In case of error, function module_alloc() in other platform never
returns ERR_PTR(), and all of the user only check for NULL, so
we'd better return NULL instead of ERR_PTR().
dpatch engine is used to auto generated this patch.
(https://github.com/weiyj/dpatch)
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
GNU Binutils 2.20.1 generates .eh_frame sections that uses R_SPARC_DISP32.
Signed-off-by: Andreas Larsson <andreas@gaisler.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
removes unnecessary semicolon
Found by Coccinelle: http://coccinelle.lip6.fr/
Signed-off-by: Peter Senna Tschudin <peter.senna@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Most architectures implement this in exactly the same way. Instead of
having each architecture duplicate this function, provide a single
implementation in the core and make it a weak symbol so that it can be
overridden on architectures where it is required.
Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Remove the __init annotations in order to keep pci_fixup_irqs() around
after init (e.g. for hotplug). This requires the same change for the
implementation of pcibios_update_irq() on all architectures. While at
it, all __devinit annotations are removed as well, since they will be
useless now that HOTPLUG is always on.
Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The IV wasn't being propagated properly past the first loop
iteration.
This bug lived only because the crypto layer tests for
cbc(des) do not have any cases that go more than one loop.
Signed-off-by: David S. Miller <davem@davemloft.net>
Just simply provide a device table containing an entry for sun4v cpus,
the capability mask checks in the drivers themselves will take care of
the rest.
This makes the bootup logs on pre-T4 cpus slightly more verbose, with
each driver indicating lack of support for the associated opcode(s).
But this isn't too much of a real problem.
I toyed with the idea of using explicit entries with compatability
fields of "SPARC-T4", "SPARC-T5", etc. but all future cpus will have
some subset of these opcodes available and this would just be one more
pointless thing to do as each new cpu is released with a new string.
Signed-off-by: David S. Miller <davem@davemloft.net>
Make the crypto opcode implementations have a higher priority than
those provides by the ring buffer based Niagara crypto device.
Also, several crypto opcode hashes were not setting the priority value
at all.
Signed-off-by: David S. Miller <davem@davemloft.net>
This required a little bit of reordering of how we set up the memory
management early on.
We now only know the final values of kern_linear_pte_xor[] after we
take over the trap table and start processing TLB misses ourselves.
So once we fill those values in we re-clear the kernel's 4M TSB and
flush the TLBs. That way if we find we support larger than 4M pages
we won't have any stale smaller page size entries in the TSB.
SUN4U Panther support for larger page sizes should now be extremely
trivial but I have no hardware on which to test it and I believe
that some of the sun4u TLB miss assembler needs to be audited first
to make sure it really can handle larger than 4M PTEs properly.
Signed-off-by: David S. Miller <davem@davemloft.net>
On sun4v, interrogate the machine description. This code is extremely
defensive in nature, and a lot of the checks can probably be removed.
On sun4u things are a lot simpler. There are the page sizes all chips
support, and then Panther adds 32MB and 256MB pages.
Report the probed value in /proc/cpuinfo
Signed-off-by: David S. Miller <davem@davemloft.net>
SPARC-T4 supports 2GB pages.
So convert kpte_linear_bitmap into an array of 2-bit values which
index into kern_linear_pte_xor.
Now kern_linear_pte_xor is used for 4 page size aligned regions,
4MB, 256MB, 2GB, and 16GB respectively.
Enabling 2GB pages is currently hardcoded using a check against
sun4v_chip_type. In the future this will be done more cleanly
by interrogating the machine description which is the correct
way to determine this kind of thing.
Signed-off-by: David S. Miller <davem@davemloft.net>
Some dm-crypt testing revealed several bugs in the 256-bit unrolled
loops.
The DECRYPT_256_2() macro had two errors:
1) Missing reload of KEY registers %f60 and %f62
2) Missing "\" in penultimate line of definition.
In aes_sparc64_ecb_decrypt_256, we were storing the second half of the
encryption result from the wrong source registers.
In aes_sparc64_ctr_crypt_256 we have to be careful when we fall out of
the 32-byte-at-a-time loop and handle a trailing 16-byte chunk. In
that case we've clobbered the final key holding registers and have to
restore them before executing the ENCRYPT_256() macro. Inside of the
32-byte-at-a-time loop things are OK, because we do this key register
restoring during the first few rounds of the ENCRYPT_256_2() macro.
Signed-off-by: David S. Miller <davem@davemloft.net>
Before:
testing speed of ctr(aes) encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 206 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 244 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 360 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 814 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 5021 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 206 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 240 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 378 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 939 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 6395 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 209 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 249 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 414 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1073 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 7110 cycles (8192 bytes)
testing speed of ctr(aes) decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 225 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 233 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 344 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 810 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 5021 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 206 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 240 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 376 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 938 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 6380 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 214 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 251 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 411 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1070 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 7114 cycles (8192 bytes)
After:
testing speed of ctr(aes) encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 211 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 246 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 344 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 799 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 4975 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 210 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 236 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 365 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 888 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 6055 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 209 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 255 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 404 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1010 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 6669 cycles (8192 bytes)
testing speed of ctr(aes) decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 210 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 233 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 340 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 818 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 4956 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 206 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 239 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 361 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 888 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 5996 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 214 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 248 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 395 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 1010 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 6664 cycles (8192 bytes)
Signed-off-by: David S. Miller <davem@davemloft.net>
Before:
testing speed of ecb(aes) decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 223 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 230 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 325 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 719 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 4266 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 211 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 234 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 353 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 808 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 5344 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 214 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 243 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 393 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 939 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 6039 cycles (8192 bytes)
After:
testing speed of ecb(aes) decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 226 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 231 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 313 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 681 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 3964 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 205 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 240 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 341 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 770 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 5050 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 216 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 250 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 371 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 869 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 5494 cycles (8192 bytes)
Signed-off-by: David S. Miller <davem@davemloft.net>
The AES opcodes have a 3 cycle latency, so by doing 32-bytes at a
time we avoid a pipeline bubble in between every round.
For the 256-bit key case, it looks like we're doing more work in
order to reload the KEY registers during the loop to make space
for scarce temporaries. But the load dual issues with the AES
operations so we get the KEY reloads essentially for free.
Before:
testing speed of ecb(aes) encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 264 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 231 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 329 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 715 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 4248 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 221 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 234 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 359 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 803 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 5366 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 209 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 255 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 379 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 938 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 6041 cycles (8192 bytes)
After:
testing speed of ecb(aes) encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 266 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 256 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 305 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 676 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 3981 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 210 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 233 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 340 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 766 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 5136 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 206 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 268 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 368 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 890 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 5718 cycles (8192 bytes)
Signed-off-by: David S. Miller <davem@davemloft.net>
Instead of testing and branching off of the key size on every
encrypt/decrypt call, use method ops assigned at key set time.
Reverse the order of float registers used for decryption to make
future changes easier.
Align all assembler routines on a 32-byte boundary.
Signed-off-by: David S. Miller <davem@davemloft.net>
Describe how we support two types of PMU setups, one with a single control
register and two counters stored in a single register, and another with
one control register per counter and each counter living in it's own
register.
Signed-off-by: David S. Miller <davem@davemloft.net>
When cpuc->n_events is zero, we actually don't do anything and we just
write the cpuc->pcr[0] value as-is without any modifications.
The "pcr = 0;" assignment there was just useless and confusing.
Signed-off-by: David S. Miller <davem@davemloft.net>
Make the per-cpu pcr save area an array instead of one u64.
Describe how many PCR and PIC registers the chip has in the sparc_pmu
descriptor.
Signed-off-by: David S. Miller <davem@davemloft.net>
Starting with SPARC-T4 we have a seperate PCR control register
for each performance counter, and there are absolutely no
restrictions on what events can run on which counters.
Add flags that we can use to elide the conflict and dependency
logic used to handle older chips.
Signed-off-by: David S. Miller <davem@davemloft.net>
We assumed PCR_PIC_PRIV can always be used to disable it, but that
won't be true for SPARC-T4.
This allows us also to get rid of some messy defines used in only
one location.
Signed-off-by: David S. Miller <davem@davemloft.net>
And, like for the PCR, allow indexing of different PIC register
numbers.
This also removes all of the non-__KERNEL__ bits from asm/perfctr.h,
nothing kernel side should include it any more.
Signed-off-by: David S. Miller <davem@davemloft.net>
Unlike for previous chips, access to the perf-counter control
registers are all hyper-privileged. Therefore, access to them must go
through a hypervisor interface.
Signed-off-by: David S. Miller <davem@davemloft.net>
Compare and branch, pause, and the various new cryptographic opcodes.
We advertise the crypto opcodes to userspace using one hwcap bit,
HWCAP_SPARC_CRYPTO.
This essentially indicates that the %cfr register can be interrograted
and used to determine exactly which crypto opcodes are available on
the current cpu.
We use the %cfr register to report all of the crypto opcodes available
in the bootup CPU caps log message, and via /proc/cpuinfo.
Signed-off-by: David S. Miller <davem@davemloft.net>
On a 2-node machine with 256GB of ram we get 512 lines of
console output, which is just too much.
This mimicks Yinghai Lu's x86 commit c2b91e2eec
(x86_64/mm: check and print vmemmap allocation continuous) except that
we aren't ever going to get contiguous block pointers in between calls
so just print when the virtual address or node changes.
This decreases the output by an order of 16.
Also demote this to KERN_DEBUG.
Signed-off-by: David S. Miller <davem@davemloft.net>
There are multiple errors in how sys_sparc64_personality() handles
personality flags stored in top three bytes.
- directly comparing current->personality against PER_LINUX32 doesn't work
in cases when any of the personality flags stored in the top three bytes
are used.
- directly forcefully setting personality to PER_LINUX32 or PER_LINUX
discards any flags stored in the top three bytes
Fix the first one by properly using personality() macro to compare only
PER_MASK bytes.
Fix the second one by setting only the bits that should be set, instead of
overwriting the whole value.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: David S. Miller <davem@davemloft.net>
from interrupts for /dev/random and /dev/urandom. The goal is to
addresses weaknesses discussed in the paper "Mining your Ps and Qs:
Detection of Widespread Weak Keys in Network Devices", by Nadia
Heninger, Zakir Durumeric, Eric Wustrow, J. Alex Halderman, which will
be published in the Proceedings of the 21st Usenix Security Symposium,
August 2012. (See https://factorable.net for more information and an
extended version of the paper.)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABCAAGBQJQF/0DAAoJENNvdpvBGATwIowQAOep9QKtLrBvb2lwIRVmeiy8
lRf7V/tYZnz4FePbR0W92JQfKYkCV8yyOO0bmeRzWL3v4m+lRwDTSyA1DDyQMoH+
LOMzvDKSLJMSXTXdSOIr1WYACphViCR/9CrbMBCKSkYfZLJ1MdaEDxT3rcpTGD0T
6iknUweiSkHHhkerU5yQL7FKzD5kYUe0hsF47w7QVlHRHJsW2fsZqkFoh+RpnhNw
03u+djxNGBo9qV81vZ9D1b0vA9uRlEjoWOOEG2XE4M2iq6TUySueA72dQnCwunfi
3kG/u1Swv2dgq6aRrP3H7zdwhYSourGxziu3jNhEKwKEohrxYY7xjNX3RVeTqP67
AzlKsOTWpRLIDrzjSLlb8VxRQiZewu8Unex3e1G+eo20sbcIObHGrxNp7K00zZvd
QZiMHhOwItwFTe4lBO+XbqH2JKbL9/uJmwh5EipMpQTraKO9E6N3CJiUHjzBLo2K
iGDZxRMKf4gVJRwDxbbP6D70JPVu8ZJ09XVIpsXQ3Z1xNqaMF0QdCmP3ty56q1o0
NvkSXxPKrijZs8Sk0rVDqnJ3ll8PuDnXMv5eDtL42VT818I5WxESn9djjwEanGv0
TYxbFub/NRxmPEE5B2Js5FBpqsLf5f282OSMeS/5WLBbnHJR1OoPoAhGVpHvxntC
bi5FC1OolqhvzVIdsqgt
=u7KM
-----END PGP SIGNATURE-----
Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random
Pull random subsystem patches from Ted Ts'o:
"This patch series contains a major revamp of how we collect entropy
from interrupts for /dev/random and /dev/urandom.
The goal is to addresses weaknesses discussed in the paper "Mining
your Ps and Qs: Detection of Widespread Weak Keys in Network Devices",
by Nadia Heninger, Zakir Durumeric, Eric Wustrow, J. Alex Halderman,
which will be published in the Proceedings of the 21st Usenix Security
Symposium, August 2012. (See https://factorable.net for more
information and an extended version of the paper.)"
Fix up trivial conflicts due to nearby changes in
drivers/{mfd/ab3100-core.c, usb/gadget/omap_udc.c}
* tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random: (33 commits)
random: mix in architectural randomness in extract_buf()
dmi: Feed DMI table to /dev/random driver
random: Add comment to random_initialize()
random: final removal of IRQF_SAMPLE_RANDOM
um: remove IRQF_SAMPLE_RANDOM which is now a no-op
sparc/ldc: remove IRQF_SAMPLE_RANDOM which is now a no-op
[ARM] pxa: remove IRQF_SAMPLE_RANDOM which is now a no-op
board-palmz71: remove IRQF_SAMPLE_RANDOM which is now a no-op
isp1301_omap: remove IRQF_SAMPLE_RANDOM which is now a no-op
pxa25x_udc: remove IRQF_SAMPLE_RANDOM which is now a no-op
omap_udc: remove IRQF_SAMPLE_RANDOM which is now a no-op
goku_udc: remove IRQF_SAMPLE_RANDOM which was commented out
uartlite: remove IRQF_SAMPLE_RANDOM which is now a no-op
drivers: hv: remove IRQF_SAMPLE_RANDOM which is now a no-op
xen-blkfront: remove IRQF_SAMPLE_RANDOM which is now a no-op
n2_crypto: remove IRQF_SAMPLE_RANDOM which is now a no-op
pda_power: remove IRQF_SAMPLE_RANDOM which is now a no-op
i2c-pmcmsp: remove IRQF_SAMPLE_RANDOM which is now a no-op
input/serio/hp_sdc.c: remove IRQF_SAMPLE_RANDOM which is now a no-op
mfd: remove IRQF_SAMPLE_RANDOM which is now a no-op
...
Rather than #define the options manually in the architecture code, add
Kconfig options for them and select them there instead. This also allows
us to select the compat IPC version parsing automatically for platforms
using the old compat IPC interface.
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the SHMLBA definition for a native task differs from the definition for
a compat task, the do_shmat() function would need to handle both.
This patch introduces COMPAT_SHMLBA, which is used by the compat shmat
syscall when calling the ipc code and allows architectures such as AArch64
(where the native SHMLBA is 64k but the compat (AArch32) definition is
16k) to provide the correct semantics for compat IPC system calls.
Cc: David S. Miller <davem@davemloft.net>
Cc: Chris Zankel <chris@zankel.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull sparc updates from David Miller:
"Nothing much this merge window for sparc.
1) Fix FPU state management in sparc32, from Tkhai Kirill.
2) More sparc32 mm layer code cleanups, largely more side effects of
the sun4c support removal in the 3.5 From Sam Ravnborg.
3) Remove unused code in sparc64, from Bjorn Helgaas and Kirill Tkhai.
4) Some declaration and comment tidies in PROM support code, from
Geert Uytterhoeven."
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc: (24 commits)
sparc32, copy_thread: Clear TIF_USEDFPU flag of created task instead of current
sparc32: delete dead code in show_mem()
sparc32: move kmap_init() to highmem.c
sparc32: move probe_memory() to srmmu.c
sparc32: drop unused BAD_PAGE stuff
sparc32: centralize all mmu context handling in srmmu.c
sparc32: drop quicklist
sparc32: drop sparc model check in paging_init
sparc32: drop sparc_unmapped_base
sparc32,leon: drop leon_init()
sparc32: drop fixmap.h
sparc32: fixmap.h cleanup
sparc32: drop unused kmap_atomic_to_page
sparc32: drop swapper_pg_dir
sparc32: beautify srmmu_inherit_prom_mappings()
sparc32: use void * in nocache get/free
sparc32: fix coding-style in srmmu.c
sparc32: sort includes in srmmu.c
sparc32: define a few srmmu functions __init
sparc64: remove unused function straddles_64bit_va_hole()
...
FPU state is saved into task_struct of created task. Current task continues
use of the state, so it needs TIF_USEDFPU flag is not cleared.
Created task receives fresh FPU and cleared TIF_USEFPU flag is required for it.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: David S. Miller <davem@davemloft.net>
Try to keep highmem support in a more central place.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Only one user so move it to the file using it.
It had nothing to do in fault_32.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
We already check the model in head_32.S so no need to
repeat the check here
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The base is always the same so no need to use a variable for this.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This function was only used to set of_pdt_build_more to leon_node_init().
But the leon_node_init() was a nop as prom_amba_init was never assigned.
Cc: Daniel Hellstrom <daniel@gaisler.com>
Cc: Konrad Eisele <konrad@gaisler.com>
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
sparc32 does not support fixmaps - so do not pretend so by
having the fixmap.h file.
Move relevant parts to vaddrs.h.
I looked at simplifying this even more but failed to understand
the reasoning behind the extra guard page involved and due to
missing testing possibilities only the trivial conversion was done.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove all unused stuff from fixmap.h
It is only used for highmem - sparc32 has no fixmap support.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
We save one page of RAM dropping swapper_pg_dir.
It was only used for an assignment in init-mm.c and we
redid this later in srmmu.c anyway.
This is likely a left-over from the sun4c removal.
To avoid a dummy variable we use a simple #define swapper_pg_dir NULL
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This allowed to us to kill a lot of casts,
with no loss of readability in any places
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix the most annoying issues that distracts me:
- whitespace
- missing space after "if" and "while"
- spaces around operators
and similar simple things.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
They are only used during early init so lets get rid of them
after init to save some RAM.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Host bridge hotplug
- Add MMCONFIG support for hot-added host bridges (Jiang Liu)
Device hotplug
- Move fixups from __init to __devinit (Sebastian Andrzej Siewior)
- Call FINAL fixups for hot-added devices, too (Myron Stowe)
- Factor out generic code for P2P bridge hot-add (Yinghai Lu)
- Remove all functions in a slot, not just those with _EJx (Amos Kong)
Dynamic resource management
- Track bus number allocation (struct resource tree per domain) (Yinghai Lu)
- Make P2P bridge 1K I/O windows work with resource reassignment (Bjorn Helgaas, Yinghai Lu)
- Disable decoding while updating 64-bit BARs (Bjorn Helgaas)
Power management
- Add PCIe runtime D3cold support (Huang Ying)
Virtualization
- Add VFIO infrastructure (ACS, DMA source ID quirks) (Alex Williamson)
- Add quirks for devices with broken INTx masking (Jan Kiszka)
Miscellaneous
- Fix some PCI Express capability version issues (Myron Stowe)
- Factor out some arch code with a weak, generic, pcibios_setup() (Myron Stowe)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
iQIcBAABAgAGBQJQBy+9AAoJEPGMOI97Hn6zOpQP+wVFvA7pcteFj6HPs5nTq2Hc
55oeRqCO0wBHoFMCKB0AjeTATjqxi9OhcjaiVrZejxNyWKC9MnrXuunpQ0l/hCbR
M/TK+BCelfX2FU4eXNf+TBCCcOhOVWqQft9Gm6nYKwX8Y0msRVCceI4WwhZgSwtI
vdtmnqlwolscdnq+8ThsnvUMtwkN0gExmn2FJRl6EoEgG0DTqhMkZ83uA+NPBhvv
I+g0XbA6haaZph2nnSYR0hIW4Q7JkT/LgA6uVAQxamctwxLol7xxsjCRnfqrulkf
kaRr2fAgBXfmaOIltro4UkXrCM52ZSyggCDfExHp6mWGPKMjE5ZcyK1YbGfmmumk
DS3t1S0eBdDJXrnf9l/Yb8e95dQxRCYKelKzr1rTD9QAXsInE8rC40hvhfFaTa4s
nZYRTz0SKv6coQihqaOR7shx1DNomLFk7jndaWEElfl9/cT/nQnZ8XLfVMzkJNNB
Y4SM6zkiIaCL0aiSEE16MqVjmODYRjbURLYzQIrqr2KJQg8X6XjIRojQLjL6xEgA
22ry2ZRPhqO68g7aLqvixiSDaTp0Z0Vw+JmgjtBqvkokwZcGQtm4umkpAdOi+Es8
3bJaMY7ZUpDX53FE8iyP6AnmR/1k19rC1gNnNq/syWyjtYOYJ9i3QCTafFgvE1VC
5coQ1L5tByHvpzK5PHwf
=oo/A
-----END PGP SIGNATURE-----
Merge tag 'for-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI changes from Bjorn Helgaas:
"Host bridge hotplug:
- Add MMCONFIG support for hot-added host bridges (Jiang Liu)
Device hotplug:
- Move fixups from __init to __devinit (Sebastian Andrzej Siewior)
- Call FINAL fixups for hot-added devices, too (Myron Stowe)
- Factor out generic code for P2P bridge hot-add (Yinghai Lu)
- Remove all functions in a slot, not just those with _EJx (Amos
Kong)
Dynamic resource management:
- Track bus number allocation (struct resource tree per domain)
(Yinghai Lu)
- Make P2P bridge 1K I/O windows work with resource reassignment
(Bjorn Helgaas, Yinghai Lu)
- Disable decoding while updating 64-bit BARs (Bjorn Helgaas)
Power management:
- Add PCIe runtime D3cold support (Huang Ying)
Virtualization:
- Add VFIO infrastructure (ACS, DMA source ID quirks) (Alex
Williamson)
- Add quirks for devices with broken INTx masking (Jan Kiszka)
Miscellaneous:
- Fix some PCI Express capability version issues (Myron Stowe)
- Factor out some arch code with a weak, generic, pcibios_setup()
(Myron Stowe)"
* tag 'for-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (122 commits)
PCI: hotplug: ensure a consistent return value in error case
PCI: fix undefined reference to 'pci_fixup_final_inited'
PCI: build resource code for M68K architecture
PCI: pciehp: remove unused pciehp_get_max_lnk_width(), pciehp_get_cur_lnk_width()
PCI: reorder __pci_assign_resource() (no change)
PCI: fix truncation of resource size to 32 bits
PCI: acpiphp: merge acpiphp_debug and debug
PCI: acpiphp: remove unused res_lock
sparc/PCI: replace pci_cfg_fake_ranges() with pci_read_bridge_bases()
PCI: call final fixups hot-added devices
PCI: move final fixups from __init to __devinit
x86/PCI: move final fixups from __init to __devinit
MIPS/PCI: move final fixups from __init to __devinit
PCI: support sizing P2P bridge I/O windows with 1K granularity
PCI: reimplement P2P bridge 1K I/O windows (Intel P64H2)
PCI: disable MEM decoding while updating 64-bit MEM BARs
PCI: leave MEM and IO decoding disabled during 64-bit BAR sizing, too
PCI: never discard enable/suspend/resume_early/resume fixups
PCI: release temporary reference in __nv_msi_ht_cap_quirk()
PCI: restructure 'pci_do_fixups()'
...
A small set of changes for devicetree:
- Couple of Documentation fixes
- Addition of new helper function of_node_full_name
- Improve of_parse_phandle_with_args return values
- Some NULL related sparse fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQEcBAABAgAGBQJQDwsgAAoJEMhvYp4jgsXiuwUH/Ri6ZSnqHcz4Wa/X4FxvNc3I
3Xelo/Vt3WLYue3s/+OYiM5FK9+KH8T6x+U79Q4p7vePcfUh6GJII0AUbMeRghkS
m3FjNd5syzYNJlnDnqdngQYRDpaz8U/SyftjXyMPjJ1VWiyLx/EJQUkj1EEwDLe/
ZVabppnco3Y6OJpFuETONNvXx5mE7xq86isW5+aYmviMkWSMMwJPf8qofLJ78Dh5
OAhWuCPRDooz548+Wkabt90qHjF6FU43w5fU7zZW26NT39ptppcbZ2bAXcTYqIIq
sATp5YSitvwFqO2c1mA/drZ9nrgxDPCaw3qCDyiMdcbWgXqDirz2x7q1iauVHF4=
=5TZ/
-----END PGP SIGNATURE-----
Merge tag 'dt-for-3.6' of git://sources.calxeda.com/kernel/linux
Pull devicetree updates from Rob Herring:
"A small set of changes for devicetree:
- Couple of Documentation fixes
- Addition of new helper function of_node_full_name
- Improve of_parse_phandle_with_args return values
- Some NULL related sparse fixes"
Grant's busy packing.
* tag 'dt-for-3.6' of git://sources.calxeda.com/kernel/linux:
of: mtd: nuke useless const qualifier
devicetree: add helper inline for retrieving a node's full name
of: return -ENOENT when no property
usage-model.txt: fix typo machine_init->init_machine
of: Fix null pointer related warnings in base.c file
LED: Fix missing semicolon in OF documentation
of: fix a few typos in the binding documentation
Pull networking changes from David S Miller:
1) Remove the ipv4 routing cache. Now lookups go directly into the FIB
trie and use prebuilt routes cached there.
No more garbage collection, no more rDOS attacks on the routing
cache. Instead we now get predictable and consistent performance,
no matter what the pattern of traffic we service.
This has been almost 2 years in the making. Special thanks to
Julian Anastasov, Eric Dumazet, Steffen Klassert, and others who
have helped along the way.
I'm sure that with a change of this magnitude there will be some
kind of fallout, but such things ought the be simple to fix at this
point. Luckily I'm not European so I'll be around all of August to
fix things :-)
The major stages of this work here are each fronted by a forced
merge commit whose commit message contains a top-level description
of the motivations and implementation issues.
2) Pre-demux of established ipv4 TCP sockets, saves a route demux on
input.
3) TCP SYN/ACK performance tweaks from Eric Dumazet.
4) Add namespace support for netfilter L4 conntrack helpers, from Gao
Feng.
5) Add config mechanism for Energy Efficient Ethernet to ethtool, from
Yuval Mintz.
6) Remove quadratic behavior from /proc/net/unix, from Eric Dumazet.
7) Support for connection tracker helpers in userspace, from Pablo
Neira Ayuso.
8) Allow userspace driven TX load balancing functions in TEAM driver,
from Jiri Pirko.
9) Kill off NLMSG_PUT and RTA_PUT macros, more gross stuff with
embedded gotos.
10) TCP Small Queues, essentially minimize the amount of TCP data queued
up in the packet scheduler layer. Whereas the existing BQL (Byte
Queue Limits) limits the pkt_sched --> netdevice queuing levels,
this controls the TCP --> pkt_sched queueing levels.
From Eric Dumazet.
11) Reduce the number of get_page/put_page ops done on SKB fragments,
from Alexander Duyck.
12) Implement protection against blind resets in TCP (RFC 5961), from
Eric Dumazet.
13) Support the client side of TCP Fast Open, basically the ability to
send data in the SYN exchange, from Yuchung Cheng.
Basically, the sender queues up data with a sendmsg() call using
MSG_FASTOPEN, then they do the connect() which emits the queued up
fastopen data.
14) Avoid all the problems we get into in TCP when timers or PMTU events
hit a locked socket. The TCP Small Queues changes added a
tcp_release_cb() that allows us to queue work up to the
release_sock() caller, and that's what we use here too. From Eric
Dumazet.
15) Zero copy on TX support for TUN driver, from Michael S. Tsirkin.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1870 commits)
genetlink: define lockdep_genl_is_held() when CONFIG_LOCKDEP
r8169: revert "add byte queue limit support".
ipv4: Change rt->rt_iif encoding.
net: Make skb->skb_iif always track skb->dev
ipv4: Prepare for change of rt->rt_iif encoding.
ipv4: Remove all RTCF_DIRECTSRC handliing.
ipv4: Really ignore ICMP address requests/replies.
decnet: Don't set RTCF_DIRECTSRC.
net/ipv4/ip_vti.c: Fix __rcu warnings detected by sparse.
ipv4: Remove redundant assignment
rds: set correct msg_namelen
openvswitch: potential NULL deref in sample()
tcp: dont drop MTU reduction indications
bnx2x: Add new 57840 device IDs
tcp: avoid oops in tcp_metrics and reset tcpm_stamp
niu: Change niu_rbr_fill() to use unlikely() to check niu_rbr_add_page() return value
niu: Fix to check for dma mapping errors.
net: Fix references to out-of-scope variables in put_cmsg_compat()
net: ethernet: davinci_emac: add pm_runtime support
net: ethernet: davinci_emac: Remove unnecessary #include
...
With the changes in the random tree, IRQF_SAMPLE_RANDOM is now a
no-op; interrupt randomness is now collected unconditionally in a very
low-overhead fashion; see commit 775f4b297b. The IRQF_SAMPLE_RANDOM
flag was scheduled to be removed in 2009 on the
feature-removal-schedule, so this patch is preparation for the final
removal of this flag.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: "David S. Miller" <davem@davemloft.net>
* pci/bjorn-p2p-bridge-windows:
sparc/PCI: replace pci_cfg_fake_ranges() with pci_read_bridge_bases()
PCI: support sizing P2P bridge I/O windows with 1K granularity
PCI: reimplement P2P bridge 1K I/O windows (Intel P64H2)
PCI: allow P2P bridge windows starting at PCI bus address zero
Conflicts:
drivers/pci/probe.c
include/linux/pci.h
The generic code to read P2P bridge windows is functionally equivalent
to the sparc-specific pci_cfg_fake_ranges(), so use the generic code.
The "if (!res->start) res->start = ..." removed from the I/O window code
here was an artifact of the Intel 1K window support from 9d265124d0 and
is no longer necessary (it probably was just cloned from x86 and was never
useful on sparc).
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
The pattern (np ? np->full_name : "<none>") is rather common in the
kernel, but can also make for quite long lines. This patch adds a new
inline function, of_node_full_name() so that the test for a valid node
pointer doesn't need to be open coded at all call sites.
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rob Herring <rob.herring@calxeda.com>
* pci/myron-pcibios_setup:
xtensa/PCI: factor out pcibios_setup()
x86/PCI: adjust section annotations for pcibios_setup()
unicore32/PCI: adjust section annotations for pcibios_setup()
tile/PCI: factor out pcibios_setup()
sparc/PCI: factor out pcibios_setup()
sh/PCI: adjust section annotations for pcibios_setup()
sh/PCI: factor out pcibios_setup()
powerpc/PCI: factor out pcibios_setup()
parisc/PCI: factor out pcibios_setup()
MIPS/PCI: adjust section annotations for pcibios_setup()
MIPS/PCI: factor out pcibios_setup()
microblaze/PCI: factor out pcibios_setup()
ia64/PCI: factor out pcibios_setup()
cris/PCI: factor out pcibios_setup()
alpha/PCI: factor out pcibios_setup()
PCI: pull pcibios_setup() up into core
The PCI core provides a generic pcibios_setup() routine. Drop this
architecture-specific version in favor of that.
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Myron Stowe <myron.stowe@redhat.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Conflicts:
drivers/net/caif/caif_hsi.c
drivers/net/usb/qmi_wwan.c
The qmi_wwan merge was trivial.
The caif_hsi.c, on the other hand, was not. It's a conflict between
1c385f1fdf ("caif-hsi: Replace platform
device with ops structure.") in the net-next tree and commit
39abbaef19 ("caif-hsi: Postpone init of
HIS until open()") in the net tree.
I did my best with that one and will ask Sjur to check it out.
Signed-off-by: David S. Miller <davem@davemloft.net>
prom_meminit() and prom_ranges_init() are declared in <asm/oplib_32.h>.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
pcibios_assign_resource() isn't used anywhere; remove it.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add the host bridge bus number aperture to the resource list.
Like the MMIO and I/O port apertures, this is used when assigning
resources to hot-added devices or in the case of conflicts.
[bhelgaas: changelog, fix "pci_last_busn" typo]
Acked-by: "David S. Miller" <davem@davemloft.net>
CC: sparclinux@vger.kernel.org
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Replace the struct pci_bus secondary/subordinate members with the
struct resource busn_res. Later we'll build a resource tree of these
bus numbers.
[bhelgaas: changelog]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Nothing includes these two headers. None of the macros they define are
used anywhere in the tree. This was also the case in v2.6.12-rc2 and,
presumably, every release in between. These two headers can safely be
removed.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
ipi_call_lock/unlock() lock resp. unlock call_function.lock. This lock
protects only the call_function data structure itself, but it's
completely unrelated to cpu_online_mask. The mask to which the IPIs
are sent is calculated before call_function.lock is taken in
smp_call_function_many(), so the locking around set_cpu_online() is
pointless and can be removed.
Delay irq enable to after set_cpu_online().
[ tglx: Massaged changelog ]
Signed-off-by: Yong Zhang <yong.zhang0@gmail.com>
Cc: ralf@linux-mips.org
Cc: sshtylyov@mvista.com
Cc: david.daney@cavium.com
Cc: nikunj@linux.vnet.ibm.com
Cc: paulmck@linux.vnet.ibm.com
Cc: axboe@kernel.dk
Cc: peterz@infradead.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/20120529082732.GA4250@zhy
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull third pile of signal handling patches from Al Viro:
"This time it's mostly helpers and conversions to them; there's a lot
of stuff remaining in the tree, but that'll either go in -rc2
(isolated bug fixes, ideally via arch maintainers' trees) or will sit
there until the next cycle."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal:
x86: get rid of calling do_notify_resume() when returning to kernel mode
blackfin: check __get_user() return value
whack-a-mole with TIF_FREEZE
FRV: Optimise the system call exit path in entry.S [ver #2]
FRV: Shrink TIF_WORK_MASK [ver #2]
FRV: Prevent syscall exit tracing and notify_resume at end of kernel exceptions
new helper: signal_delivered()
powerpc: get rid of restore_sigmask()
most of set_current_blocked() callers want SIGKILL/SIGSTOP removed from set
set_restore_sigmask() is never called without SIGPENDING (and never should be)
TIF_RESTORE_SIGMASK can be set only when TIF_SIGPENDING is set
don't call try_to_freeze() from do_signal()
pull clearing RESTORE_SIGMASK into block_sigmask()
sh64: failure to build sigframe != signal without handler
openrisc: tracehook_signal_handler() is supposed to be called on success
new helper: sigmask_to_save()
new helper: restore_saved_sigmask()
new helpers: {clear,test,test_and_clear}_restore_sigmask()
HAVE_RESTORE_SIGMASK is defined on all architectures now
Pull vfs changes from Al Viro.
"A lot of misc stuff. The obvious groups:
* Miklos' atomic_open series; kills the damn abuse of
->d_revalidate() by NFS, which was the major stumbling block for
all work in that area.
* ripping security_file_mmap() and dealing with deadlocks in the
area; sanitizing the neighborhood of vm_mmap()/vm_munmap() in
general.
* ->encode_fh() switched to saner API; insane fake dentry in
mm/cleancache.c gone.
* assorted annotations in fs (endianness, __user)
* parts of Artem's ->s_dirty work (jff2 and reiserfs parts)
* ->update_time() work from Josef.
* other bits and pieces all over the place.
Normally it would've been in two or three pull requests, but
signal.git stuff had eaten a lot of time during this cycle ;-/"
Fix up trivial conflicts in Documentation/filesystems/vfs.txt (the
'truncate_range' inode method was removed by the VM changes, the VFS
update adds an 'update_time()' method), and in fs/btrfs/ulist.[ch] (due
to sparse fix added twice, with other changes nearby).
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (95 commits)
nfs: don't open in ->d_revalidate
vfs: retry last component if opening stale dentry
vfs: nameidata_to_filp(): don't throw away file on error
vfs: nameidata_to_filp(): inline __dentry_open()
vfs: do_dentry_open(): don't put filp
vfs: split __dentry_open()
vfs: do_last() common post lookup
vfs: do_last(): add audit_inode before open
vfs: do_last(): only return EISDIR for O_CREAT
vfs: do_last(): check LOOKUP_DIRECTORY
vfs: do_last(): make ENOENT exit RCU safe
vfs: make follow_link check RCU safe
vfs: do_last(): use inode variable
vfs: do_last(): inline walk_component()
vfs: do_last(): make exit RCU safe
vfs: split do_lookup()
Btrfs: move over to use ->update_time
fs: introduce inode operation ->update_time
reiserfs: get rid of resierfs_sync_super
reiserfs: mark the superblock as dirty a bit later
...
Does block_sigmask() + tracehook_signal_handler(); called when
sigframe has been successfully built. All architectures converted
to it; block_sigmask() itself is gone now (merged into this one).
I'm still not too happy with the signature, but that's a separate
story (IMO we need a structure that would contain signal number +
siginfo + k_sigaction, so that get_signal_to_deliver() would fill one,
signal_delivered(), handle_signal() and probably setup...frame() -
take one).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>