It looks like a "static inline" has been missed in front
of the empty definition of perf_cgroup_switch() under
certain configurations.
Fixes the following sparse warning:
kernel/events/core.c:1035:1: warning: symbol 'perf_cgroup_switch' was not declared. Should it be static?
Signed-off-by: Ben Dooks (Codethink) <ben.dooks@codethink.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20191106132527.19977-1-ben.dooks@codethink.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
313ccb9615 ("perf: Allocate context task_ctx_data for child event")
makes the inherit path skip over the current event in case of task_ctx_data
allocation failure. This, however, is inconsistent with allocation failures
in perf_event_alloc(), which would abort the fork.
Correct this by returning an error code on task_ctx_data allocation
failure and failing the fork in that case.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20191105075702.60319-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit
ab43762ef0 ("perf: Allow normal events to output AUX data")
added 'aux_output' bit to the attribute structure, which relies on AUX
events and grouping, neither of which is supported for the kernel events.
This notwithstanding, attempts have been made to use it in the kernel
code, suggesting the necessity of an explicit hard -EINVAL.
Fix this by rejecting attributes with aux_output set for kernel events.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20191030134731.5437-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A comment is in a wrong place in perf_event_create_kernel_counter().
Fix that.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: https://lkml.kernel.org/r/20191030134731.5437-2-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While discussing uncore event scheduling, I noticed we do not in fact
seem to dis-allow making uncore-cgroup events. Such events make no
sense what so ever because the cgroup is a CPU local state where
uncore counts across a number of CPUs.
Disallow them.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Andi reported that he was hitting the linear search in
perf_init_event() a lot. Now that all !TYPE_SOFTWARE events should hit
the IDR, make sure the TYPE_SOFTWARE events are at the head of the
list such that we'll quickly find the right PMU (provided a valid
event was given).
Signed-off-by: Liang, Kan <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Andi reported that he was hitting the linear search in
perf_init_event() a lot. Make more agressive use of the IDR lookup to
avoid hitting the linear search.
With exception of PERF_TYPE_SOFTWARE (which relies on a hideous hack),
we can put everything in the IDR. On top of that, we can alias
TYPE_HARDWARE and TYPE_HW_CACHE to TYPE_RAW on the lookup side.
This greatly reduces the chances of hitting the linear search.
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan <kan.liang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Andi reported that when creating a lot of events, a lot of time is
spent in IPIs and asked if it would be possible to elide some of that.
Now when, as for example the perf-tool always does, events are created
disabled, then these events will not need to be scheduled when added
to the context (they're still disable) and therefore the IPI is not
required -- except for the very first event, that will need to set
ctx->is_active.
( It might be possible to set ctx->is_active remotely for cpu_ctx, but
we really need the IPI for task_ctx, so lets not make that
distinction. )
Also use __perf_effective_state() since group events depend on the
state of the leader, if the leader is OFF, the whole group is OFF.
So when sibling events are created enabled (XXX check tool) then we
only need a single IPI to create and enable the whole group (+ that
initial IPI to initialize the context).
Suggested-by: Andi Kleen <andi@firstfloor.org>
Reported-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
1a59413124 ("perf: Add wakeup watermark control to the AUX area")
added attr.__reserved_2 padding, but forgot to add an ABI check to reject
attributes with this field set. Fix that.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: adrian.hunter@intel.com
Cc: mathieu.poirier@linaro.org
Link: https://lkml.kernel.org/r/20191025121636.75182-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf fixes from Thomas Gleixner:
"A set of perf fixes:
kernel:
- Unbreak the tracking of auxiliary buffer allocations which got
imbalanced causing recource limit failures.
- Fix the fallout of splitting of ToPA entries which missed to shift
the base entry PA correctly.
- Use the correct context to lookup the AUX event when unmapping the
associated AUX buffer so the event can be stopped and the buffer
reference dropped.
tools:
- Fix buildiid-cache mode setting in copyfile_mode_ns() when copying
/proc/kcore
- Fix freeing id arrays in the event list so the correct event is
closed.
- Sync sched.h anc kvm.h headers with the kernel sources.
- Link jvmti against tools/lib/ctype.o to have weak strlcpy().
- Fix multiple memory and file descriptor leaks, found by coverity in
perf annotate.
- Fix leaks in error handling paths in 'perf c2c', 'perf kmem', found
by a static analysis tool"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/aux: Fix AUX output stopping
perf/aux: Fix tracking of auxiliary trace buffer allocation
perf/x86/intel/pt: Fix base for single entry topa
perf kmem: Fix memory leak in compact_gfp_flags()
tools headers UAPI: Sync sched.h with the kernel
tools headers kvm: Sync kvm.h headers with the kernel sources
tools headers kvm: Sync kvm headers with the kernel sources
tools headers kvm: Sync kvm headers with the kernel sources
perf c2c: Fix memory leak in build_cl_output()
perf tools: Fix mode setting in copyfile_mode_ns()
perf annotate: Fix multiple memory and file descriptor leaks
perf tools: Fix resource leak of closedir() on the error paths
perf evlist: Fix fix for freed id arrays
perf jvmti: Link against tools/lib/ctype.h to have weak strlcpy()
Commit:
8a58ddae23 ("perf/core: Fix exclusive events' grouping")
allows CAP_EXCLUSIVE events to be grouped with other events. Since all
of those also happen to be AUX events (which is not the case the other
way around, because arch/s390), this changes the rules for stopping the
output: the AUX event may not be on its PMU's context any more, if it's
grouped with a HW event, in which case it will be on that HW event's
context instead. If that's the case, munmap() of the AUX buffer can't
find and stop the AUX event, potentially leaving the last reference with
the atomic context, which will then end up freeing the AUX buffer. This
will then trip warnings:
Fix this by using the context's PMU context when looking for events
to stop, instead of the event's PMU context.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20191022073940.61814-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit from the v5.4 merge window:
d44248a413 ("perf/core: Rework memory accounting in perf_mmap()")
... breaks auxiliary trace buffer tracking.
If I run command 'perf record -e rbd000' to record samples and saving
them in the **auxiliary** trace buffer then the value of 'locked_vm' becomes
negative after all trace buffers have been allocated and released:
During allocation the values increase:
[52.250027] perf_mmap user->locked_vm:0x87 pinned_vm:0x0 ret:0
[52.250115] perf_mmap user->locked_vm:0x107 pinned_vm:0x0 ret:0
[52.250251] perf_mmap user->locked_vm:0x188 pinned_vm:0x0 ret:0
[52.250326] perf_mmap user->locked_vm:0x208 pinned_vm:0x0 ret:0
[52.250441] perf_mmap user->locked_vm:0x289 pinned_vm:0x0 ret:0
[52.250498] perf_mmap user->locked_vm:0x309 pinned_vm:0x0 ret:0
[52.250613] perf_mmap user->locked_vm:0x38a pinned_vm:0x0 ret:0
[52.250715] perf_mmap user->locked_vm:0x408 pinned_vm:0x2 ret:0
[52.250834] perf_mmap user->locked_vm:0x408 pinned_vm:0x83 ret:0
[52.250915] perf_mmap user->locked_vm:0x408 pinned_vm:0x103 ret:0
[52.251061] perf_mmap user->locked_vm:0x408 pinned_vm:0x184 ret:0
[52.251146] perf_mmap user->locked_vm:0x408 pinned_vm:0x204 ret:0
[52.251299] perf_mmap user->locked_vm:0x408 pinned_vm:0x285 ret:0
[52.251383] perf_mmap user->locked_vm:0x408 pinned_vm:0x305 ret:0
[52.251544] perf_mmap user->locked_vm:0x408 pinned_vm:0x386 ret:0
[52.251634] perf_mmap user->locked_vm:0x408 pinned_vm:0x406 ret:0
[52.253018] perf_mmap user->locked_vm:0x408 pinned_vm:0x487 ret:0
[52.253197] perf_mmap user->locked_vm:0x408 pinned_vm:0x508 ret:0
[52.253374] perf_mmap user->locked_vm:0x408 pinned_vm:0x589 ret:0
[52.253550] perf_mmap user->locked_vm:0x408 pinned_vm:0x60a ret:0
[52.253726] perf_mmap user->locked_vm:0x408 pinned_vm:0x68b ret:0
[52.253903] perf_mmap user->locked_vm:0x408 pinned_vm:0x70c ret:0
[52.254084] perf_mmap user->locked_vm:0x408 pinned_vm:0x78d ret:0
[52.254263] perf_mmap user->locked_vm:0x408 pinned_vm:0x80e ret:0
The value of user->locked_vm increases to a limit then the memory
is tracked by pinned_vm.
During deallocation the size is subtracted from pinned_vm until
it hits a limit. Then a larger value is subtracted from locked_vm
leading to a large number (because of type unsigned):
[64.267797] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x78d
[64.267826] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x70c
[64.267848] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x68b
[64.267869] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x60a
[64.267891] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x589
[64.267911] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x508
[64.267933] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x487
[64.267952] perf_mmap_close mmap_user->locked_vm:0x408 pinned_vm:0x406
[64.268883] perf_mmap_close mmap_user->locked_vm:0x307 pinned_vm:0x406
[64.269117] perf_mmap_close mmap_user->locked_vm:0x206 pinned_vm:0x406
[64.269433] perf_mmap_close mmap_user->locked_vm:0x105 pinned_vm:0x406
[64.269536] perf_mmap_close mmap_user->locked_vm:0x4 pinned_vm:0x404
[64.269797] perf_mmap_close mmap_user->locked_vm:0xffffffffffffff84 pinned_vm:0x303
[64.270105] perf_mmap_close mmap_user->locked_vm:0xffffffffffffff04 pinned_vm:0x202
[64.270374] perf_mmap_close mmap_user->locked_vm:0xfffffffffffffe84 pinned_vm:0x101
[64.270628] perf_mmap_close mmap_user->locked_vm:0xfffffffffffffe04 pinned_vm:0x0
This value sticks for the user until system is rebooted, causing
follow-on system calls using locked_vm resource limit to fail.
Note: There is no issue using the normal trace buffer.
In fact the issue is in perf_mmap_close(). During allocation auxiliary
trace buffer memory is either traced as 'extra' and added to 'pinned_vm'
or trace as 'user_extra' and added to 'locked_vm'. This applies for
normal trace buffers and auxiliary trace buffer.
However in function perf_mmap_close() all auxiliary trace buffer is
subtraced from 'locked_vm' and never from 'pinned_vm'. This breaks the
ballance.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: acme@kernel.org
Cc: gor@linux.ibm.com
Cc: hechaol@fb.com
Cc: heiko.carstens@de.ibm.com
Cc: linux-perf-users@vger.kernel.org
Cc: songliubraving@fb.com
Fixes: d44248a413 ("perf/core: Rework memory accounting in perf_mmap()")
Link: https://lkml.kernel.org/r/20191021083354.67868-1-tmricht@linux.ibm.com
[ Minor readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Attaching uprobe to text section in THP splits the PMD mapped page table
into PTE mapped entries. On uprobe detach, we would like to regroup PMD
mapped page table entry to regain performance benefit of THP.
However, the regroup is broken For perf_event based trace_uprobe. This
is because perf_event based trace_uprobe calls uprobe_unregister twice
on close: first in TRACE_REG_PERF_CLOSE, then in
TRACE_REG_PERF_UNREGISTER. The second call will split the PMD mapped
page table entry, which is not the desired behavior.
Fix this by only use FOLL_SPLIT_PMD for uprobe register case.
Add a WARN() to confirm uprobe unregister never work on huge pages, and
abort the operation when this WARN() triggers.
Link: http://lkml.kernel.org/r/20191017164223.2762148-6-songliubraving@fb.com
Fixes: 5a52c9df62 ("uprobe: use FOLL_SPLIT_PMD instead of FOLL_SPLIT")
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently perf_mmap_alloc_page() is used to allocate memory in
rb_alloc(), but using free_page() to free memory in the failure path.
It's better to use perf_mmap_free_page() instead.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <jolsa@redhat.co>
Cc: <acme@kernel.org>
Cc: <mingo@redhat.com>
Cc: <mark.rutland@arm.com>
Cc: <namhyung@kernel.org>
Cc: <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/575c7e8c-90c7-4e3a-b41d-f894d8cdbd7f@huawei.com
In perf_mmap_free_page(), the unsigned long type is converted to the
pointer type, but where the call is made, the pointer type is converted
to the unsigned long type. There is no need to do these operations.
Modify the parameter type of perf_mmap_free_page() to pointer type.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <jolsa@redhat.co>
Cc: <acme@kernel.org>
Cc: <mingo@redhat.com>
Cc: <mark.rutland@arm.com>
Cc: <namhyung@kernel.org>
Cc: <alexander.shishkin@linux.intel.com>
Link: https://lkml.kernel.org/r/e6ae3f0c-d04c-50f9-544a-aee3b30330cd@huawei.com
In current mainline, the degree of access to perf_event_open(2) system
call depends on the perf_event_paranoid sysctl. This has a number of
limitations:
1. The sysctl is only a single value. Many types of accesses are controlled
based on the single value thus making the control very limited and
coarse grained.
2. The sysctl is global, so if the sysctl is changed, then that means
all processes get access to perf_event_open(2) opening the door to
security issues.
This patch adds LSM and SELinux access checking which will be used in
Android to access perf_event_open(2) for the purposes of attaching BPF
programs to tracepoints, perf profiling and other operations from
userspace. These operations are intended for production systems.
5 new LSM hooks are added:
1. perf_event_open: This controls access during the perf_event_open(2)
syscall itself. The hook is called from all the places that the
perf_event_paranoid sysctl is checked to keep it consistent with the
systctl. The hook gets passed a 'type' argument which controls CPU,
kernel and tracepoint accesses (in this context, CPU, kernel and
tracepoint have the same semantics as the perf_event_paranoid sysctl).
Additionally, I added an 'open' type which is similar to
perf_event_paranoid sysctl == 3 patch carried in Android and several other
distros but was rejected in mainline [1] in 2016.
2. perf_event_alloc: This allocates a new security object for the event
which stores the current SID within the event. It will be useful when
the perf event's FD is passed through IPC to another process which may
try to read the FD. Appropriate security checks will limit access.
3. perf_event_free: Called when the event is closed.
4. perf_event_read: Called from the read(2) and mmap(2) syscalls for the event.
5. perf_event_write: Called from the ioctl(2) syscalls for the event.
[1] https://lwn.net/Articles/696240/
Since Peter had suggest LSM hooks in 2016 [1], I am adding his
Suggested-by tag below.
To use this patch, we set the perf_event_paranoid sysctl to -1 and then
apply selinux checking as appropriate (default deny everything, and then
add policy rules to give access to domains that need it). In the future
we can remove the perf_event_paranoid sysctl altogether.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Co-developed-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: James Morris <jmorris@namei.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: rostedt@goodmis.org
Cc: Yonghong Song <yhs@fb.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: jeffv@google.com
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: primiano@google.com
Cc: Song Liu <songliubraving@fb.com>
Cc: rsavitski@google.com
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Matthew Garrett <matthewgarrett@google.com>
Link: https://lkml.kernel.org/r/20191014170308.70668-1-joel@joelfernandes.org
In perf_rotate_context(), when the first cpu flexible event fail to
schedule, cpu_rotate is 1, while cpu_event is NULL. Since cpu_event is
NULL, perf_rotate_context will _NOT_ call cpu_ctx_sched_out(), thus
cpuctx->ctx.is_active will have EVENT_FLEXIBLE set. Then, the next
perf_event_sched_in() will skip all cpu flexible events because of the
EVENT_FLEXIBLE bit.
In the next call of perf_rotate_context(), cpu_rotate stays 1, and
cpu_event stays NULL, so this process repeats. The end result is, flexible
events on this cpu will not be scheduled (until another event being added
to the cpuctx).
Here is an easy repro of this issue. On Intel CPUs, where ref-cycles
could only use one counter, run one pinned event for ref-cycles, one
flexible event for ref-cycles, and one flexible event for cycles. The
flexible ref-cycles is never scheduled, which is expected. However,
because of this issue, the cycles event is never scheduled either.
$ perf stat -e ref-cycles:D,ref-cycles,cycles -C 5 -I 1000
time counts unit events
1.000152973 15,412,480 ref-cycles:D
1.000152973 <not counted> ref-cycles (0.00%)
1.000152973 <not counted> cycles (0.00%)
2.000486957 18,263,120 ref-cycles:D
2.000486957 <not counted> ref-cycles (0.00%)
2.000486957 <not counted> cycles (0.00%)
To fix this, when the flexible_active list is empty, try rotate the
first event in the flexible_groups. Also, rename ctx_first_active() to
ctx_event_to_rotate(), which is more accurate.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <kernel-team@fb.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 8d5bce0c37 ("perf/core: Optimize perf_rotate_context() event scheduling")
Link: https://lkml.kernel.org/r/20191008165949.920548-1-songliubraving@fb.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
ab43762ef0 ("perf: Allow normal events to output AUX data")
forgets to configure aux_output relation in the inherited groups, which
results in child PEBS events forever failing to schedule.
Fix this by setting up the AUX output link in the inheritance path.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191004125729.32397-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Switch perf_event_open() syscall from it's own copying
struct perf_event_attr from userspace to the new dedicated
copy_struct_from_user() helper.
The change is very straightforward, and helps unify the syscall
interface for struct-from-userspace syscalls.
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com>
[christian.brauner@ubuntu.com: improve commit message]
Link: https://lore.kernel.org/r/20191001011055.19283-5-cyphar@cyphar.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Pull kernel lockdown mode from James Morris:
"This is the latest iteration of the kernel lockdown patchset, from
Matthew Garrett, David Howells and others.
From the original description:
This patchset introduces an optional kernel lockdown feature,
intended to strengthen the boundary between UID 0 and the kernel.
When enabled, various pieces of kernel functionality are restricted.
Applications that rely on low-level access to either hardware or the
kernel may cease working as a result - therefore this should not be
enabled without appropriate evaluation beforehand.
The majority of mainstream distributions have been carrying variants
of this patchset for many years now, so there's value in providing a
doesn't meet every distribution requirement, but gets us much closer
to not requiring external patches.
There are two major changes since this was last proposed for mainline:
- Separating lockdown from EFI secure boot. Background discussion is
covered here: https://lwn.net/Articles/751061/
- Implementation as an LSM, with a default stackable lockdown LSM
module. This allows the lockdown feature to be policy-driven,
rather than encoding an implicit policy within the mechanism.
The new locked_down LSM hook is provided to allow LSMs to make a
policy decision around whether kernel functionality that would allow
tampering with or examining the runtime state of the kernel should be
permitted.
The included lockdown LSM provides an implementation with a simple
policy intended for general purpose use. This policy provides a coarse
level of granularity, controllable via the kernel command line:
lockdown={integrity|confidentiality}
Enable the kernel lockdown feature. If set to integrity, kernel features
that allow userland to modify the running kernel are disabled. If set to
confidentiality, kernel features that allow userland to extract
confidential information from the kernel are also disabled.
This may also be controlled via /sys/kernel/security/lockdown and
overriden by kernel configuration.
New or existing LSMs may implement finer-grained controls of the
lockdown features. Refer to the lockdown_reason documentation in
include/linux/security.h for details.
The lockdown feature has had signficant design feedback and review
across many subsystems. This code has been in linux-next for some
weeks, with a few fixes applied along the way.
Stephen Rothwell noted that commit 9d1f8be5cf ("bpf: Restrict bpf
when kernel lockdown is in confidentiality mode") is missing a
Signed-off-by from its author. Matthew responded that he is providing
this under category (c) of the DCO"
* 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (31 commits)
kexec: Fix file verification on S390
security: constify some arrays in lockdown LSM
lockdown: Print current->comm in restriction messages
efi: Restrict efivar_ssdt_load when the kernel is locked down
tracefs: Restrict tracefs when the kernel is locked down
debugfs: Restrict debugfs when the kernel is locked down
kexec: Allow kexec_file() with appropriate IMA policy when locked down
lockdown: Lock down perf when in confidentiality mode
bpf: Restrict bpf when kernel lockdown is in confidentiality mode
lockdown: Lock down tracing and perf kprobes when in confidentiality mode
lockdown: Lock down /proc/kcore
x86/mmiotrace: Lock down the testmmiotrace module
lockdown: Lock down module params that specify hardware parameters (eg. ioport)
lockdown: Lock down TIOCSSERIAL
lockdown: Prohibit PCMCIA CIS storage when the kernel is locked down
acpi: Disable ACPI table override if the kernel is locked down
acpi: Ignore acpi_rsdp kernel param when the kernel has been locked down
ACPI: Limit access to custom_method when the kernel is locked down
x86/msr: Restrict MSR access when the kernel is locked down
x86: Lock down IO port access when the kernel is locked down
...
Pull more perf updates from Ingo Molnar:
"The only kernel change is comment typo fixes.
The rest is mostly tooling fixes, but also new vendor event additions
and updates, a bigger libperf/libtraceevent library and a header files
reorganization that came in a bit late"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (108 commits)
perf unwind: Fix libunwind build failure on i386 systems
perf parser: Remove needless include directives
perf build: Add detection of java-11-openjdk-devel package
perf jvmti: Include JVMTI support for s390
perf vendor events: Remove P8 HW events which are not supported
perf evlist: Fix access of freed id arrays
perf stat: Fix free memory access / memory leaks in metrics
perf tools: Replace needless mmap.h with what is needed, event.h
perf evsel: Move config terms to a separate header
perf evlist: Remove unused perf_evlist__fprintf() method
perf evsel: Introduce evsel_fprintf.h
perf evsel: Remove need for symbol_conf in evsel_fprintf.c
perf copyfile: Move copyfile routines to separate files
libperf: Add perf_evlist__poll() function
libperf: Add perf_evlist__add_pollfd() function
libperf: Add perf_evlist__alloc_pollfd() function
libperf: Add libperf_init() call to the tests
libperf: Merge libperf_set_print() into libperf_init()
libperf: Add libperf dependency for tests targets
libperf: Use sys/types.h to get ssize_t, not unistd.h
...
After all uprobes are removed from the huge page (with PTE pgtable), it is
possible to collapse the pmd and benefit from THP again. This patch does
the collapse by calling collapse_pte_mapped_thp().
Link: http://lkml.kernel.org/r/20190815164525.1848545-7-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: kbuild test robot <lkp@intel.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the newly added FOLL_SPLIT_PMD in uprobe. This preserves the huge
page when the uprobe is enabled. When the uprobe is disabled, newer
instances of the same application could still benefit from huge page.
For the next step, we will enable khugepaged to regroup the pmd, so that
existing instances of the application could also benefit from huge page
after the uprobe is disabled.
Link: http://lkml.kernel.org/r/20190815164525.1848545-5-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, uprobe swaps the target page with a anonymous page in both
install_breakpoint() and remove_breakpoint(). When all uprobes on a page
are removed, the given mm is still using an anonymous page (not the
original page).
This patch allows uprobe to use original page when possible (all uprobes
on the page are already removed, and the original page is in page cache
and uptodate).
As suggested by Oleg, we unmap the old_page and let the original page
fault in.
Link: http://lkml.kernel.org/r/20190815164525.1848545-3-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix typos in a few functions' documentation comments.
Signed-off-by: Roy Ben Shlomo <royb@sentinelone.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: royb@sentinelone.com
Link: http://lore.kernel.org/lkml/20190920171254.31373-1-royb@sentinelone.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Pull core timer updates from Thomas Gleixner:
"Timers and timekeeping updates:
- A large overhaul of the posix CPU timer code which is a preparation
for moving the CPU timer expiry out into task work so it can be
properly accounted on the task/process.
An update to the bogus permission checks will come later during the
merge window as feedback was not complete before heading of for
travel.
- Switch the timerqueue code to use cached rbtrees and get rid of the
homebrewn caching of the leftmost node.
- Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a
single function
- Implement the separation of hrtimers to be forced to expire in hard
interrupt context even when PREEMPT_RT is enabled and mark the
affected timers accordingly.
- Implement a mechanism for hrtimers and the timer wheel to protect
RT against priority inversion and live lock issues when a (hr)timer
which should be canceled is currently executing the callback.
Instead of infinitely spinning, the task which tries to cancel the
timer blocks on a per cpu base expiry lock which is held and
released by the (hr)timer expiry code.
- Enable the Hyper-V TSC page based sched_clock for Hyper-V guests
resulting in faster access to timekeeping functions.
- Updates to various clocksource/clockevent drivers and their device
tree bindings.
- The usual small improvements all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
posix-cpu-timers: Fix permission check regression
posix-cpu-timers: Always clear head pointer on dequeue
hrtimer: Add a missing bracket and hide `migration_base' on !SMP
posix-cpu-timers: Make expiry_active check actually work correctly
posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build
tick: Mark sched_timer to expire in hard interrupt context
hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD
x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n
posix-cpu-timers: Utilize timerqueue for storage
posix-cpu-timers: Move state tracking to struct posix_cputimers
posix-cpu-timers: Deduplicate rlimit handling
posix-cpu-timers: Remove pointless comparisons
posix-cpu-timers: Get rid of 64bit divisions
posix-cpu-timers: Consolidate timer expiry further
posix-cpu-timers: Get rid of zero checks
rlimit: Rewrite non-sensical RLIMIT_CPU comment
posix-cpu-timers: Respect INFINITY for hard RTTIME limit
posix-cpu-timers: Switch thread group sampling to array
posix-cpu-timers: Restructure expiry array
posix-cpu-timers: Remove cputime_expires
...
Pull scheduler updates from Ingo Molnar:
- MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.
As perf and the scheduler is getting bigger and more complex,
document the status quo of current responsibilities and interests,
and spread the review pain^H^H^H^H fun via an increase in the Cc:
linecount generated by scripts/get_maintainer.pl. :-)
- Add another series of patches that brings the -rt (PREEMPT_RT) tree
closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
into a new CONFIG_PREEMPTION category that will allow the eventual
introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
to go though.
- Extend the CPU cgroup controller with uclamp.min and uclamp.max to
allow the finer shaping of CPU bandwidth usage.
- Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).
- Improve the behavior of high CPU count, high thread count
applications running under cpu.cfs_quota_us constraints.
- Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.
- Improve CPU isolation housekeeping CPU allocation NUMA locality.
- Fix deadline scheduler bandwidth calculations and logic when cpusets
rebuilds the topology, or when it gets deadline-throttled while it's
being offlined.
- Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
setscheduler() system calls without creating global serialization.
Add new synchronization between cpuset topology-changing events and
the deadline acceptance tests in setscheduler(), which were broken
before.
- Rework the active_mm state machine to be less confusing and more
optimal.
- Rework (simplify) the pick_next_task() slowpath.
- Improve load-balancing on AMD EPYC systems.
- ... and misc cleanups, smaller fixes and improvements - please see
the Git log for more details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
sched/psi: Correct overly pessimistic size calculation
sched/fair: Speed-up energy-aware wake-ups
sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
sched/uclamp: Update CPU's refcount on TG's clamp changes
sched/uclamp: Use TG's clamps to restrict TASK's clamps
sched/uclamp: Propagate system defaults to the root group
sched/uclamp: Propagate parent clamps
sched/uclamp: Extend CPU's cgroup controller
sched/topology: Improve load balancing on AMD EPYC systems
arch, ia64: Make NUMA select SMP
sched, perf: MAINTAINERS update, add submaintainers and reviewers
sched/fair: Use rq_lock/unlock in online_fair_sched_group
cpufreq: schedutil: fix equation in comment
sched: Rework pick_next_task() slow-path
sched: Allow put_prev_task() to drop rq->lock
sched/fair: Expose newidle_balance()
sched: Add task_struct pointer to sched_class::set_curr_task
sched: Rework CPU hotplug task selection
sched/{rt,deadline}: Fix set_next_task vs pick_next_task
sched: Fix kerneldoc comment for ia64_set_curr_task
...
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- Improved kbprobes robustness
- Intel PEBS support for PT hardware tracing
- Other Intel PT improvements: high order pages memory footprint
reduction and various related cleanups
- Misc cleanups
The perf tooling side has been very busy in this cycle, with over 300
commits. This is an incomplete high-level summary of the many
improvements done by over 30 developers:
- Lots of updates to the following tools:
'perf c2c'
'perf config'
'perf record'
'perf report'
'perf script'
'perf test'
'perf top'
'perf trace'
- Updates to libperf and libtraceevent, and a consolidation of the
proliferation of x86 instruction decoder libraries.
- Vendor event updates for Intel and PowerPC CPUs,
- Updates to hardware tracing tooling for ARM and Intel CPUs,
- ... and lots of other changes and cleanups - see the shortlog and
Git log for details"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (322 commits)
kprobes: Prohibit probing on BUG() and WARN() address
perf/x86: Make more stuff static
x86, perf: Fix the dependency of the x86 insn decoder selftest
objtool: Ignore intentional differences for the x86 insn decoder
objtool: Update sync-check.sh from perf's check-headers.sh
perf build: Ignore intentional differences for the x86 insn decoder
perf intel-pt: Use shared x86 insn decoder
perf intel-pt: Remove inat.c from build dependency list
perf: Update .gitignore file
objtool: Move x86 insn decoder to a common location
perf metricgroup: Support multiple events for metricgroup
perf metricgroup: Scale the metric result
perf pmu: Change convert_scale from static to global
perf symbols: Move mem_info and branch_info out of symbol.h
perf auxtrace: Uninline functions that touch perf_session
perf tools: Remove needless evlist.h include directives
perf tools: Remove needless evlist.h include directives
perf tools: Remove needless thread_map.h include directives
perf tools: Remove needless thread.h include directives
perf tools: Remove needless map.h include directives
...
If we disable the compiler's auto-initialization feature, if
-fplugin-arg-structleak_plugin-byref or -ftrivial-auto-var-init=pattern
are disabled, arch_hw_breakpoint may be used before initialization after:
9a4903dde2 ("perf/hw_breakpoint: Split attribute parse and commit")
On our ARM platform, the struct step_ctrl in arch_hw_breakpoint, which
used to be zero-initialized by kzalloc(), may be used in
arch_install_hw_breakpoint() without initialization.
Signed-off-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alix Wu <alix.wu@mediatek.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: YJ Chiang <yj.chiang@mediatek.com>
Link: https://lkml.kernel.org/r/20190906060115.9460-1-mark-pk.tsai@mediatek.com
[ Minor edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In some cases, ordinary (non-AUX) events can generate data for AUX events.
For example, PEBS events can come out as records in the Intel PT stream
instead of their usual DS records, if configured to do so.
One requirement for such events is to consistently schedule together, to
ensure that the data from the "AUX output" events isn't lost while their
corresponding AUX event is not scheduled. We use grouping to provide this
guarantee: an "AUX output" event can be added to a group where an AUX event
is a group leader, and provided that the former supports writing to the
latter.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: kan.liang@linux.intel.com
Link: https://lkml.kernel.org/r/20190806084606.4021-2-alexander.shishkin@linux.intel.com
Disallow the use of certain perf facilities that might allow userspace to
access kernel data.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Signed-off-by: James Morris <jmorris@namei.org>
To guarantee that the multiplexing mechanism and the hrtimer driven events
work on PREEMPT_RT enabled kernels it's required that the related hrtimers
expire in hard interrupt context. Mark them so PREEMPT_RT kernels wont
defer them to soft interrupt context.
No functional change.
[ tglx: Split out of larger combo patch. Added changelog ]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190726185753.169509224@linutronix.de
Returning the pointer that was passed in allows us to write
slightly more idiomatic code. Convert a few users.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190704221323.24290-1-willy@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some hardware PMU drivers will override perf_event.cpu inside their
event_init callback. This causes a lockdep splat when initialized through
the kernel API:
WARNING: CPU: 0 PID: 250 at kernel/events/core.c:2917 ctx_sched_out+0x78/0x208
pc : ctx_sched_out+0x78/0x208
Call trace:
ctx_sched_out+0x78/0x208
__perf_install_in_context+0x160/0x248
remote_function+0x58/0x68
generic_exec_single+0x100/0x180
smp_call_function_single+0x174/0x1b8
perf_install_in_context+0x178/0x188
perf_event_create_kernel_counter+0x118/0x160
Fix this by calling perf_install_in_context with event->cpu, just like
perf_event_open
Signed-off-by: Leonard Crestez <leonard.crestez@nxp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Frank Li <Frank.li@nxp.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/c4ebe0503623066896d7046def4d6b1e06e0eb2e.1563972056.git.leonard.crestez@nxp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So far, we tried to disallow grouping exclusive events for the fear of
complications they would cause with moving between contexts. Specifically,
moving a software group to a hardware context would violate the exclusivity
rules if both groups contain matching exclusive events.
This attempt was, however, unsuccessful: the check that we have in the
perf_event_open() syscall is both wrong (looks at wrong PMU) and
insufficient (group leader may still be exclusive), as can be illustrated
by running:
$ perf record -e '{intel_pt//,cycles}' uname
$ perf record -e '{cycles,intel_pt//}' uname
ultimately successfully.
Furthermore, we are completely free to trigger the exclusivity violation
by:
perf -e '{cycles,intel_pt//}' -e '{intel_pt//,instructions}'
even though the helpful perf record will not allow that, the ABI will.
The warning later in the perf_event_open() path will also not trigger, because
it's also wrong.
Fix all this by validating the original group before moving, getting rid
of broken safeguards and placing a useful one to perf_install_in_context().
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: mathieu.poirier@linaro.org
Cc: will.deacon@arm.com
Fixes: bed5b25ad9 ("perf: Add a pmu capability for "exclusive" events")
Link: https://lkml.kernel.org/r/20190701110755.24646-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Syzcaller reported the following Use-after-Free bug:
close() clone()
copy_process()
perf_event_init_task()
perf_event_init_context()
mutex_lock(parent_ctx->mutex)
inherit_task_group()
inherit_group()
inherit_event()
mutex_lock(event->child_mutex)
// expose event on child list
list_add_tail()
mutex_unlock(event->child_mutex)
mutex_unlock(parent_ctx->mutex)
...
goto bad_fork_*
bad_fork_cleanup_perf:
perf_event_free_task()
perf_release()
perf_event_release_kernel()
list_for_each_entry()
mutex_lock(ctx->mutex)
mutex_lock(event->child_mutex)
// event is from the failing inherit
// on the other CPU
perf_remove_from_context()
list_move()
mutex_unlock(event->child_mutex)
mutex_unlock(ctx->mutex)
mutex_lock(ctx->mutex)
list_for_each_entry_safe()
// event already stolen
mutex_unlock(ctx->mutex)
delayed_free_task()
free_task()
list_for_each_entry_safe()
list_del()
free_event()
_free_event()
// and so event->hw.target
// is the already freed failed clone()
if (event->hw.target)
put_task_struct(event->hw.target)
// WHOOPSIE, already quite dead
Which puts the lie to the the comment on perf_event_free_task():
'unexposed, unused context' not so much.
Which is a 'fun' confluence of fail; copy_process() doing an
unconditional free_task() and not respecting refcounts, and perf having
creative locking. In particular:
82d94856fa ("perf/core: Fix lock inversion between perf,trace,cpuhp")
seems to have overlooked this 'fun' parade.
Solve it by using the fact that detached events still have a reference
count on their (previous) context. With this perf_event_free_task()
can detect when events have escaped and wait for their destruction.
Debugged-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Reported-by: syzbot+a24c397a29ad22d86c98@syzkaller.appspotmail.com
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: <stable@vger.kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 82d94856fa ("perf/core: Fix lock inversion between perf,trace,cpuhp")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull perf updates from Ingo Molnar:
"The main changes in this cycle on the kernel side were:
- CPU PMU and uncore driver updates to Intel Snow Ridge, IceLake,
KabyLake, AmberLake and WhiskeyLake CPUs.
- Rework the MSR probing infrastructure to make it more robust, make
it work better on virtualized systems and to better expose it on
sysfs.
- Rework PMU attributes group support based on the feedback from
Greg. The core sysfs patch that adds sysfs_update_groups() was
acked by Greg.
There's a lot of perf tooling changes as well, all around the place:
- vendor updates to Intel, cs-etm (ARM), ARM64, s390,
- various enhancements to Intel PT tooling support:
- Improve CBR (Core to Bus Ratio) packets support.
- Export power and ptwrite events to sqlite and postgresql.
- Add support for decoding PEBS via PT packets.
- Add support for samples to contain IPC ratio, collecting cycles
information from CYC packets, showing the IPC info periodically
- Allow using time ranges
- lots of updates to perf pmu, perf stat, perf trace, eBPF support,
perf record, perf diff, etc. - please see the shortlog and Git log
for details"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (252 commits)
tools arch x86: Sync asm/cpufeatures.h with the with the kernel
tools build: Check if gettid() is available before providing helper
perf jvmti: Address gcc string overflow warning for strncpy()
perf python: Remove -fstack-protector-strong if clang doesn't have it
perf annotate TUI browser: Do not use member from variable within its own initialization
perf tests: Fix record+probe_libc_inet_pton.sh for powerpc64
perf evsel: Do not rely on errno values for precise_ip fallback
perf thread: Allow references to thread objects after machine__exit()
perf header: Assign proper ff->ph in perf_event__synthesize_features()
tools arch kvm: Sync kvm headers with the kernel sources
perf script: Allow specifying the files to process guest samples
perf tools metric: Don't include duration_time in group
perf list: Avoid extra : for --raw metrics
perf vendor events intel: Metric fixes for SKX/CLX
perf tools: Fix typos / broken sentences
perf jevents: Add support for Hisi hip08 L3C PMU aliasing
perf jevents: Add support for Hisi hip08 HHA PMU aliasing
perf jevents: Add support for Hisi hip08 DDRC PMU aliasing
perf pmu: Support more complex PMU event aliasing
perf diff: Documentation -c cycles option
...
Pull force_sig() argument change from Eric Biederman:
"A source of error over the years has been that force_sig has taken a
task parameter when it is only safe to use force_sig with the current
task.
The force_sig function is built for delivering synchronous signals
such as SIGSEGV where the userspace application caused a synchronous
fault (such as a page fault) and the kernel responded with a signal.
Because the name force_sig does not make this clear, and because the
force_sig takes a task parameter the function force_sig has been
abused for sending other kinds of signals over the years. Slowly those
have been fixed when the oopses have been tracked down.
This set of changes fixes the remaining abusers of force_sig and
carefully rips out the task parameter from force_sig and friends
making this kind of error almost impossible in the future"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (27 commits)
signal/x86: Move tsk inside of CONFIG_MEMORY_FAILURE in do_sigbus
signal: Remove the signal number and task parameters from force_sig_info
signal: Factor force_sig_info_to_task out of force_sig_info
signal: Generate the siginfo in force_sig
signal: Move the computation of force into send_signal and correct it.
signal: Properly set TRACE_SIGNAL_LOSE_INFO in __send_signal
signal: Remove the task parameter from force_sig_fault
signal: Use force_sig_fault_to_task for the two calls that don't deliver to current
signal: Explicitly call force_sig_fault on current
signal/unicore32: Remove tsk parameter from __do_user_fault
signal/arm: Remove tsk parameter from __do_user_fault
signal/arm: Remove tsk parameter from ptrace_break
signal/nds32: Remove tsk parameter from send_sigtrap
signal/riscv: Remove tsk parameter from do_trap
signal/sh: Remove tsk parameter from force_sig_info_fault
signal/um: Remove task parameter from send_sigtrap
signal/x86: Remove task parameter from send_sigtrap
signal: Remove task parameter from force_sig_mceerr
signal: Remove task parameter from force_sig
signal: Remove task parameter from force_sigsegv
...
Pull RCU updates from Ingo Molnar:
"The changes in this cycle are:
- RCU flavor consolidation cleanups and optmizations
- Documentation updates
- Miscellaneous fixes
- SRCU updates
- RCU-sync flavor consolidation
- Torture-test updates
- Linux-kernel memory-consistency-model updates, most notably the
addition of plain C-language accesses"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
tools/memory-model: Improve data-race detection
tools/memory-model: Change definition of rcu-fence
tools/memory-model: Expand definition of barrier
tools/memory-model: Do not use "herd" to refer to "herd7"
tools/memory-model: Fix comment in MP+poonceonces.litmus
Documentation: atomic_t.txt: Explain ordering provided by smp_mb__{before,after}_atomic()
rcu: Don't return a value from rcu_assign_pointer()
rcu: Force inlining of rcu_read_lock()
rcu: Fix irritating whitespace error in rcu_assign_pointer()
rcu: Upgrade sync_exp_work_done() to smp_mb()
rcutorture: Upper case solves the case of the vanishing NULL pointer
torture: Suppress propagating trace_printk() warning
rcutorture: Dump trace buffer for callback pipe drain failures
torture: Add --trust-make to suppress "make clean"
torture: Make --cpus override idleness calculations
torture: Run kernel build in source directory
torture: Add function graph-tracing cheat sheet
torture: Capture qemu output
rcutorture: Tweak kvm options
rcutorture: Add trivial RCU implementation
...
Pull timer updates from Thomas Gleixner:
"The timer and timekeeping departement delivers:
Core:
- The consolidation of the VDSO code into a generic library including
the conversion of x86 and ARM64. Conversion of ARM and MIPS are en
route through the relevant maintainer trees and should end up in
5.4.
This gets rid of the unnecessary different copies of the same code
and brings all architectures on the same level of VDSO
functionality.
- Make the NTP user space interface more robust by restricting the
TAI offset to prevent undefined behaviour. Includes a selftest.
- Validate user input in the compat settimeofday() syscall to catch
invalid values which would be turned into valid values by a
multiplication overflow
- Consolidate the time accessors
- Small fixes, improvements and cleanups all over the place
Drivers:
- Support for the NXP system counter, TI davinci timer
- Move the Microsoft HyperV clocksource/events code into the
drivers/clocksource directory so it can be shared between x86 and
ARM64.
- Overhaul of the Tegra driver
- Delay timer support for IXP4xx
- Small fixes, improvements and cleanups as usual"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
time: Validate user input in compat_settimeofday()
timer: Document TIMER_PINNED
clocksource/drivers: Continue making Hyper-V clocksource ISA agnostic
clocksource/drivers: Make Hyper-V clocksource ISA agnostic
MAINTAINERS: Fix Andy's surname and the directory entries of VDSO
hrtimer: Use a bullet for the returns bullet list
arm64: vdso: Fix compilation with clang older than 8
arm64: compat: Fix __arch_get_hw_counter() implementation
arm64: Fix __arch_get_hw_counter() implementation
lib/vdso: Make delta calculation work correctly
MAINTAINERS: Add entry for the generic VDSO library
arm64: compat: No need for pre-ARMv7 barriers on an ARMv8 system
arm64: vdso: Remove unnecessary asm-offsets.c definitions
vdso: Remove superfluous #ifdef __KERNEL__ in vdso/datapage.h
clocksource/drivers/davinci: Add support for clocksource
clocksource/drivers/davinci: Add support for clockevents
clocksource/drivers/tegra: Set up maximum-ticks limit properly
clocksource/drivers/tegra: Cycles can't be 0
clocksource/drivers/tegra: Restore base address before cleanup
clocksource/drivers/tegra: Add verbose definition for 1MHz constant
...