Few cleanups including: bpf_redirect_map() is really XDP only due to
the return code. Move it to a more appropriate location where we do
the XDP redirect handling and change it's name into bpf_xdp_redirect_map()
to make it consistent to the bpf_xdp_redirect() helper.
xdp_do_redirect_map() helper can be static since only used out of filter.c
file. Drop the goto in xdp_do_generic_redirect() and only return errors
directly. In xdp_do_flush_map() only clear ri->map_to_flush which is the
arg we're using in that function, ri->map is cleared earlier along with
ri->ifindex.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
High order GFP_KERNEL allocations can stress the host badly.
Use modern kvmalloc_array()/kvfree() instead of custom
allocations.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The patch adds ERSPAN type II tunnel support. The implementation
is based on the draft at [1]. One of the purposes is for Linux
box to be able to receive ERSPAN monitoring traffic sent from
the Cisco switch, by creating a ERSPAN tunnel device.
In addition, the patch also adds ERSPAN TX, so Linux virtual
switch can redirect monitored traffic to the ERSPAN tunnel device.
The traffic will be encapsulated into ERSPAN and sent out.
The implementation reuses tunnel key as ERSPAN session ID, and
field 'erspan' as ERSPAN Index fields:
./ip link add dev ers11 type erspan seq key 100 erspan 123 \
local 172.16.1.200 remote 172.16.1.100
To use the above device as ERSPAN receiver, configure
Nexus 5000 switch as below:
monitor session 100 type erspan-source
erspan-id 123
vrf default
destination ip 172.16.1.200
source interface Ethernet1/11 both
source interface Ethernet1/12 both
no shut
monitor erspan origin ip-address 172.16.1.100 global
[1] https://tools.ietf.org/html/draft-foschiano-erspan-01
[2] iproute2 patch: http://marc.info/?l=linux-netdev&m=150306086924951&w=2
[3] test script: http://marc.info/?l=linux-netdev&m=150231021807304&w=2
Signed-off-by: William Tu <u9012063@gmail.com>
Signed-off-by: Meenakshi Vohra <mvohra@vmware.com>
Cc: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove two references to ufo in the udp send path that are no longer
reachable now that ufo has been removed.
Commit 85f1bd9a7b ("udp: consistently apply ufo or fragmentation")
is a fix to ufo. It is safe to revert what remains of it.
Also, no skb can enter ip_append_page with skb_is_gso true now that
skb_shinfo(skb)->gso_type is no longer set in ip_append_page/_data.
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Tonghao Zhang <xiangxia.m.yue@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tcp_peer_is_proven needs a proper route to make the
determination, but dst always is NULL. This bug may
be there at the beginning of git tree. This does not
look serious enough to deserve backports to stable
versions.
Signed-off-by: Tonghao Zhang <xiangxia.m.yue@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When the broadcast send link after 100 attempts has failed to
transfer a packet to all peers, we consider it stale, and reset
it. Thereafter it needs to re-synchronize with the peers, something
currently done by just resetting and re-establishing all links to
all peers. This has turned out to be overkill, with potentially
unwanted consequences for the remaining cluster.
A closer analysis reveals that this can be done much simpler. When
this kind of failure happens, for reasons that may lie outside the
TIPC protocol, it is typically only one peer which is failing to
receive and acknowledge packets. It is hence sufficient to identify
and reset the links only to that peer to resolve the situation, without
having to reset the broadcast link at all. This solution entails a much
lower risk of negative consequences for the own node as well as for
the overall cluster.
We implement this change in this commit.
Reviewed-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 3fcece12bc ("net: store port/representator id in metadata_dst")
added a new type field to metadata_dst, but metadata_dst_free() wasn't
updated to check it before freeing the METADATA_IP_TUNNEL specific dst
cache entry.
This is not currently causing problems since it's far enough back in the
struct to be zeroed for the only other type currently in existance
(METADATA_HW_PORT_MUX), but nevertheless it's not correct.
Fixes: 3fcece12bc ("net: store port/representator id in metadata_dst")
Signed-off-by: David Lamparter <equinox@diac24.net>
Cc: Jakub Kicinski <jakub.kicinski@netronome.com>
Cc: Sridhar Samudrala <sridhar.samudrala@intel.com>
Cc: Simon Horman <horms@verge.net.au>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
One nagging difference between ipv4 and ipv6 is host routes for ipv6
addresses are installed using the loopback device or VRF / L3 Master
device. e.g.,
2001:db8:1::/120 dev veth0 proto kernel metric 256 pref medium
local 2001:db8:1::1 dev lo table local proto kernel metric 0 pref medium
Using the loopback device is convenient -- necessary for local tx, but
has some nasty side effects, most notably setting the 'lo' device down
causes all host routes for all local IPv6 address to be removed from the
FIB and completely breaks IPv6 networking across all interfaces.
This patch puts FIB entries for IPv6 routes against the device. This
simplifies the routes in the FIB, for example by making dst->dev and
rt6i_idev->dev the same (a future patch can look at removing the device
reference taken for rt6i_idev for FIB entries).
When copies are made on FIB lookups, the cloned route has dst->dev
set to loopback (or the L3 master device). This is needed for the
local Tx of packets to local addresses.
With fib entries allocated against the real network device, the addrconf
code that reinserts host routes on admin up of 'lo' is no longer needed.
Signed-off-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
compile tested only, but saw no warnings/errors with
allmodconfig build.
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Steffen Klassert says:
====================
pull request (net-next): ipsec-next 2017-08-21
1) Support RX checksum with IPsec crypto offload for esp4/esp6.
From Ilan Tayari.
2) Fixup IPv6 checksums when doing IPsec crypto offload.
From Yossi Kuperman.
3) Auto load the xfrom offload modules if a user installs
a SA that requests IPsec offload. From Ilan Tayari.
4) Clear RX offload informations in xfrm_input to not
confuse the TX path with stale offload informations.
From Ilan Tayari.
5) Allow IPsec GSO for local sockets if the crypto operation
will be offloaded.
6) Support setting of an output mark to the xfrm_state.
This mark can be used to to do the tunnel route lookup.
From Lorenzo Colitti.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
In fib6_add(), it is possible that fib6_add_1() picks an intermediate
node and sets the node's fn->leaf to NULL in order to add this new
route. However, if fib6_add_rt2node() fails to add the new
route for some reason, fn->leaf will be left as NULL and could
potentially cause crash when fn->leaf is accessed in fib6_locate().
This patch makes sure fib6_repair_tree() is called to properly repair
fn->leaf in the above failure case.
Here is the syzkaller reported general protection fault in fib6_locate:
kasan: CONFIG_KASAN_INLINE enabled
kasan: GPF could be caused by NULL-ptr deref or user memory access
general protection fault: 0000 [#1] SMP KASAN
Modules linked in:
CPU: 0 PID: 40937 Comm: syz-executor3 Not tainted
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
task: ffff8801d7d64100 ti: ffff8801d01a0000 task.ti: ffff8801d01a0000
RIP: 0010:[<ffffffff82a3e0e1>] [<ffffffff82a3e0e1>] __ipv6_prefix_equal64_half include/net/ipv6.h:475 [inline]
RIP: 0010:[<ffffffff82a3e0e1>] [<ffffffff82a3e0e1>] ipv6_prefix_equal include/net/ipv6.h:492 [inline]
RIP: 0010:[<ffffffff82a3e0e1>] [<ffffffff82a3e0e1>] fib6_locate_1 net/ipv6/ip6_fib.c:1210 [inline]
RIP: 0010:[<ffffffff82a3e0e1>] [<ffffffff82a3e0e1>] fib6_locate+0x281/0x3c0 net/ipv6/ip6_fib.c:1233
RSP: 0018:ffff8801d01a36a8 EFLAGS: 00010202
RAX: 0000000000000020 RBX: ffff8801bc790e00 RCX: ffffc90002983000
RDX: 0000000000001219 RSI: ffff8801d01a37a0 RDI: 0000000000000100
RBP: ffff8801d01a36f0 R08: 00000000000000ff R09: 0000000000000000
R10: 0000000000000003 R11: 0000000000000000 R12: 0000000000000001
R13: dffffc0000000000 R14: ffff8801d01a37a0 R15: 0000000000000000
FS: 00007f6afd68c700(0000) GS:ffff8801db400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000004c6340 CR3: 00000000ba41f000 CR4: 00000000001426f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Stack:
ffff8801d01a37a8 ffff8801d01a3780 ffffed003a0346f5 0000000c82a23ea0
ffff8800b7bd7700 ffff8801d01a3780 ffff8800b6a1c940 ffffffff82a23ea0
ffff8801d01a3920 ffff8801d01a3748 ffffffff82a223d6 ffff8801d7d64988
Call Trace:
[<ffffffff82a223d6>] ip6_route_del+0x106/0x570 net/ipv6/route.c:2109
[<ffffffff82a23f9d>] inet6_rtm_delroute+0xfd/0x100 net/ipv6/route.c:3075
[<ffffffff82621359>] rtnetlink_rcv_msg+0x549/0x7a0 net/core/rtnetlink.c:3450
[<ffffffff8274c1d1>] netlink_rcv_skb+0x141/0x370 net/netlink/af_netlink.c:2281
[<ffffffff82613ddf>] rtnetlink_rcv+0x2f/0x40 net/core/rtnetlink.c:3456
[<ffffffff8274ad38>] netlink_unicast_kernel net/netlink/af_netlink.c:1206 [inline]
[<ffffffff8274ad38>] netlink_unicast+0x518/0x750 net/netlink/af_netlink.c:1232
[<ffffffff8274b83e>] netlink_sendmsg+0x8ce/0xc30 net/netlink/af_netlink.c:1778
[<ffffffff82564aff>] sock_sendmsg_nosec net/socket.c:609 [inline]
[<ffffffff82564aff>] sock_sendmsg+0xcf/0x110 net/socket.c:619
[<ffffffff82564d62>] sock_write_iter+0x222/0x3a0 net/socket.c:834
[<ffffffff8178523d>] new_sync_write+0x1dd/0x2b0 fs/read_write.c:478
[<ffffffff817853f4>] __vfs_write+0xe4/0x110 fs/read_write.c:491
[<ffffffff81786c38>] vfs_write+0x178/0x4b0 fs/read_write.c:538
[<ffffffff817892a9>] SYSC_write fs/read_write.c:585 [inline]
[<ffffffff817892a9>] SyS_write+0xd9/0x1b0 fs/read_write.c:577
[<ffffffff82c71e32>] entry_SYSCALL_64_fastpath+0x12/0x17
Note: there is no "Fixes" tag as this seems to be a bug introduced
very early.
Signed-off-by: Wei Wang <weiwan@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Make code closer to current style. Mostly whitespace changes.
Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The XPS queue attributes can be ro_after_init.
Also use __ATTR_RX macros to simplify initialization.
Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The show and store functions don't need/use the attribute.
Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The attributes of net devices are immutable.
Ideally, attribute groups would contain const attributes
but there are too many places that do modifications of list
during startup (in other code) to allow that.
Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The net_class in sysfs is only modified on init.
Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
These functions are wrapper arount class_create_file which can take a
const attribute.
Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If kobject_init_and_add failed, then the failure path would
decrement the reference count of the queue kobject whose reference
count was already zero.
Fixes: 114cf58021 ("bql: Byte queue limits")
Signed-off-by: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As we know in some target's checkentry it may dereference par.entryinfo
to check entry stuff inside. But when sched action calls xt_check_target,
par.entryinfo is set with NULL. It would cause kernel panic when calling
some targets.
It can be reproduce with:
# tc qd add dev eth1 ingress handle ffff:
# tc filter add dev eth1 parent ffff: u32 match u32 0 0 action xt \
-j ECN --ecn-tcp-remove
It could also crash kernel when using target CLUSTERIP or TPROXY.
By now there's no proper value for par.entryinfo in ipt_init_target,
but it can not be set with NULL. This patch is to void all these
panics by setting it with an ipt_entry obj with all members = 0.
Note that this issue has been there since the very beginning.
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Acked-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
rxrpc_service_prealloc_one() doesn't set the socket pointer on any new call
it preallocates, but does add it to the rxrpc net namespace call list.
This, however, causes rxrpc_put_call() to oops when the call is discarded
when the socket is closed. rxrpc_put_call() needs the socket to be able to
reach the namespace so that it can use a lock held therein.
Fix this by setting a call's socket pointer immediately before discarding
it.
This can be triggered by unloading the kafs module, resulting in an oops
like the following:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000030
IP: rxrpc_put_call+0x1e2/0x32d
PGD 0
P4D 0
Oops: 0000 [#1] SMP
Modules linked in: kafs(E-)
CPU: 3 PID: 3037 Comm: rmmod Tainted: G E 4.12.0-fscache+ #213
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
task: ffff8803fc92e2c0 task.stack: ffff8803fef74000
RIP: 0010:rxrpc_put_call+0x1e2/0x32d
RSP: 0018:ffff8803fef77e08 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff8803fab99ac0 RCX: 000000000000000f
RDX: ffffffff81c50a40 RSI: 000000000000000c RDI: ffff8803fc92ea88
RBP: ffff8803fef77e30 R08: ffff8803fc87b941 R09: ffffffff82946d20
R10: ffff8803fef77d10 R11: 00000000000076fc R12: 0000000000000005
R13: ffff8803fab99c20 R14: 0000000000000001 R15: ffffffff816c6aee
FS: 00007f915a059700(0000) GS:ffff88041fb80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000030 CR3: 00000003fef39000 CR4: 00000000001406e0
Call Trace:
rxrpc_discard_prealloc+0x325/0x341
rxrpc_listen+0xf9/0x146
kernel_listen+0xb/0xd
afs_close_socket+0x3e/0x173 [kafs]
afs_exit+0x1f/0x57 [kafs]
SyS_delete_module+0x10f/0x19a
do_syscall_64+0x8a/0x149
entry_SYSCALL64_slow_path+0x25/0x25
Fixes: 2baec2c3f8 ("rxrpc: Support network namespacing")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
list.dev has not been initialized and so the copy_to_user is copying
data from the stack back to user space which is a potential
information leak. Fix this ensuring all of list is initialized to
zero.
Detected by CoverityScan, CID#1357894 ("Uninitialized scalar variable")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The return error code need to be included in the tracepoint
xdp:xdp_redirect, else its not possible to distinguish successful or
failed XDP_REDIRECT transmits.
XDP have no queuing mechanism. Thus, it is fairly easily to overrun a
NIC transmit queue. The eBPF program invoking helpers (bpf_redirect
or bpf_redirect_map) to redirect a packet doesn't get any feedback
whether the packet was actually transmitted.
Info on failed transmits in the tracepoint xdp:xdp_redirect, is
interesting as this opens for providing a feedback-loop to the
receiving XDP program.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is useful for directly looking up a task based on class id rather than
having to scan through all open file descriptors.
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In some situations tcp_send_loss_probe() can realize that it's unable
to send a loss probe (TLP), and falls back to calling tcp_rearm_rto()
to schedule an RTO timer. In such cases, sometimes tcp_rearm_rto()
realizes that the RTO was eligible to fire immediately or at some
point in the past (delta_us <= 0). Previously in such cases
tcp_rearm_rto() was scheduling such "overdue" RTOs to happen at now +
icsk_rto, which caused needless delays of hundreds of milliseconds
(and non-linear behavior that made reproducible testing
difficult). This commit changes the logic to schedule "overdue" RTOs
ASAP, rather than at now + icsk_rto.
Fixes: 6ba8a3b19e ("tcp: Tail loss probe (TLP)")
Suggested-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
syzcaller reported the following use-after-free issue in rt6_select():
BUG: KASAN: use-after-free in rt6_select net/ipv6/route.c:755 [inline] at addr ffff8800bc6994e8
BUG: KASAN: use-after-free in ip6_pol_route.isra.46+0x1429/0x1470 net/ipv6/route.c:1084 at addr ffff8800bc6994e8
Read of size 4 by task syz-executor1/439628
CPU: 0 PID: 439628 Comm: syz-executor1 Not tainted 4.3.5+ #8
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
0000000000000000 ffff88018fe435b0 ffffffff81ca384d ffff8801d3588c00
ffff8800bc699380 ffff8800bc699500 dffffc0000000000 ffff8801d40a47c0
ffff88018fe435d8 ffffffff81735751 ffff88018fe43660 ffff8800bc699380
Call Trace:
[<ffffffff81ca384d>] __dump_stack lib/dump_stack.c:15 [inline]
[<ffffffff81ca384d>] dump_stack+0xc1/0x124 lib/dump_stack.c:51
sctp: [Deprecated]: syz-executor0 (pid 439615) Use of struct sctp_assoc_value in delayed_ack socket option.
Use struct sctp_sack_info instead
[<ffffffff81735751>] kasan_object_err+0x21/0x70 mm/kasan/report.c:158
[<ffffffff817359c4>] print_address_description mm/kasan/report.c:196 [inline]
[<ffffffff817359c4>] kasan_report_error+0x1b4/0x4a0 mm/kasan/report.c:285
[<ffffffff81735d93>] kasan_report mm/kasan/report.c:305 [inline]
[<ffffffff81735d93>] __asan_report_load4_noabort+0x43/0x50 mm/kasan/report.c:325
[<ffffffff82a28e39>] rt6_select net/ipv6/route.c:755 [inline]
[<ffffffff82a28e39>] ip6_pol_route.isra.46+0x1429/0x1470 net/ipv6/route.c:1084
[<ffffffff82a28fb1>] ip6_pol_route_output+0x81/0xb0 net/ipv6/route.c:1203
[<ffffffff82ab0a50>] fib6_rule_action+0x1f0/0x680 net/ipv6/fib6_rules.c:95
[<ffffffff8265cbb6>] fib_rules_lookup+0x2a6/0x7a0 net/core/fib_rules.c:223
[<ffffffff82ab1430>] fib6_rule_lookup+0xd0/0x250 net/ipv6/fib6_rules.c:41
[<ffffffff82a22006>] ip6_route_output+0x1d6/0x2c0 net/ipv6/route.c:1224
[<ffffffff829e83d2>] ip6_dst_lookup_tail+0x4d2/0x890 net/ipv6/ip6_output.c:943
[<ffffffff829e889a>] ip6_dst_lookup_flow+0x9a/0x250 net/ipv6/ip6_output.c:1079
[<ffffffff82a9f7d8>] ip6_datagram_dst_update+0x538/0xd40 net/ipv6/datagram.c:91
[<ffffffff82aa0978>] __ip6_datagram_connect net/ipv6/datagram.c:251 [inline]
[<ffffffff82aa0978>] ip6_datagram_connect+0x518/0xe50 net/ipv6/datagram.c:272
[<ffffffff82aa1313>] ip6_datagram_connect_v6_only+0x63/0x90 net/ipv6/datagram.c:284
[<ffffffff8292f790>] inet_dgram_connect+0x170/0x1f0 net/ipv4/af_inet.c:564
[<ffffffff82565547>] SYSC_connect+0x1a7/0x2f0 net/socket.c:1582
[<ffffffff8256a649>] SyS_connect+0x29/0x30 net/socket.c:1563
[<ffffffff82c72032>] entry_SYSCALL_64_fastpath+0x12/0x17
Object at ffff8800bc699380, in cache ip6_dst_cache size: 384
The root cause of it is that in fib6_add_rt2node(), when it replaces an
existing route with the new one, it does not update fn->rr_ptr.
This commit resets fn->rr_ptr to NULL when it points to a route which is
replaced in fib6_add_rt2node().
Fixes: 2759647247 ("ipv6: fix ECMP route replacement")
Signed-off-by: Wei Wang <weiwan@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
syszkaller reported use-after-free in tipc [1]
When msg->rep skb is freed, set the pointer to NULL,
so that caller does not free it again.
[1]
==================================================================
BUG: KASAN: use-after-free in skb_push+0xd4/0xe0 net/core/skbuff.c:1466
Read of size 8 at addr ffff8801c6e71e90 by task syz-executor5/4115
CPU: 1 PID: 4115 Comm: syz-executor5 Not tainted 4.13.0-rc4+ #32
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:16 [inline]
dump_stack+0x194/0x257 lib/dump_stack.c:52
print_address_description+0x73/0x250 mm/kasan/report.c:252
kasan_report_error mm/kasan/report.c:351 [inline]
kasan_report+0x24e/0x340 mm/kasan/report.c:409
__asan_report_load8_noabort+0x14/0x20 mm/kasan/report.c:430
skb_push+0xd4/0xe0 net/core/skbuff.c:1466
tipc_nl_compat_recv+0x833/0x18f0 net/tipc/netlink_compat.c:1209
genl_family_rcv_msg+0x7b7/0xfb0 net/netlink/genetlink.c:598
genl_rcv_msg+0xb2/0x140 net/netlink/genetlink.c:623
netlink_rcv_skb+0x216/0x440 net/netlink/af_netlink.c:2397
genl_rcv+0x28/0x40 net/netlink/genetlink.c:634
netlink_unicast_kernel net/netlink/af_netlink.c:1265 [inline]
netlink_unicast+0x4e8/0x6f0 net/netlink/af_netlink.c:1291
netlink_sendmsg+0xa4a/0xe60 net/netlink/af_netlink.c:1854
sock_sendmsg_nosec net/socket.c:633 [inline]
sock_sendmsg+0xca/0x110 net/socket.c:643
sock_write_iter+0x31a/0x5d0 net/socket.c:898
call_write_iter include/linux/fs.h:1743 [inline]
new_sync_write fs/read_write.c:457 [inline]
__vfs_write+0x684/0x970 fs/read_write.c:470
vfs_write+0x189/0x510 fs/read_write.c:518
SYSC_write fs/read_write.c:565 [inline]
SyS_write+0xef/0x220 fs/read_write.c:557
entry_SYSCALL_64_fastpath+0x1f/0xbe
RIP: 0033:0x4512e9
RSP: 002b:00007f3bc8184c08 EFLAGS: 00000216 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000718000 RCX: 00000000004512e9
RDX: 0000000000000020 RSI: 0000000020fdb000 RDI: 0000000000000006
RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000216 R12: 00000000004b5e76
R13: 00007f3bc8184b48 R14: 00000000004b5e86 R15: 0000000000000000
Allocated by task 4115:
save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59
save_stack+0x43/0xd0 mm/kasan/kasan.c:447
set_track mm/kasan/kasan.c:459 [inline]
kasan_kmalloc+0xad/0xe0 mm/kasan/kasan.c:551
kasan_slab_alloc+0x12/0x20 mm/kasan/kasan.c:489
kmem_cache_alloc_node+0x13d/0x750 mm/slab.c:3651
__alloc_skb+0xf1/0x740 net/core/skbuff.c:219
alloc_skb include/linux/skbuff.h:903 [inline]
tipc_tlv_alloc+0x26/0xb0 net/tipc/netlink_compat.c:148
tipc_nl_compat_dumpit+0xf2/0x3c0 net/tipc/netlink_compat.c:248
tipc_nl_compat_handle net/tipc/netlink_compat.c:1130 [inline]
tipc_nl_compat_recv+0x756/0x18f0 net/tipc/netlink_compat.c:1199
genl_family_rcv_msg+0x7b7/0xfb0 net/netlink/genetlink.c:598
genl_rcv_msg+0xb2/0x140 net/netlink/genetlink.c:623
netlink_rcv_skb+0x216/0x440 net/netlink/af_netlink.c:2397
genl_rcv+0x28/0x40 net/netlink/genetlink.c:634
netlink_unicast_kernel net/netlink/af_netlink.c:1265 [inline]
netlink_unicast+0x4e8/0x6f0 net/netlink/af_netlink.c:1291
netlink_sendmsg+0xa4a/0xe60 net/netlink/af_netlink.c:1854
sock_sendmsg_nosec net/socket.c:633 [inline]
sock_sendmsg+0xca/0x110 net/socket.c:643
sock_write_iter+0x31a/0x5d0 net/socket.c:898
call_write_iter include/linux/fs.h:1743 [inline]
new_sync_write fs/read_write.c:457 [inline]
__vfs_write+0x684/0x970 fs/read_write.c:470
vfs_write+0x189/0x510 fs/read_write.c:518
SYSC_write fs/read_write.c:565 [inline]
SyS_write+0xef/0x220 fs/read_write.c:557
entry_SYSCALL_64_fastpath+0x1f/0xbe
Freed by task 4115:
save_stack_trace+0x16/0x20 arch/x86/kernel/stacktrace.c:59
save_stack+0x43/0xd0 mm/kasan/kasan.c:447
set_track mm/kasan/kasan.c:459 [inline]
kasan_slab_free+0x71/0xc0 mm/kasan/kasan.c:524
__cache_free mm/slab.c:3503 [inline]
kmem_cache_free+0x77/0x280 mm/slab.c:3763
kfree_skbmem+0x1a1/0x1d0 net/core/skbuff.c:622
__kfree_skb net/core/skbuff.c:682 [inline]
kfree_skb+0x165/0x4c0 net/core/skbuff.c:699
tipc_nl_compat_dumpit+0x36a/0x3c0 net/tipc/netlink_compat.c:260
tipc_nl_compat_handle net/tipc/netlink_compat.c:1130 [inline]
tipc_nl_compat_recv+0x756/0x18f0 net/tipc/netlink_compat.c:1199
genl_family_rcv_msg+0x7b7/0xfb0 net/netlink/genetlink.c:598
genl_rcv_msg+0xb2/0x140 net/netlink/genetlink.c:623
netlink_rcv_skb+0x216/0x440 net/netlink/af_netlink.c:2397
genl_rcv+0x28/0x40 net/netlink/genetlink.c:634
netlink_unicast_kernel net/netlink/af_netlink.c:1265 [inline]
netlink_unicast+0x4e8/0x6f0 net/netlink/af_netlink.c:1291
netlink_sendmsg+0xa4a/0xe60 net/netlink/af_netlink.c:1854
sock_sendmsg_nosec net/socket.c:633 [inline]
sock_sendmsg+0xca/0x110 net/socket.c:643
sock_write_iter+0x31a/0x5d0 net/socket.c:898
call_write_iter include/linux/fs.h:1743 [inline]
new_sync_write fs/read_write.c:457 [inline]
__vfs_write+0x684/0x970 fs/read_write.c:470
vfs_write+0x189/0x510 fs/read_write.c:518
SYSC_write fs/read_write.c:565 [inline]
SyS_write+0xef/0x220 fs/read_write.c:557
entry_SYSCALL_64_fastpath+0x1f/0xbe
The buggy address belongs to the object at ffff8801c6e71dc0
which belongs to the cache skbuff_head_cache of size 224
The buggy address is located 208 bytes inside of
224-byte region [ffff8801c6e71dc0, ffff8801c6e71ea0)
The buggy address belongs to the page:
page:ffffea00071b9c40 count:1 mapcount:0 mapping:ffff8801c6e71000 index:0x0
flags: 0x200000000000100(slab)
raw: 0200000000000100 ffff8801c6e71000 0000000000000000 000000010000000c
raw: ffffea0007224a20 ffff8801d98caf48 ffff8801d9e79040 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8801c6e71d80: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
ffff8801c6e71e00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8801c6e71e80: fb fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc
^
ffff8801c6e71f00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff8801c6e71f80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
==================================================================
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Jon Maloy <jon.maloy@ericsson.com>
Cc: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Due to commit e6afc8ace6 ("udp: remove
headers from UDP packets before queueing"), when udp packets are being
peeked the requested extra offset is always 0 as there is no need to skip
the udp header. However, when the offset is 0 and the next skb is
of length 0, it is only returned once. The behaviour can be seen with
the following python script:
from socket import *;
f=socket(AF_INET6, SOCK_DGRAM | SOCK_NONBLOCK, 0);
g=socket(AF_INET6, SOCK_DGRAM | SOCK_NONBLOCK, 0);
f.bind(('::', 0));
addr=('::1', f.getsockname()[1]);
g.sendto(b'', addr)
g.sendto(b'b', addr)
print(f.recvfrom(10, MSG_PEEK));
print(f.recvfrom(10, MSG_PEEK));
Where the expected output should be the empty string twice.
Instead, make sk_peek_offset return negative values, and pass those values
to __skb_try_recv_datagram/__skb_try_recv_from_queue. If the passed offset
to __skb_try_recv_from_queue is negative, the checked skb is never skipped.
__skb_try_recv_from_queue will then ensure the offset is reset back to 0
if a peek is requested without an offset, unless no packets are found.
Also simplify the if condition in __skb_try_recv_from_queue. If _off is
greater then 0, and off is greater then or equal to skb->len, then
(_off || skb->len) must always be true assuming skb->len >= 0 is always
true.
Also remove a redundant check around a call to sk_peek_offset in af_unix.c,
as it double checked if MSG_PEEK was set in the flags.
V2:
- Moved the negative fixup into __skb_try_recv_from_queue, and remove now
redundant checks
- Fix peeking in udp{,v6}_recvmsg to report the right value when the
offset is 0
V3:
- Marked new branch in __skb_try_recv_from_queue as unlikely.
Signed-off-by: Matthew Dawson <matthew@mjdsystems.ca>
Acked-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Johan Hedberg says:
====================
pull request: bluetooth-next 2017-08-18
Here's one more bluetooth-next pull request for the 4.14 kernel:
- Multiple fixes for Broadcom controllers
- Fixes to the bluecard HCI driver
- New USB ID for Realtek RTL8723BE controller
- Fix static analyzer warning with kfree
Please let me know if there are any issues pulling. Thanks.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Adding a lock around one of the assignments prevents gcc from
tracking the state of the local 'fibmatch' variable, so it can no
longer prove that 'dst' is always initialized, leading to a bogus
warning:
net/ipv6/route.c: In function 'inet6_rtm_getroute':
net/ipv6/route.c:3659:2: error: 'dst' may be used uninitialized in this function [-Werror=maybe-uninitialized]
This moves the other assignment into the same lock to shut up the
warning.
Fixes: 121622dba8 ("ipv6: route: make rtm_getroute not assume rtnl is locked")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
The dereference before check is wrong and leads to an oops when
p_filter_chain is NULL. The check needs to be done on the pointer to
prevent NULL dereference.
Fixes: f93e1cdcf4 ("net/sched: fix filter flushing")
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Given both program types are effecitvely doing the same in the
prologue, just reuse the one that we had for tc and only adapt
to the corresponding drop verdict value. That way, we don't need
to have the duplicate from 8a31db5615 ("bpf: add access to sock
fields and pkt data from sk_skb programs") to maintain.
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
We are guaranteed to have a NULL ri->map in this branch since
we test for it earlier, so we don't need to reset it here.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While working on yet another syzkaller report, I found
that our IP_MAX_MTU enforcements were not properly done.
gcc seems to reload dev->mtu for min(dev->mtu, IP_MAX_MTU), and
final result can be bigger than IP_MAX_MTU :/
This is a problem because device mtu can be changed on other cpus or
threads.
While this patch does not fix the issue I am working on, it is
probably worth addressing it.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
I made a stupid mistake using TC_CLSFLOWER_STATS instead of
TC_SETUP_CLSFLOWER. Funny thing is that both are defined as "2" so it
actually did not cause any harm. Anyway, fixing it now.
Fixes: 2572ac53c4 ("net: sched: make type an argument for ndo_setup_tc")
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For sw_flow_actions, the actions_len only represents the kernel part's
size, and when we dump the actions to the userspace, we will do the
convertions, so it's true size may become bigger than the actions_len.
But unfortunately, for OVS_PACKET_ATTR_ACTIONS, we use the actions_len
to alloc the skbuff, so the user_skb's size may become insufficient and
oops will happen like this:
skbuff: skb_over_panic: text:ffffffff8148fabf len:1749 put:157 head:
ffff881300f39000 data:ffff881300f39000 tail:0x6d5 end:0x6c0 dev:<NULL>
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:129!
[...]
Call Trace:
<IRQ>
[<ffffffff8148be82>] skb_put+0x43/0x44
[<ffffffff8148fabf>] skb_zerocopy+0x6c/0x1f4
[<ffffffffa0290d36>] queue_userspace_packet+0x3a3/0x448 [openvswitch]
[<ffffffffa0292023>] ovs_dp_upcall+0x30/0x5c [openvswitch]
[<ffffffffa028d435>] output_userspace+0x132/0x158 [openvswitch]
[<ffffffffa01e6890>] ? ip6_rcv_finish+0x74/0x77 [ipv6]
[<ffffffffa028e277>] do_execute_actions+0xcc1/0xdc8 [openvswitch]
[<ffffffffa028e3f2>] ovs_execute_actions+0x74/0x106 [openvswitch]
[<ffffffffa0292130>] ovs_dp_process_packet+0xe1/0xfd [openvswitch]
[<ffffffffa0292b77>] ? key_extract+0x63c/0x8d5 [openvswitch]
[<ffffffffa029848b>] ovs_vport_receive+0xa1/0xc3 [openvswitch]
[...]
Also we can find that the actions_len is much little than the orig_len:
crash> struct sw_flow_actions 0xffff8812f539d000
struct sw_flow_actions {
rcu = {
next = 0xffff8812f5398800,
func = 0xffffe3b00035db32
},
orig_len = 1384,
actions_len = 592,
actions = 0xffff8812f539d01c
}
So as a quick fix, use the orig_len instead of the actions_len to alloc
the user_skb.
Last, this oops happened on our system running a relative old kernel, but
the same risk still exists on the mainline, since we use the wrong
actions_len from the beginning.
Fixes: ccea74457b ("openvswitch: include datapath actions with sampled-packet upcall to userspace")
Cc: Neil McKee <neil.mckee@inmon.com>
Signed-off-by: Liping Zhang <zlpnobody@gmail.com>
Acked-by: Pravin B Shelar <pshelar@ovn.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The main purpose of this tracepoint is to monitor bulk dequeue
in the network qdisc layer, as it cannot be deducted from the
existing qdisc stats.
The txq_state can be used for determining the reason for zero packet
dequeues, see enum netdev_queue_state_t.
Notice all packets doesn't necessary activate this tracepoint. As
qdiscs with flag TCQ_F_CAN_BYPASS, can directly invoke
sch_direct_xmit() when qdisc_qlen is zero.
Remember that perf record supports filters like:
perf record -e qdisc:qdisc_dequeue \
--filter 'ifindex == 4 && (packets > 1 || txq_state > 0)'
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Recently we added a new map type called dev map used to forward XDP
packets between ports (6093ec2dc3). This patches introduces a
similar notion for sockets.
A sockmap allows users to add participating sockets to a map. When
sockets are added to the map enough context is stored with the
map entry to use the entry with a new helper
bpf_sk_redirect_map(map, key, flags)
This helper (analogous to bpf_redirect_map in XDP) is given the map
and an entry in the map. When called from a sockmap program, discussed
below, the skb will be sent on the socket using skb_send_sock().
With the above we need a bpf program to call the helper from that will
then implement the send logic. The initial site implemented in this
series is the recv_sock hook. For this to work we implemented a map
attach command to add attributes to a map. In sockmap we add two
programs a parse program and a verdict program. The parse program
uses strparser to build messages and pass them to the verdict program.
The parse programs use the normal strparser semantics. The verdict
program is of type SK_SKB.
The verdict program returns a verdict SK_DROP, or SK_REDIRECT for
now. Additional actions may be added later. When SK_REDIRECT is
returned, expected when bpf program uses bpf_sk_redirect_map(), the
sockmap logic will consult per cpu variables set by the helper routine
and pull the sock entry out of the sock map. This pattern follows the
existing redirect logic in cls and xdp programs.
This gives the flow,
recv_sock -> str_parser (parse_prog) -> verdict_prog -> skb_send_sock
\
-> kfree_skb
As an example use case a message based load balancer may use specific
logic in the verdict program to select the sock to send on.
Sample programs are provided in future patches that hopefully illustrate
the user interfaces. Also selftests are in follow-on patches.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
A class of programs, run from strparser and soon from a new map type
called sock map, are used with skb as the context but on established
sockets. By creating a specific program type for these we can use
bpf helpers that expect full sockets and get the verifier to ensure
these helpers are not used out of context.
The new type is BPF_PROG_TYPE_SK_SKB. This patch introduces the
infrastructure and type.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>