e333ac1f1d
2 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Denys Vlasenko
|
e183914af0 |
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its constants in .data. This is wrong, they should be on .rodata. Mnay of these constants are the same in different modules. For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F exists in at least half a dozen places. There is a way to let linker merge them and use just one copy. The rules are as follows: mergeable objects of different sizes should not share sections. You can't put them all in one .rodata section, they will lose "mergeability". GCC puts its mergeable constants in ".rodata.cstSIZE" sections, or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used. This patch does the same: .section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16 It is important that all data in such section consists of 16-byte elements, not larger ones, and there are no implicit use of one element from another. When this is not the case, use non-mergeable section: .section .rodata[.VAR_NAME], "a", @progbits This reduces .data by ~15 kbytes: text data bss dec hex filename 11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o 11112095 2690672 2630712 16433479 fac147 vmlinux.o Merged objects are visible in System.map: ffffffff81a28810 r POLY ffffffff81a28810 r POLY ffffffff81a28820 r TWOONE ffffffff81a28820 r TWOONE ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of ffffffff81a28830 r SHUF_MASK <------------- the name difference ffffffff81a28830 r SHUF_MASK ffffffff81a28830 r SHUF_MASK .. ffffffff81a28d00 r K512 <- merged three identical 640-byte tables ffffffff81a28d00 r K512 ffffffff81a28d00 r K512 Use of object names in section name suffixes is not strictly necessary, but might help if someday link stage will use garbage collection to eliminate unused sections (ld --gc-sections). Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: Herbert Xu <herbert@gondor.apana.org.au> CC: Josh Poimboeuf <jpoimboe@redhat.com> CC: Xiaodong Liu <xiaodong.liu@intel.com> CC: Megha Dey <megha.dey@intel.com> CC: linux-crypto@vger.kernel.org CC: x86@kernel.org CC: linux-kernel@vger.kernel.org Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> |
||
Martin Willi
|
b1ccc8f4b6 |
crypto: poly1305 - Add a four block AVX2 variant for x86_64
Extends the x86_64 Poly1305 authenticator by a function processing four consecutive Poly1305 blocks in parallel using AVX2 instructions. For large messages, throughput increases by ~15-45% compared to two block SSE2: testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3809514 opers/sec, 365713411 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5973423 opers/sec, 573448627 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9446779 opers/sec, 906890803 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1364814 opers/sec, 393066691 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2045780 opers/sec, 589184697 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711946 opers/sec, 1069040592 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 573686 opers/sec, 605812732 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1647802 opers/sec, 1740079440 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 292970 opers/sec, 609378224 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 943229 opers/sec, 1961916528 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 494623 opers/sec, 2041804569 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 254045 opers/sec, 2089271014 bytes/sec testing speed of poly1305 (poly1305-simd) test 0 ( 96 byte blocks, 16 bytes per update, 6 updates): 3826224 opers/sec, 367317552 bytes/sec test 1 ( 96 byte blocks, 32 bytes per update, 3 updates): 5948638 opers/sec, 571069267 bytes/sec test 2 ( 96 byte blocks, 96 bytes per update, 1 updates): 9439110 opers/sec, 906154627 bytes/sec test 3 ( 288 byte blocks, 16 bytes per update, 18 updates): 1367756 opers/sec, 393913872 bytes/sec test 4 ( 288 byte blocks, 32 bytes per update, 9 updates): 2056881 opers/sec, 592381958 bytes/sec test 5 ( 288 byte blocks, 288 bytes per update, 1 updates): 3711153 opers/sec, 1068812179 bytes/sec test 6 ( 1056 byte blocks, 32 bytes per update, 33 updates): 574940 opers/sec, 607136745 bytes/sec test 7 ( 1056 byte blocks, 1056 bytes per update, 1 updates): 1948830 opers/sec, 2057964585 bytes/sec test 8 ( 2080 byte blocks, 32 bytes per update, 65 updates): 293308 opers/sec, 610082096 bytes/sec test 9 ( 2080 byte blocks, 2080 bytes per update, 1 updates): 1235224 opers/sec, 2569267792 bytes/sec test 10 ( 4128 byte blocks, 4128 bytes per update, 1 updates): 684405 opers/sec, 2825226316 bytes/sec test 11 ( 8224 byte blocks, 8224 bytes per update, 1 updates): 367101 opers/sec, 3019039446 bytes/sec Benchmark results from a Core i5-4670T. Signed-off-by: Martin Willi <martin@strongswan.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> |