Commit Graph

5203 Commits

Author SHA1 Message Date
Krish Sadhukhan
de2bc2bfdf kvm: nVMX: Check "load IA32_PAT" VM-entry control on vmentry
According to section "Checking and Loading Guest State" in Intel SDM vol
3C, the following check is performed on vmentry:

    If the "load IA32_PAT" VM-entry control is 1, the value of the field
    for the IA32_PAT MSR must be one that could be written by WRMSR
    without fault at CPL 0. Specifically, each of the 8 bytes in the
    field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
    6 (WB), or 7 (UC-).

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:03 +02:00
Krish Sadhukhan
f6b0db1fda kvm: nVMX: Check "load IA32_PAT" VM-exit control on vmentry
According to section "Checks on Host Control Registers and MSRs" in Intel
SDM vol 3C, the following check is performed on vmentry:

    If the "load IA32_PAT" VM-exit control is 1, the value of the field
    for the IA32_PAT MSR must be one that could be written by WRMSR
    without fault at CPL 0. Specifically, each of the 8 bytes in the
    field must have one of the values 0 (UC), 1 (WC), 4 (WT), 5 (WP),
    6 (WB), or 7 (UC-).

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:02 +02:00
Paolo Bonzini
674ea351cd KVM: x86: optimize check for valid PAT value
This check will soon be done on every nested vmentry and vmexit,
"parallelize" it using bitwise operations.

Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:02 +02:00
Paolo Bonzini
f16cb57be8 KVM: x86: clear VM_EXIT_SAVE_IA32_PAT
This is not needed, PAT writes always take an MSR vmexit.

Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:01 +02:00
Paolo Bonzini
9d609649bb KVM: vmx: print more APICv fields in dump_vmcs
The SVI, RVI, virtual-APIC page address and APIC-access page address fields
were left out of dump_vmcs.  Add them.

KERN_CONT technically isn't SMP safe, but it's okay to use it here since
the whole of dump_vmcs() is a single huge multi-line piece of output
that isn't SMP-safe.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:39:00 +02:00
Vitaly Kuznetsov
7a223e06b1 KVM: x86: avoid misreporting level-triggered irqs as edge-triggered in tracing
In __apic_accept_irq() interface trig_mode is int and actually on some code
paths it is set above u8:

kvm_apic_set_irq() extracts it from 'struct kvm_lapic_irq' where trig_mode
is u16. This is done on purpose as e.g. kvm_set_msi_irq() sets it to
(1 << 15) & e->msi.data

kvm_apic_local_deliver sets it to reg & (1 << 15).

Fix the immediate issue by making 'tm' into u16. We may also want to adjust
__apic_accept_irq() interface and use proper sizes for vector, level,
trig_mode but this is not urgent.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:38:08 +02:00
Paolo Bonzini
1d487e9bf8 KVM: fix spectrev1 gadgets
These were found with smatch, and then generalized when applicable.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:38:07 +02:00
Hariprasad Kelam
be43c440eb KVM: x86: fix warning Using plain integer as NULL pointer
Changed passing argument as "0 to NULL" which resolves below sparse warning

arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer

Signed-off-by: Hariprasad Kelam <hariprasad.kelam@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:38:07 +02:00
Sean Christopherson
b68f3cc7d9 KVM: x86: Always use 32-bit SMRAM save state for 32-bit kernels
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest,
trigger a WARN, and/or lead to a buffer overrun in the host, e.g.
rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and
thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64.

KVM allows userspace to report long mode support via CPUID, even though
the guest is all but guaranteed to crash if it actually tries to enable
long mode.  But, a pure 32-bit guest that is ignorant of long mode will
happily plod along.

SMM complicates things as 64-bit CPUs use a different SMRAM save state
area.  KVM handles this correctly for 64-bit kernels, e.g. uses the
legacy save state map if userspace has hid long mode from the guest,
but doesn't fare well when userspace reports long mode support on a
32-bit host kernel (32-bit KVM doesn't support 64-bit guests).

Since the alternative is to crash the guest, e.g. by not loading state
or explicitly requesting shutdown, unconditionally use the legacy SMRAM
save state map for 32-bit KVM.  If a guest has managed to get far enough
to handle SMIs when running under a weird/buggy userspace hypervisor,
then don't deliberately crash the guest since there are no downsides
(from KVM's perspective) to allow it to continue running.

Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:38 +02:00
Sean Christopherson
8f4dc2e77c KVM: x86: Don't clear EFER during SMM transitions for 32-bit vCPU
Neither AMD nor Intel CPUs have an EFER field in the legacy SMRAM save
state area, i.e. don't save/restore EFER across SMM transitions.  KVM
somewhat models this, e.g. doesn't clear EFER on entry to SMM if the
guest doesn't support long mode.  But during RSM, KVM unconditionally
clears EFER so that it can get back to pure 32-bit mode in order to
start loading CRs with their actual non-SMM values.

Clear EFER only when it will be written when loading the non-SMM state
so as to preserve bits that can theoretically be set on 32-bit vCPUs,
e.g. KVM always emulates EFER_SCE.

And because CR4.PAE is cleared only to play nice with EFER, wrap that
code in the long mode check as well.  Note, this may result in a
compiler warning about cr4 being consumed uninitialized.  Re-read CR4
even though it's technically unnecessary, as doing so allows for more
readable code and RSM emulation is not a performance critical path.

Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:37 +02:00
Sean Christopherson
9ec19493fb KVM: x86: clear SMM flags before loading state while leaving SMM
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1.  Stop dancing around the issue of HF_SMM_MASK being set when
loading SMSTATE into architectural state, e.g. by toggling it for
problematic flows, and simply clear HF_SMM_MASK prior to loading
architectural state (from SMRAM save state area).

Reported-by: Jon Doron <arilou@gmail.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Fixes: 5bea5123cb ("KVM: VMX: check nested state and CR4.VMXE against SMM")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:36 +02:00
Sean Christopherson
c5833c7a43 KVM: x86: Open code kvm_set_hflags
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM
save state map, i.e. kvm_smm_changed() needs to be called after state
has been loaded and so cannot be done automatically when setting
hflags from RSM.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:36 +02:00
Sean Christopherson
ed19321fb6 KVM: x86: Load SMRAM in a single shot when leaving SMM
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1.  Rather than dance around the issue of HF_SMM_MASK being set
when loading SMSTATE into architectural state, ideally RSM emulation
itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM
architectural state.

Ostensibly, the only motivation for having HF_SMM_MASK set throughout
the loading of state from the SMRAM save state area is so that the
memory accesses from GET_SMSTATE() are tagged with role.smm.  Load
all of the SMRAM save state area from guest memory at the beginning of
RSM emulation, and load state from the buffer instead of reading guest
memory one-by-one.

This paves the way for clearing HF_SMM_MASK prior to loading state,
and also aligns RSM with the enter_smm() behavior, which fills a
buffer and writes SMRAM save state in a single go.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:35 +02:00
Liran Alon
e51bfdb687 KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU
Issue was discovered when running kvm-unit-tests on KVM running as L1 on
top of Hyper-V.

When vmx_instruction_intercept unit-test attempts to run RDPMC to test
RDPMC-exiting, it is intercepted by L1 KVM which it's EXIT_REASON_RDPMC
handler raise #GP because vCPU exposed by Hyper-V doesn't support PMU.
Instead of unit-test expectation to be reflected with EXIT_REASON_RDPMC.

The reason vmx_instruction_intercept unit-test attempts to run RDPMC
even though Hyper-V doesn't support PMU is because L1 expose to L2
support for RDPMC-exiting. Which is reasonable to assume that is
supported only in case CPU supports PMU to being with.

Above issue can easily be simulated by modifying
vmx_instruction_intercept config in x86/unittests.cfg to run QEMU with
"-cpu host,+vmx,-pmu" and run unit-test.

To handle issue, change KVM to expose RDPMC-exiting only when guest
supports PMU.

Reported-by: Saar Amar <saaramar@microsoft.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:34 +02:00
Liran Alon
672ff6cff8 KVM: x86: Raise #GP when guest vCPU do not support PMU
Before this change, reading a VMware pseduo PMC will succeed even when
PMU is not supported by guest. This can easily be seen by running
kvm-unit-test vmware_backdoors with "-cpu host,-pmu" option.

Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:34 +02:00
WANG Chao
1811d979c7 x86/kvm: move kvm_load/put_guest_xcr0 into atomic context
guest xcr0 could leak into host when MCE happens in guest mode. Because
do_machine_check() could schedule out at a few places.

For example:

kvm_load_guest_xcr0
...
kvm_x86_ops->run(vcpu) {
  vmx_vcpu_run
    vmx_complete_atomic_exit
      kvm_machine_check
        do_machine_check
          do_memory_failure
            memory_failure
              lock_page

In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule
out, host cpu has guest xcr0 loaded (0xff).

In __switch_to {
     switch_fpu_finish
       copy_kernel_to_fpregs
         XRSTORS

If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will
generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in
and tries to reinitialize fpu by restoring init fpu state. Same story as
last #GP, except we get DOUBLE FAULT this time.

Cc: stable@vger.kernel.org
Signed-off-by: WANG Chao <chao.wang@ucloud.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:33 +02:00
Vitaly Kuznetsov
99c221796a KVM: x86: svm: make sure NMI is injected after nmi_singlestep
I noticed that apic test from kvm-unit-tests always hangs on my EPYC 7401P,
the hanging test nmi-after-sti is trying to deliver 30000 NMIs and tracing
shows that we're sometimes able to deliver a few but never all.

When we're trying to inject an NMI we may fail to do so immediately for
various reasons, however, we still need to inject it so enable_nmi_window()
arms nmi_singlestep mode. #DB occurs as expected, but we're not checking
for pending NMIs before entering the guest and unless there's a different
event to process, the NMI will never get delivered.

Make KVM_REQ_EVENT request on the vCPU from db_interception() to make sure
pending NMIs are checked and possibly injected.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:32 +02:00
Suthikulpanit, Suravee
e44e3eaccc svm/avic: Fix invalidate logical APIC id entry
Only clear the valid bit when invalidate logical APIC id entry.
The current logic clear the valid bit, but also set the rest of
the bits (including reserved bits) to 1.

Fixes: 98d90582be ('svm: Fix AVIC DFR and LDR handling')
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:32 +02:00
Suthikulpanit, Suravee
4a58038b9e Revert "svm: Fix AVIC incomplete IPI emulation"
This reverts commit bb218fbcfa.

As Oren Twaig pointed out the old discussion:

  https://patchwork.kernel.org/patch/8292231/

that the change coud potentially cause an extra IPI to be sent to
the destination vcpu because the AVIC hardware already set the IRR bit
before the incomplete IPI #VMEXIT with id=1 (target vcpu is not running).
Since writting to ICR and ICR2 will also set the IRR. If something triggers
the destination vcpu to get scheduled before the emulation finishes, then
this could result in an additional IPI.

Also, the issue mentioned in the commit bb218fbcfa was misdiagnosed.

Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Oren Twaig <oren@scalemp.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:31 +02:00
Ben Gardon
bc8a3d8925 kvm: mmu: Fix overflow on kvm mmu page limit calculation
KVM bases its memory usage limits on the total number of guest pages
across all memslots. However, those limits, and the calculations to
produce them, use 32 bit unsigned integers. This can result in overflow
if a VM has more guest pages that can be represented by a u32. As a
result of this overflow, KVM can use a low limit on the number of MMU
pages it will allocate. This makes KVM unable to map all of guest memory
at once, prompting spurious faults.

Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch
	introduced no new failures.

Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:30 +02:00
Paolo Bonzini
2b27924bb1 KVM: nVMX: always use early vmcs check when EPT is disabled
The remaining failures of vmx.flat when EPT is disabled are caused by
incorrectly reflecting VMfails to the L1 hypervisor.  What happens is
that nested_vmx_restore_host_state corrupts the guest CR3, reloading it
with the host's shadow CR3 instead, because it blindly loads GUEST_CR3
from the vmcs01.

For simplicity let's just always use hardware VMCS checks when EPT is
disabled.  This way, nested_vmx_restore_host_state is not reached at
all (or at least shouldn't be reached).

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 15:37:12 +02:00
Paolo Bonzini
690908104e KVM: nVMX: allow tests to use bad virtual-APIC page address
As mentioned in the comment, there are some special cases where we can simply
clear the TPR shadow bit from the CPU-based execution controls in the vmcs02.
Handle them so that we can remove some XFAILs from vmx.flat.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16 10:59:07 +02:00
Sean Christopherson
cfd32acf78 KVM: x86/mmu: Fix an inverted list_empty() check when zapping sptes
A recently introduced helper for handling zap vs. remote flush
incorrectly bails early, effectively leaking defunct shadow pages.
Manifests as a slab BUG when exiting KVM due to the shadow pages
being alive when their associated cache is destroyed.

==========================================================================
BUG kvm_mmu_page_header: Objects remaining in kvm_mmu_page_header on ...
--------------------------------------------------------------------------
Disabling lock debugging due to kernel taint
INFO: Slab 0x00000000fc436387 objects=26 used=23 fp=0x00000000d023caee ...
CPU: 6 PID: 4315 Comm: rmmod Tainted: G    B             5.1.0-rc2+ #19
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
 dump_stack+0x46/0x5b
 slab_err+0xad/0xd0
 ? on_each_cpu_mask+0x3c/0x50
 ? ksm_migrate_page+0x60/0x60
 ? on_each_cpu_cond_mask+0x7c/0xa0
 ? __kmalloc+0x1ca/0x1e0
 __kmem_cache_shutdown+0x13a/0x310
 shutdown_cache+0xf/0x130
 kmem_cache_destroy+0x1d5/0x200
 kvm_mmu_module_exit+0xa/0x30 [kvm]
 kvm_arch_exit+0x45/0x60 [kvm]
 kvm_exit+0x6f/0x80 [kvm]
 vmx_exit+0x1a/0x50 [kvm_intel]
 __x64_sys_delete_module+0x153/0x1f0
 ? exit_to_usermode_loop+0x88/0xc0
 do_syscall_64+0x4f/0x100
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

Fixes: a21136345c ("KVM: x86/mmu: Split remote_flush+zap case out of kvm_mmu_flush_or_zap()")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-15 13:25:07 +02:00
Marc Orr
c73f4c998e KVM: x86: nVMX: fix x2APIC VTPR read intercept
Referring to the "VIRTUALIZING MSR-BASED APIC ACCESSES" chapter of the
SDM, when "virtualize x2APIC mode" is 1 and "APIC-register
virtualization" is 0, a RDMSR of 808H should return the VTPR from the
virtual APIC page.

However, for nested, KVM currently fails to disable the read intercept
for this MSR. This means that a RDMSR exit takes precedence over
"virtualize x2APIC mode", and KVM passes through L1's TPR to L2,
instead of sourcing the value from L2's virtual APIC page.

This patch fixes the issue by disabling the read intercept, in VMCS02,
for the VTPR when "APIC-register virtualization" is 0.

The issue described above and fix prescribed here, were verified with
a related patch in kvm-unit-tests titled "Test VMX's virtualize x2APIC
mode w/ nested".

Signed-off-by: Marc Orr <marcorr@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Fixes: c992384bde ("KVM: vmx: speed up MSR bitmap merge")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 21:08:30 +02:00
Marc Orr
acff78477b KVM: x86: nVMX: close leak of L0's x2APIC MSRs (CVE-2019-3887)
The nested_vmx_prepare_msr_bitmap() function doesn't directly guard the
x2APIC MSR intercepts with the "virtualize x2APIC mode" MSR. As a
result, we discovered the potential for a buggy or malicious L1 to get
access to L0's x2APIC MSRs, via an L2, as follows.

1. L1 executes WRMSR(IA32_SPEC_CTRL, 1). This causes the spec_ctrl
variable, in nested_vmx_prepare_msr_bitmap() to become true.
2. L1 disables "virtualize x2APIC mode" in VMCS12.
3. L1 enables "APIC-register virtualization" in VMCS12.

Now, KVM will set VMCS02's x2APIC MSR intercepts from VMCS12, and then
set "virtualize x2APIC mode" to 0 in VMCS02. Oops.

This patch closes the leak by explicitly guarding VMCS02's x2APIC MSR
intercepts with VMCS12's "virtualize x2APIC mode" control.

The scenario outlined above and fix prescribed here, were verified with
a related patch in kvm-unit-tests titled "Add leak scenario to
virt_x2apic_mode_test".

Note, it looks like this issue may have been introduced inadvertently
during a merge---see 15303ba5d1.

Signed-off-by: Marc Orr <marcorr@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 21:08:22 +02:00
David Rientjes
b86bc2858b KVM: SVM: prevent DBG_DECRYPT and DBG_ENCRYPT overflow
This ensures that the address and length provided to DBG_DECRYPT and
DBG_ENCRYPT do not cause an overflow.

At the same time, pass the actual number of pages pinned in memory to
sev_unpin_memory() as a cleanup.

Reported-by: Cfir Cohen <cfir@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 20:49:42 +02:00
David Rientjes
ede885ecb2 kvm: svm: fix potential get_num_contig_pages overflow
get_num_contig_pages() could potentially overflow int so make its type
consistent with its usage.

Reported-by: Cfir Cohen <cfir@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-05 20:48:59 +02:00
Sean Christopherson
45def77ebf KVM: x86: update %rip after emulating IO
Most (all?) x86 platforms provide a port IO based reset mechanism, e.g.
OUT 92h or CF9h.  Userspace may emulate said mechanism, i.e. reset a
vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM
that it is doing a reset, e.g. Qemu jams vCPU state and resumes running.

To avoid corruping %rip after such a reset, commit 0967b7bf1c ("KVM:
Skip pio instruction when it is emulated, not executed") changed the
behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the
instruction prior to exiting to userspace.  Full emulation doesn't need
such tricks becase re-emulating the instruction will naturally handle
%rip being changed to point at the reset vector.

Updating %rip prior to executing to userspace has several drawbacks:

  - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation
    fails it will likely yell about the wrong address.
  - Single step exits to userspace for are effectively dropped as
    KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO.
  - Behavior of PIO emulation is different depending on whether it
    goes down the fast path or the slow path.

Rather than skip the PIO instruction before exiting to userspace,
snapshot the linear %rip and cancel PIO completion if the current
value does not match the snapshot.  For a 64-bit vCPU, i.e. the most
common scenario, the snapshot and comparison has negligible overhead
as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra
VMREAD in this case.

All other alternatives to snapshotting the linear %rip that don't
rely on an explicit reset announcenment suffer from one corner case
or another.  For example, canceling PIO completion on any write to
%rip fails if userspace does a save/restore of %rip, and attempting to
avoid that issue by canceling PIO only if %rip changed then fails if PIO
collides with the reset %rip.  Attempting to zero in on the exact reset
vector won't work for APs, which means adding more hooks such as the
vCPU's MP_STATE, and so on and so forth.

Checking for a linear %rip match technically suffers from corner cases,
e.g. userspace could theoretically rewrite the underlying code page and
expect a different instruction to execute, or the guest hardcodes a PIO
reset at 0xfffffff0, but those are far, far outside of what can be
considered normal operation.

Fixes: 432baf60ee ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O")
Cc: <stable@vger.kernel.org>
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:04 +01:00
Vitaly Kuznetsov
013cc6ebbf x86/kvm/hyper-v: avoid spurious pending stimer on vCPU init
When userspace initializes guest vCPUs it may want to zero all supported
MSRs including Hyper-V related ones including HV_X64_MSR_STIMERn_CONFIG/
HV_X64_MSR_STIMERn_COUNT. With commit f3b138c5d8 ("kvm/x86: Update SynIC
timers on guest entry only") we began doing stimer_mark_pending()
unconditionally on every config change.

The issue I'm observing manifests itself as following:
- Qemu writes 0 to STIMERn_{CONFIG,COUNT} MSRs and marks all stimers as
  pending in stimer_pending_bitmap, arms KVM_REQ_HV_STIMER;
- kvm_hv_has_stimer_pending() starts returning true;
- kvm_vcpu_has_events() starts returning true;
- kvm_arch_vcpu_runnable() starts returning true;
- when kvm_arch_vcpu_ioctl_run() gets into
  (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED) case:
  - kvm_vcpu_block() gets in 'kvm_vcpu_check_block(vcpu) < 0' and returns
    immediately, avoiding normal wait path;
  - -EAGAIN is returned from kvm_arch_vcpu_ioctl_run() immediately forcing
    userspace to retry.

So instead of normal wait path we get a busy loop on all secondary vCPUs
before they get INIT signal. This seems to be undesirable, especially given
that this happens even when Hyper-V extensions are not used.

Generally, it seems to be pointless to mark an stimer as pending in
stimer_pending_bitmap and arm KVM_REQ_HV_STIMER as the only thing
kvm_hv_process_stimers() will do is clear the corresponding bit. We may
just not mark disabled timers as pending instead.

Fixes: f3b138c5d8 ("kvm/x86: Update SynIC timers on guest entry only")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:03 +01:00
Xiaoyao Li
2bdb76c015 kvm/x86: Move MSR_IA32_ARCH_CAPABILITIES to array emulated_msrs
Since MSR_IA32_ARCH_CAPABILITIES is emualted unconditionally even if
host doesn't suppot it. We should move it to array emulated_msrs from
arry msrs_to_save, to report to userspace that guest support this msr.

Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:01 +01:00
Sean Christopherson
0cf9135b77 KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hosts
The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host
userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES
regardless of hardware support under the pretense that KVM fully
emulates MSR_IA32_ARCH_CAPABILITIES.  Unfortunately, only VMX hosts
handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS
also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts).

Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so
that it's emulated on AMD hosts.

Fixes: 1eaafe91a0 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported")
Cc: stable@vger.kernel.org
Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:29:00 +01:00
Ben Gardon
f285c633cb kvm: mmu: Used range based flushing in slot_handle_level_range
Replace kvm_flush_remote_tlbs with kvm_flush_remote_tlbs_with_address
in slot_handle_level_range. When range based flushes are not enabled
kvm_flush_remote_tlbs_with_address falls back to kvm_flush_remote_tlbs.

This changes the behavior of many functions that indirectly use
slot_handle_level_range, iff the range based flushes are enabled. The
only potential problem I see with this is that kvm->tlbs_dirty will be
cleared less often, however the only caller of slot_handle_level_range that
checks tlbs_dirty is kvm_mmu_notifier_invalidate_range_start which
checks it and does a kvm_flush_remote_tlbs after calling
kvm_unmap_hva_range anyway.

Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and
	without this patch. The patch introduced no new failures.

Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:28:57 +01:00
Wei Yang
4d66623cfb KVM: x86: remove check on nr_mmu_pages in kvm_arch_commit_memory_region()
* nr_mmu_pages would be non-zero only if kvm->arch.n_requested_mmu_pages is
  non-zero.

* nr_mmu_pages is always non-zero, since kvm_mmu_calculate_mmu_pages()
  never return zero.

Based on these two reasons, we can merge the two *if* clause and use the
return value from kvm_mmu_calculate_mmu_pages() directly. This simplify
the code and also eliminate the possibility for reader to believe
nr_mmu_pages would be zero.

Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:19 +01:00
Krish Sadhukhan
711eff3a8f kvm: nVMX: Add a vmentry check for HOST_SYSENTER_ESP and HOST_SYSENTER_EIP fields
According to section "Checks on VMX Controls" in Intel SDM vol 3C, the
following check is performed on vmentry of L2 guests:

    On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP
    field and the IA32_SYSENTER_EIP field must each contain a canonical
    address.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:18 +01:00
Singh, Brijesh
05d5a48635 KVM: SVM: Workaround errata#1096 (insn_len maybe zero on SMAP violation)
Errata#1096:

On a nested data page fault when CR.SMAP=1 and the guest data read
generates a SMAP violation, GuestInstrBytes field of the VMCB on a
VMEXIT will incorrectly return 0h instead the correct guest
instruction bytes .

Recommend Workaround:

To determine what instruction the guest was executing the hypervisor
will have to decode the instruction at the instruction pointer.

The recommended workaround can not be implemented for the SEV
guest because guest memory is encrypted with the guest specific key,
and instruction decoder will not be able to decode the instruction
bytes. If we hit this errata in the SEV guest then log the message
and request a guest shutdown.

Reported-by: Venkatesh Srinivas <venkateshs@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:17 +01:00
Sean Christopherson
47c42e6b41 KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'
The cr4_pae flag is a bit of a misnomer, its purpose is really to track
whether the guest PTE that is being shadowed is a 4-byte entry or an
8-byte entry.  Prior to supporting nested EPT, the size of the gpte was
reflected purely by CR4.PAE.  KVM fudged things a bit for direct sptes,
but it was mostly harmless since the size of the gpte never mattered.
Now that a spte may be tracking an indirect EPT entry, relying on
CR4.PAE is wrong and ill-named.

For direct shadow pages, force the gpte_size to '1' as they are always
8-byte entries; EPT entries can only be 8-bytes and KVM always uses
8-byte entries for NPT and its identity map (when running with EPT but
not unrestricted guest).

Likewise, nested EPT entries are always 8-bytes.  Nested EPT presents a
unique scenario as the size of the entries are not dictated by CR4.PAE,
but neither is the shadow page a direct map.  To handle this scenario,
set cr0_wp=1 and smap_andnot_wp=1, an otherwise impossible combination,
to denote a nested EPT shadow page.  Use the information to avoid
incorrectly zapping an unsync'd indirect page in __kvm_sync_page().

Providing a consistent and accurate gpte_size fixes a bug reported by
Vitaly where fast_cr3_switch() always fails when switching from L2 to
L1 as kvm_mmu_get_page() would force role.cr4_pae=0 for direct pages,
whereas kvm_calc_mmu_role_common() would set it according to CR4.PAE.

Fixes: 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:03 +01:00
Sean Christopherson
552c69b1dc KVM: nVMX: Do not inherit quadrant and invalid for the root shadow EPT
Explicitly zero out quadrant and invalid instead of inheriting them from
the root_mmu.  Functionally, this patch is a nop as we (should) never
set quadrant for a direct mapped (EPT) root_mmu and nested EPT is only
allowed if EPT is used for L1, and the root_mmu will never be invalid at
this point.

Explicitly setting flags sets the stage for repurposing the legacy
paging bits in role, e.g. nxe, cr0_wp, and sm{a,e}p_andnot_wp, at which
point 'smm' would be the only flag to be inherited from root_mmu.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28 17:27:01 +01:00
Linus Torvalds
636deed6c0 ARM: some cleanups, direct physical timer assignment, cache sanitization
for 32-bit guests
 
 s390: interrupt cleanup, introduction of the Guest Information Block,
 preparation for processor subfunctions in cpu models
 
 PPC: bug fixes and improvements, especially related to machine checks
 and protection keys
 
 x86: many, many cleanups, including removing a bunch of MMU code for
 unnecessary optimizations; plus AVIC fixes.
 
 Generic: memcg accounting
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
 16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
 l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
 RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
 gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
 2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
 =XIzU
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - some cleanups
   - direct physical timer assignment
   - cache sanitization for 32-bit guests

  s390:
   - interrupt cleanup
   - introduction of the Guest Information Block
   - preparation for processor subfunctions in cpu models

  PPC:
   - bug fixes and improvements, especially related to machine checks
     and protection keys

  x86:
   - many, many cleanups, including removing a bunch of MMU code for
     unnecessary optimizations
   - AVIC fixes

  Generic:
   - memcg accounting"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
  kvm: vmx: fix formatting of a comment
  KVM: doc: Document the life cycle of a VM and its resources
  MAINTAINERS: Add KVM selftests to existing KVM entry
  Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
  KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
  KVM: PPC: Fix compilation when KVM is not enabled
  KVM: Minor cleanups for kvm_main.c
  KVM: s390: add debug logging for cpu model subfunctions
  KVM: s390: implement subfunction processor calls
  arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
  KVM: arm/arm64: Remove unused timer variable
  KVM: PPC: Book3S: Improve KVM reference counting
  KVM: PPC: Book3S HV: Fix build failure without IOMMU support
  Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
  x86: kvmguest: use TSC clocksource if invariant TSC is exposed
  KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
  KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
  KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
  KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
  KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
  ...
2019-03-15 15:00:28 -07:00
Paolo Bonzini
4a605bc08e kvm: vmx: fix formatting of a comment
Eliminate a gratuitous conflict with 5.0.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-15 19:24:34 +01:00
Ben Gardon
92da008fa2 Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
This reverts commit 71883a62fc.

The above commit contains an optimization to kvm_zap_gfn_range which
uses gfn-limited TLB flushes, if enabled. If using these limited flushes,
kvm_zap_gfn_range passes lock_flush_tlb=false to slot_handle_level_range
which creates a race when the function unlocks to call cond_resched.
See an example of this race below:

CPU 0                   CPU 1                           CPU 3
// zap_direct_gfn_range
mmu_lock()
// *ptep == pte_1
*ptep = 0
if (lock_flush_tlb)
        flush_tlbs()
mmu_unlock()
                        // In invalidate range
                        // MMU notifier
                        mmu_lock()
                        if (pte != 0)
                                *ptep = 0
                                flush = true
                        if (flush)
                                flush_remote_tlbs()
                        mmu_unlock()
                        return
                        // Host MM reallocates
                        // page previously
                        // backing guest memory.
                                                        // Guest accesses
                                                        // invalid page
                                                        // through pte_1
                                                        // in its TLB!!

Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and
	without this patch. The patch introduced no new failures.

Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-15 19:16:45 +01:00
Yu Zhang
de3ccd26fa KVM: MMU: record maximum physical address width in kvm_mmu_extended_role
Previously, commit 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow
MMU reconfiguration is needed") offered some optimization to avoid
the unnecessary reconfiguration. Yet one scenario is broken - when
cpuid changes VM's maximum physical address width, reconfiguration
is needed to reset the reserved bits.  Also, the TDP may need to
reset its shadow_root_level when this value is changed.

To fix this, a new field, maxphyaddr, is introduced in the extended
role structure to keep track of the configured guest physical address
width.

Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-22 19:25:10 +01:00
Yu Zhang
511da98d20 kvm: x86: Return LA57 feature based on hardware capability
Previously, 'commit 372fddf709 ("x86/mm: Introduce the 'no5lvl' kernel
parameter")' cleared X86_FEATURE_LA57 in boot_cpu_data, if Linux chooses
to not run in 5-level paging mode. Yet boot_cpu_data is queried by
do_cpuid_ent() as the host capability later when creating vcpus, and Qemu
will not be able to detect this feature and create VMs with LA57 feature.

As discussed earlier, VMs can still benefit from extended linear address
width, e.g. to enhance features like ASLR. So we would like to fix this,
by return the true hardware capability when Qemu queries.

Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-22 19:25:05 +01:00
Vitaly Kuznetsov
ad7dc69aeb x86/kvm/mmu: fix switch between root and guest MMUs
Commit 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu") brought one subtle
change: previously, when switching back from L2 to L1, we were resetting
MMU hooks (like mmu->get_cr3()) in kvm_init_mmu() called from
nested_vmx_load_cr3() and now we do that in nested_ept_uninit_mmu_context()
when we re-target vcpu->arch.mmu pointer.
The change itself looks logical: if nested_ept_init_mmu_context() changes
something than nested_ept_uninit_mmu_context() restores it back. There is,
however, one thing: the following call chain:

 nested_vmx_load_cr3()
  kvm_mmu_new_cr3()
    __kvm_mmu_new_cr3()
      fast_cr3_switch()
        cached_root_available()

now happens with MMU hooks pointing to the new MMU (root MMU in our case)
while previously it was happening with the old one. cached_root_available()
tries to stash current root but it is incorrect to read current CR3 with
mmu->get_cr3(), we need to use old_mmu->get_cr3() which in case we're
switching from L2 to L1 is guest_mmu. (BTW, in shadow page tables case this
is a non-issue because we don't switch MMU).

While we could've tried to guess that we're switching between MMUs and call
the right ->get_cr3() from cached_root_available() this seems to be overly
complicated. Instead, just stash the corresponding CR3 when setting
root_hpa and make cached_root_available() use the stashed value.

Fixes: 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-22 19:24:48 +01:00
Sean Christopherson
8ab3c471ee KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
...via a new helper, __kvm_mmu_zap_all().  An alternative to passing a
'bool mmio_only' would be to pass a callback function to filter the
shadow page, i.e. to make __kvm_mmu_zap_all() generic and reusable, but
zapping all shadow pages is a last resort, i.e. making the helper less
extensible is a feature of sorts.  And the explicit MMIO parameter makes
it easy to preserve the WARN_ON_ONCE() if a restart is triggered when
zapping MMIO sptes.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:49 +01:00
Sean Christopherson
24efe61f69 KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
Paolo expressed a concern that kvm_mmu_zap_mmio_sptes() could have a
quadratic runtime[1], i.e. restarting the spte walk while zapping only
MMIO sptes could result in re-walking large portions of the list over
and over due to the non-MMIO sptes encountered before the restart not
being removed.

At the time, the concern was legitimate as the walk was restarted when
any spte was zapped.  But that is no longer the case as the walk is now
restarted iff one or more children have been zapped, which is necessary
because zapping children makes the active_mmu_pages list unstable.

Furthermore, it should be impossible for an MMIO spte to have children,
i.e. zapping an MMIO spte should never result in zapping children.  In
other words, kvm_mmu_zap_mmio_sptes() should never restart its walk, and
so should always execute in linear time.  WARN if this assertion fails.

Although it should never be needed, leave the restart logic in place.
In normal operation, the cost is at worst an extra CMP+Jcc, and if for
some reason the list does become unstable, not restarting would likely
crash KVM, or worse, the kernel.

[1] https://patchwork.kernel.org/patch/10756589/#22452085

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:48 +01:00
Sean Christopherson
83cdb56864 KVM: x86/mmu: Differentiate between nr zapped and list unstable
The return value of kvm_mmu_prepare_zap_page() has evolved to become
overloaded to convey two separate pieces of information.  1) was at
least one page zapped and 2) has the list of MMU pages become unstable.

In it's original incarnation (as kvm_mmu_zap_page()), there was no
return value at all.  Commit 0738541396 ("KVM: MMU: awareness of new
kvm_mmu_zap_page behaviour") added a return value in preparation for
commit 4731d4c7a0 ("KVM: MMU: out of sync shadow core").  Although
the return value was of type 'int', it was actually used as a boolean
to indicate whether or not active_mmu_pages may have become unstable due
to zapping children.  Walking a list with list_for_each_entry_safe()
only protects against deleting/moving the current entry, i.e. zapping a
child page would break iteration due to modifying any number of entries.

Later, commit 60c8aec6e2 ("KVM: MMU: use page array in unsync walk")
modified mmu_zap_unsync_children() to return an approximation of the
number of children zapped.  This was not intentional, it was simply a
side effect of how the code was written.

The unintented side affect was then morphed into an actual feature by
commit 77662e0028 ("KVM: MMU: fix kvm_mmu_zap_page() and its calling
path"), which modified kvm_mmu_change_mmu_pages() to use the number of
zapped pages when determining the number of MMU pages in use by the VM.

Finally, commit 54a4f0239f ("KVM: MMU: make kvm_mmu_zap_page() return
the number of pages it actually freed") added the initial page to the
return value to make its behavior more consistent with what most users
would expect.  Incorporating the initial parent page in the return value
of kvm_mmu_zap_page() breaks the original usage of restarting a list
walk on a non-zero return value to handle a potentially unstable list,
i.e. walks will unnecessarily restart when any page is zapped.

Fix this by restoring the original behavior of kvm_mmu_zap_page(), i.e.
return a boolean to indicate that the list may be unstable and move the
number of zapped children to a dedicated parameter.  Since the majority
of callers to kvm_mmu_prepare_zap_page() don't care about either return
value, preserve the current definition of kvm_mmu_prepare_zap_page() by
making it a wrapper of a new helper, __kvm_mmu_prepare_zap_page().  This
avoids having to update every call site and also provides cleaner code
for functions that only care about the number of pages zapped.

Fixes: 54a4f0239f ("KVM: MMU: make kvm_mmu_zap_page() return
                      the number of pages it actually freed")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:48 +01:00
Sean Christopherson
ea145aacf4 Revert "KVM: MMU: fast invalidate all pages"
Remove x86 KVM's fast invalidate mechanism, i.e. revert all patches
from the original series[1], now that all users of the fast invalidate
mechanism are gone.

This reverts commit 5304b8d37c.

[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:47 +01:00
Sean Christopherson
5d6317ca4e KVM: x86/mmu: Voluntarily reschedule as needed when zapping all sptes
Call cond_resched_lock() when zapping all sptes to reschedule if needed
or to release and reacquire mmu_lock in case of contention.  There is no
need to flush or zap when temporarily dropping mmu_lock as zapping all
sptes is done only when the owning userspace VMM has exited or when the
VM is being destroyed, i.e. there is no interplay with memslots or MMIO
generations to worry about.

Be paranoid and restart the walk if mmu_lock is dropped to avoid any
potential issues with consuming a stale iterator.  The overhead in doing
so is negligible as at worst there will be a few root shadow pages at
the head of the list, i.e. the iterator is essentially the head of the
list already.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:46 +01:00
Sean Christopherson
8a674adc11 KVM: x86/mmu: skip over invalid root pages when zapping all sptes
...to guarantee forward progress.  When zapped, root pages are marked
invalid and moved to the head of the active pages list until they are
explicitly freed.  Theoretically, having unzappable root pages at the
head of the list could prevent kvm_mmu_zap_all() from making forward
progress were a future patch to add a loop restart after processing a
page, e.g. to drop mmu_lock on contention.

Although kvm_mmu_prepare_zap_page() can theoretically take action on
invalid pages, e.g. to zap unsync children, functionally it's not
necessary (root pages will be re-zapped when freed) and practically
speaking the odds of e.g. @unsync or @unsync_children becoming %true
while zapping all pages is basically nil.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:46 +01:00
Sean Christopherson
7390de1e99 Revert "KVM: x86: use the fast way to invalidate all pages"
Revert to a slow kvm_mmu_zap_all() for kvm_arch_flush_shadow_all().
Flushing all shadow entries is only done during VM teardown, i.e.
kvm_arch_flush_shadow_all() is only called when the associated MM struct
is being released or when the VM instance is being freed.

Although the performance of teardown itself isn't critical, KVM should
still voluntarily schedule to play nice with the rest of the kernel;
but that can be done without the fast invalidate mechanism in a future
patch.

This reverts commit 6ca18b6950.

Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20 22:48:45 +01:00