |
+----------------------------------+
| | | | |
+---------+ | | | ------------+
| | | | |
+----------+ +----------+ +----------+ +----------+ +----------+
| Psock | | Psock | | Psock | | Psock | | Psock |
+----------+ +----------+ +----------+ +----------+ +----------+
| | | | |
+----------+ +----------+ +----------+ +----------+ +----------+
| TCP sock | | TCP sock | | TCP sock | | TCP sock | | TCP sock |
+----------+ +----------+ +----------+ +----------+ +----------+
The KCM sockets provide the datagram interface to applications,
Psocks are the state for each attached TCP connection (i.e. where
message delineation is performed on receive).
A description of the APIs and design can be found in the included
Documentation/networking/kcm.txt.
In this patch set:
- Add MSG_BATCH flag. This is used in sendmsg msg_hdr flags to
indicate that more messages will be sent on the socket. The stack
may batch messages up if it is beneficial for transmission.
- In sendmmsg, set MSG_BATCH in all sub messages except for the last
one.
- In order to allow sendmmsg to contain multiple messages with
SOCK_SEQPAKET we allow each msg_hdr in the sendmmsg to set MSG_EOR.
- Add KCM module
- This supports SOCK_DGRAM and SOCK_SEQPACKET.
- KCM documentation
v2:
- Added splice and page operations.
- Assemble receive messages in place on TCP socket (don't have a
separate assembly queue.
- Based on above, enforce maxmimum receive message to be the size
of the recceive socket buffer.
- Support message assembly timeout. Use the timeout value in
sk_rcvtimeo on the TCP socket.
- Tested some with a couple of other production applications,
see ~5% improvement in application latency.
Testing:
Dave Watson has integrated KCM into Thrift and we intend to put these
changes into open source. Example of this is in:
https://github.com/djwatson/fbthrift/commit/
dd7e0f9cf4e80912fdb90f6cd394db24e61a14cc
Some initial KCM Thrift benchmark numbers (comment from Dave)
Thrift by default ties a single connection to a single thread. KCM is
instead able to load balance multiple connections across multiple epoll
loops easily.
A test sending ~5k bytes of data to a kcm thrift server, dropping the
bytes on recv:
QPS Latency / std dev Latency
without KCM
70336 209/123
with KCM
70353 191/124
A test sending a small request, then doing work in the epoll thread,
before serving more requests:
QPS Latency / std dev Latency
without KCM
14282 559/602
with KCM
23192 344/234
At the high end, there's definitely some additional kernel overhead:
Cranking the pipelining way up, with lots of small requests
QPS Latency / std dev Latency
without KCM
1863429 127/119
with KCM
1337713 192/241
---
So for a "realistic" workload, KCM performs pretty well (second case).
Under extreme conditions of highest tps we still have some work to do.
In its nature a multiplexor will spread work between CPUs which is
logically good for load balancing but coan conflict with the goal
promoting affinity. Batching messages on both send and receive are
the means to recoup performance.
Future support:
- Integration with TLS (TLS-in-kernel is a separate initiative).
- Page operations/splice support
- Unconnected KCM sockets. Will be able to attach sockets to different
destinations, AF_KCM addresses with be used in sendmsg and recvmsg
to indicate destination
- Explore more utility in performing BPF inline with a TCP data stream
(setting SO_MARK, rxhash for messages being sent received on
KCM sockets).
- Performance work
- Diagnose performance issues under high message load
FAQ (Questions posted on LWN)
Q: Why do this in the kernel?
A: Because the kernel is good at scheduling threads and steering packets
to threads. KCM fits well into this model since it allows the unit
of work for scheduling and steering to be the application layer
messages themselves. KCM should be thought of as generic application
protocol acceleration. It to the philosophy that the kernel provides
generic and extensible interfaces.
Q: How can adding code in the path yield better performance?
A: It is true that for just sending receiving a single message there
would be some performance loss since the code path is longer (for
instance comparing netperf to KCM). But for real production
applications performance takes on many dynamics. Parallelism, context
switching, affinity, granularity of locking, and load balancing are
all relevant. The theory of KCM is that by an application-centric
interface, the kernel can provide better support for these
performance characteristics.
Q: Why not use an existing message-oriented protocol such as RUDP,
DCCP, SCTP, RDS, and others?
A: Because that would entail using a completely new transport protocol.
Deploying a new protocol at scale is either a huge undertaking or
fundamentally infeasible. This is true in either the Internet and in
the data center due in a large part to protocol ossification.
Besides, KCM we want KCM to work existing, well deployed application
protocols that we couldn't change even if we wanted to (e.g. http/2).
KCM simply defines a new interface method, it does not redefine any
aspect of the transport protocol nor application protocol, nor set
any new requirements on these. Neither does KCM attempt to implement
any application protocol logic other than message deliniation in the
stream. These are fundamental requirement of KCM.
Q: How does this affect TCP?
A: It doesn't, not in the slightest. The use of KCM can be one-sided,
KCM has no effect on the wire.
Q: Why force TCP into doing something it's not designed for?
A: TCP is defined as transport protocol and there is no standard that
says the API into TCP must be stream based sockets, or for that
matter sockets at all (or even that TCP needs to be implemented in a
kernel). KCM is not inconsistent with the design of TCP just because
to makes an message based interface over TCP, if it were then every
application protocol sending messages over TCP would also be! :-)
Q: What about the problem of a connections with very slow rate of
incoming data? As a result your application can get storms of very
short reads. And it actually happens a lot with connection from
mobile devices and it is a problem for servers handling a lot of
connections.
A: The storm of short reads will occur regardless of whether KCM is used
or not. KCM does have one advantage in this scenario though, it will
only wake up the application when a full message has been received,
not for each packet that makes up part of a bigger messages. If a
bunch of small messages are received, the application can receive
messages in batches using recvmmsg.
Q: Why not just use DPDK, or at least provide KCM like functionality in
DPDK?
A: DPDK, or more generally OS bypass presumably with a TCP stack in
userland, presents a different model of load balancing than that of
KCM (and the kernel). KCM implements load balancing of messages
across the threads of an application, whereas DPDK load balances
based on queues which are more static and coarse-grained since
multiple connections are bound to queues. DPDK works best when
processing of packets is silo'ed in a thread on the CPU processing
a queue, and packet processing (for both the stack and application)
is fairly uniform. KCM works well for applications where the amount
of work to process messages varies an application work is commonly
delegated to worker threads often on different CPUs.
The message based interface over TCP is something that could be
provide by a DPDK or OS bypass library.
Q: I'm not quite seeing this for HTTP. Maybe for HTTP/2, I guess, or web
sockets?
A: Yes. KCM is most appropriate for message based protocols over TCP
where is easy to deduce the message length (e.g. a length field)
and the protocol implements its own message ordering semantics.
Fortunately this encompasses many modern protocols.
Q: How is memory limited and controlled?
A: In v2 all data for messages is now kept in socket buffers, either
those for TCP or KCM, so socket buffer limits are applicable.
This includes receive messages assembly which is now done ont teh
TCP socket buffer instead of a separate queue-- this has the
consequence that the TCP socket buffer limit provides an
enforceable maxmimum message size.
Additionally, a timeout may be set for messages assembly. The
value used for this is taken from sk_rcvtimeo of the TCP socket.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds receive timeout for message assembly on the attached TCP
sockets. The timeout is set when a new messages is started and the whole
message has not been received by TCP (not in the receive queue). If the
completely message is subsequently received the timer is cancelled, if the
timer expires the RX side is aborted.
The timeout value is taken from the socket timeout (SO_RCVTIMEO) that is
set on a TCP socket (i.e. set by get sockopt before attaching a TCP socket
to KCM.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Message assembly is performed on the TCP socket. This is logically
equivalent of an application that performs a peek on the socket to find
out how much memory is needed for a receive buffer. The receive socket
buffer also provides the maximum message size which is checked.
The receive algorithm is something like:
1) Receive the first skbuf for a message (or skbufs if multiple are
needed to determine message length).
2) Check the message length against the number of bytes in the TCP
receive queue (tcp_inq()).
- If all the bytes of the message are in the queue (incluing the
skbuf received), then proceed with message assembly (it should
complete with the tcp_read_sock)
- Else, mark the psock with the number of bytes needed to
complete the message.
3) In TCP data ready function, if the psock indicates that we are
waiting for the rest of the bytes of a messages, check the number
of queued bytes against that.
- If there are still not enough bytes for the message, just
return
- Else, clear the waiting bytes and proceed to receive the
skbufs. The message should now be received in one
tcp_read_sock
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implement kcm_sendpage. Set in sendpage to kcm_sendpage in both
dgram and seqpacket ops.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Implement kcm_splice_read. This is supported only for seqpacket.
Add kcm_seqpacket_ops and set splice read to kcm_splice_read.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds various counters for KCM. These include counters for
messages and bytes received or sent, as well as counters for number of
attached/unattached TCP sockets and other error or edge events.
The statistics are exposed via a proc interface. /proc/net/kcm provides
statistics per KCM socket and per psock (attached TCP sockets).
/proc/net/kcm_stats provides aggregate statistics.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This module implements the Kernel Connection Multiplexor.
Kernel Connection Multiplexor (KCM) is a facility that provides a
message based interface over TCP for generic application protocols.
With KCM an application can efficiently send and receive application
protocol messages over TCP using datagram sockets.
For more information see the included Documentation/networking/kcm.txt
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Create a common kernel function to get the number of bytes available
on a TCP socket. This is based on code in INQ getsockopt and we now call
the function for that getsockopt.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a new msg flag called MSG_BATCH. This flag is used in sendmsg to
indicate that more messages will follow (i.e. a batch of messages is
being sent). This is similar to MSG_MORE except that the following
messages are not merged into one packet, they are sent individually.
sendmmsg is updated so that each contained message except for the
last one is marked as MSG_BATCH.
MSG_BATCH is a performance optimization in cases where a socket
implementation can benefit by transmitting packets in a batch.
Signed-off-by: Tom Herbert <tom@herbertland.com>
Signed-off-by: David S. Miller <davem@davemloft.net>