Some userspaces do not preserve unusable property. Since usable
segment has to be present according to VMX spec we can use present
property to amend userspace bug by making unusable segment always
nonpresent. vmx_segment_access_rights() already marks nonpresent segment
as unusable.
Cc: stable@vger.kernel.org # 3.9+
Reported-by: Stefan Pietsch <stefan.pietsch@lsexperts.de>
Tested-by: Stefan Pietsch <stefan.pietsch@lsexperts.de>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On the x86 side, there are some optimizations and documentation updates.
The big ARM/KVM change for 3.11, support for AArch64, will come through
Catalin Marinas's tree. s390 and PPC have misc cleanups and bugfixes.
There is a conflict due to "s390/pgtable: fix ipte notify bit" having
entered 3.10 through Martin Schwidefsky's s390 tree. This pull request
has additional changes on top, so this tree's version is the correct one.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.13 (GNU/Linux)
iQIcBAABAgAGBQJR0oU6AAoJEBvWZb6bTYbynnsP/RSUrrHrA8Wu1tqVfAKu+1y5
6OIihqZ9x11/YMaNofAfv86jqxFu0/j7CzMGphNdjzujqKI+Q1tGe7oiVCmKzoG+
UvSctWsz0lpllgBtnnrm5tcfmG6rrddhLtpA7m320+xCVx8KV5P4VfyHZEU+Ho8h
ziPmb2mAQ65gBNX6nLHEJ3ITTgad6gt4NNbrKIYpyXuWZQJypzaRqT/vpc4md+Ed
dCebMXsL1xgyb98EcnOdrWH1wV30MfucR7IpObOhXnnMKeeltqAQPvaOlKzZh4dK
+QfxJfdRZVS0cepcxzx1Q2X3dgjoKQsHq1nlIyz3qu1vhtfaqBlixLZk0SguZ/R9
1S1YqucZiLRO57RD4q0Ak5oxwobu18ZoqJZ6nledNdWwDe8bz/W2wGAeVty19ky0
qstBdM9jnwXrc0qrVgZp3+s5dsx3NAm/KKZBoq4sXiDLd/yBzdEdWIVkIrU3X9wU
3X26wOmBxtsB7so/JR7ciTsQHelmLicnVeXohAEP9CjIJffB81xVXnXs0P0SYuiQ
RzbSCwjPzET4JBOaHWT0Dhv0DTS/EaI97KzlN32US3Bn3WiLlS1oDCoPFoaLqd2K
LxQMsXS8anAWxFvexfSuUpbJGPnKSidSQoQmJeMGBa9QhmZCht3IL16/Fb641ToN
xBohzi49L9FDbpOnTYfz
=1zpG
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"On the x86 side, there are some optimizations and documentation
updates. The big ARM/KVM change for 3.11, support for AArch64, will
come through Catalin Marinas's tree. s390 and PPC have misc cleanups
and bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (87 commits)
KVM: PPC: Ignore PIR writes
KVM: PPC: Book3S PR: Invalidate SLB entries properly
KVM: PPC: Book3S PR: Allow guest to use 1TB segments
KVM: PPC: Book3S PR: Don't keep scanning HPTEG after we find a match
KVM: PPC: Book3S PR: Fix invalidation of SLB entry 0 on guest entry
KVM: PPC: Book3S PR: Fix proto-VSID calculations
KVM: PPC: Guard doorbell exception with CONFIG_PPC_DOORBELL
KVM: Fix RTC interrupt coalescing tracking
kvm: Add a tracepoint write_tsc_offset
KVM: MMU: Inform users of mmio generation wraparound
KVM: MMU: document fast invalidate all mmio sptes
KVM: MMU: document fast invalidate all pages
KVM: MMU: document fast page fault
KVM: MMU: document mmio page fault
KVM: MMU: document write_flooding_count
KVM: MMU: document clear_spte_count
KVM: MMU: drop kvm_mmu_zap_mmio_sptes
KVM: MMU: init kvm generation close to mmio wrap-around value
KVM: MMU: add tracepoint for check_mmio_spte
KVM: MMU: fast invalidate all mmio sptes
...
Add a tracepoint write_tsc_offset for tracing TSC offset change.
We want to merge ftrace's trace data of guest OSs and the host OS using
TSC for timestamp in chronological order. We need "TSC offset" values for
each guest when merge those because the TSC value on a guest is always the
host TSC plus guest's TSC offset. If we get the TSC offset values, we can
calculate the host TSC value for each guest events from the TSC offset and
the event TSC value. The host TSC values of the guest events are used when we
want to merge trace data of guests and the host in chronological order.
(Note: the trace_clock of both the host and the guest must be set x86-tsc in
this case)
This tracepoint also records vcpu_id which can be used to merge trace data for
SMP guests. A merge tool will read TSC offset for each vcpu, then the tool
converts guest TSC values to host TSC values for each vcpu.
TSC offset is stored in the VMCS by vmx_write_tsc_offset() or
vmx_adjust_tsc_offset(). KVM executes the former function when a guest boots.
The latter function is executed when kvm clock is updated. Only host can read
TSC offset value from VMCS, so a host needs to output TSC offset value
when TSC offset is changed.
Since the TSC offset is not often changed, it could be overwritten by other
frequent events while tracing. To avoid that, I recommend to use a special
instance for getting this event:
1. set a instance before booting a guest
# cd /sys/kernel/debug/tracing/instances
# mkdir tsc_offset
# cd tsc_offset
# echo x86-tsc > trace_clock
# echo 1 > events/kvm/kvm_write_tsc_offset/enable
2. boot a guest
Signed-off-by: Yoshihiro YUNOMAE <yoshihiro.yunomae.ez@hitachi.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
This patch tries to introduce a very simple and scale way to invalidate
all mmio sptes - it need not walk any shadow pages and hold mmu-lock
KVM maintains a global mmio valid generation-number which is stored in
kvm->memslots.generation and every mmio spte stores the current global
generation-number into his available bits when it is created
When KVM need zap all mmio sptes, it just simply increase the global
generation-number. When guests do mmio access, KVM intercepts a MMIO #PF
then it walks the shadow page table and get the mmio spte. If the
generation-number on the spte does not equal the global generation-number,
it will go to the normal #PF handler to update the mmio spte
Since 19 bits are used to store generation-number on mmio spte, we zap all
mmio sptes when the number is round
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Bit 1 in the x86 EFLAGS is always set. Name the macro something that
actually tries to explain what it is all about, rather than being a
tautology.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/n/tip-f10rx5vjjm6tfnt8o1wseb3v@git.kernel.org
Let mmio spte only use bit62 and bit63 on upper 32 bits, then bit 52 ~ bit 61
can be used for other purposes
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The invalid guest state emulation loop does not check halt_request
which causes 100% cpu loop while guest is in halt and in invalid
state, but more serious issue is that this leaves halt_request set, so
random instruction emulated by vm86 #GP exit can be interpreted
as halt which causes guest hang. Fix both problems by handling
halt_request in emulation loop.
Reported-by: Tomas Papan <tomas.papan@gmail.com>
Tested-by: Tomas Papan <tomas.papan@gmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
CC: stable@vger.kernel.org
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Pull kvm updates from Gleb Natapov:
"Highlights of the updates are:
general:
- new emulated device API
- legacy device assignment is now optional
- irqfd interface is more generic and can be shared between arches
x86:
- VMCS shadow support and other nested VMX improvements
- APIC virtualization and Posted Interrupt hardware support
- Optimize mmio spte zapping
ppc:
- BookE: in-kernel MPIC emulation with irqfd support
- Book3S: in-kernel XICS emulation (incomplete)
- Book3S: HV: migration fixes
- BookE: more debug support preparation
- BookE: e6500 support
ARM:
- reworking of Hyp idmaps
s390:
- ioeventfd for virtio-ccw
And many other bug fixes, cleanups and improvements"
* tag 'kvm-3.10-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
kvm: Add compat_ioctl for device control API
KVM: x86: Account for failing enable_irq_window for NMI window request
KVM: PPC: Book3S: Add API for in-kernel XICS emulation
kvm/ppc/mpic: fix missing unlock in set_base_addr()
kvm/ppc: Hold srcu lock when calling kvm_io_bus_read/write
kvm/ppc/mpic: remove users
kvm/ppc/mpic: fix mmio region lists when multiple guests used
kvm/ppc/mpic: remove default routes from documentation
kvm: KVM_CAP_IOMMU only available with device assignment
ARM: KVM: iterate over all CPUs for CPU compatibility check
KVM: ARM: Fix spelling in error message
ARM: KVM: define KVM_ARM_MAX_VCPUS unconditionally
KVM: ARM: Fix API documentation for ONE_REG encoding
ARM: KVM: promote vfp_host pointer to generic host cpu context
ARM: KVM: add architecture specific hook for capabilities
ARM: KVM: perform HYP initilization for hotplugged CPUs
ARM: KVM: switch to a dual-step HYP init code
ARM: KVM: rework HYP page table freeing
ARM: KVM: enforce maximum size for identity mapped code
ARM: KVM: move to a KVM provided HYP idmap
...
With VMX, enable_irq_window can now return -EBUSY, in which case an
immediate exit shall be requested before entering the guest. Account for
this also in enable_nmi_window which uses enable_irq_window in absence
of vnmi support, e.g.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
While a nested run is pending, vmx_queue_exception is only called to
requeue exceptions that were previously picked up via
vmx_cancel_injection. Therefore, we must not check for PF interception
by L1, possibly causing a bogus nested vmexit.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The VMX implementation of enable_irq_window raised
KVM_REQ_IMMEDIATE_EXIT after we checked it in vcpu_enter_guest. This
caused infinite loops on vmentry. Fix it by letting enable_irq_window
signal the need for an immediate exit via its return value and drop
KVM_REQ_IMMEDIATE_EXIT.
This issue only affects nested VMX scenarios.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
If we load the complete EFER MSR on entry or exit, EFER.LMA (and LME)
loading is skipped. Their consistency is already checked now before
starting the transition.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
As we may emulate the loading of EFER on VM-entry and VM-exit, implement
the checks that VMX performs on the guest and host values on vmlaunch/
vmresume. Factor out kvm_valid_efer for this purpose which checks for
set reserved bits.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The logic for checking if interrupts can be injected has to be applied
also on NMIs. The difference is that if NMI interception is on these
events are consumed and blocked by the VM exit.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
vmx_set_nmi_mask will soon be used by vmx_nmi_allowed. No functional
changes.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Once L1 loads VMCS12 we enable shadow-vmcs capability and copy all the VMCS12
shadowed fields to the shadow vmcs. When we release the VMCS12, we also
disable shadow-vmcs capability.
Signed-off-by: Abel Gordon <abelg@il.ibm.com>
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Synchronize between the VMCS12 software controlled structure and the
processor-specific shadow vmcs
Signed-off-by: Abel Gordon <abelg@il.ibm.com>
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Introduce a function used to copy fields from the software controlled VMCS12
to the processor-specific shadow vmcs
Signed-off-by: Abel Gordon <abelg@il.ibm.com>
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Introduce a function used to copy fields from the processor-specific shadow
vmcs to the software controlled VMCS12
Signed-off-by: Abel Gordon <abelg@il.ibm.com>
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Unmap vmcs12 and release the corresponding shadow vmcs
Signed-off-by: Abel Gordon <abelg@il.ibm.com>
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Allocate a shadow vmcs used by the processor to shadow part of the fields
stored in the software defined VMCS12 (let L1 access fields without causing
exits). Note we keep a shadow vmcs only for the current vmcs12. Once a vmcs12
becomes non-current, its shadow vmcs is released.
Signed-off-by: Abel Gordon <abelg@il.ibm.com>
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
handle_vmon doesn't check if L1 is already in root mode (VMXON
was previously called). This patch adds this missing check and calls
nested_vmx_failValid if VMX is already ON.
We need this check because L0 will allocate the shadow vmcs when L1
executes VMXON and we want to avoid host leaks (due to shadow vmcs
allocation) if L1 executes VMXON repeatedly.
Signed-off-by: Abel Gordon <abelg@il.ibm.com>
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Refactor existent code so we re-use vmcs12_write_any to copy fields from the
shadow vmcs specified by the link pointer (used by the processor,
implementation-specific) to the VMCS12 software format used by L0 to hold
the fields in L1 memory address space.
Signed-off-by: Abel Gordon <abelg@il.ibm.com>
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Prepare vmread and vmwrite bitmaps according to a pre-specified list of fields.
These lists are intended to specifiy most frequent accessed fields so we can
minimize the number of fields that are copied from/to the software controlled
VMCS12 format to/from to processor-specific shadow vmcs. The lists were built
measuring the VMCS fields access rate after L2 Ubuntu 12.04 booted when it was
running on top of L1 KVM, also Ubuntu 12.04. Note that during boot there were
additional fields which were frequently modified but they were not added to
these lists because after boot these fields were not longer accessed by L1.
Signed-off-by: Abel Gordon <abelg@il.ibm.com>
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Add logic required to detect if shadow-vmcs is supported by the
processor. Introduce a new kernel module parameter to specify if L0 should use
shadow vmcs (or not) to run L1.
Signed-off-by: Abel Gordon <abelg@il.ibm.com>
Reviewed-by: Orit Wasserman <owasserm@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
If guest vcpu is in VM86 mode the vcpu state should be checked as if in
real mode.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
KVM does not use the activity state VMCS field, and does not support
it in nested VMX either (the corresponding bits in the misc VMX feature
MSR are zero). Fail entry if the activity state is set to anything but
"active".
Since the value will always be the same for L1 and L2, we do not need
to read and write the corresponding VMCS field on L1/L2 transitions,
either.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
If posted interrupt is avaliable, then uses it to inject virtual
interrupt to guest.
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Only deliver the posted interrupt when target vcpu is running
and there is no previous interrupt pending in pir.
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Both TMR and EOI exit bitmap need to be updated when ioapic changed
or vcpu's id/ldr/dfr changed. So use common function instead eoi exit
bitmap specific function.
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Detect the posted interrupt feature. If it exists, then set it in vmcs_config.
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
The "acknowledge interrupt on exit" feature controls processor behavior
for external interrupt acknowledgement. When this control is set, the
processor acknowledges the interrupt controller to acquire the
interrupt vector on VM exit.
After enabling this feature, an interrupt which arrived when target cpu is
running in vmx non-root mode will be handled by vmx handler instead of handler
in idt. Currently, vmx handler only fakes an interrupt stack and jump to idt
table to let real handler to handle it. Further, we will recognize the interrupt
and only delivery the interrupt which not belong to current vcpu through idt table.
The interrupt which belonged to current vcpu will be handled inside vmx handler.
This will reduce the interrupt handle cost of KVM.
Also, interrupt enable logic is changed if this feature is turnning on:
Before this patch, hypervior call local_irq_enable() to enable it directly.
Now IF bit is set on interrupt stack frame, and will be enabled on a return from
interrupt handler if exterrupt interrupt exists. If no external interrupt, still
call local_irq_enable() to enable it.
Refer to Intel SDM volum 3, chapter 33.2.
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
We only need to update vm_exit_intr_error_code if there is a valid exit
interruption information and it comes with a valid error code.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
If we are entering guest mode, we do not want L0 to interrupt this
vmentry with all its side effects on the vmcs. Therefore, injection
shall be disallowed during L1->L2 transitions, as in the previous
version. However, this check is conceptually independent of
nested_exit_on_intr, so decouple it.
If L1 traps external interrupts, we can kick the guest from L2 to L1,
also just like the previous code worked. But we no longer need to
consider L1's idt_vectoring_info_field. It will always be empty at this
point. Instead, if L2 has pending events, those are now found in the
architectural queues and will, thus, prevent vmx_interrupt_allowed from
being called at all.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The basic idea is to always transfer the pending event injection on
vmexit into the architectural state of the VCPU and then drop it from
there if it turns out that we left L2 to enter L1, i.e. if we enter
prepare_vmcs12.
vmcs12_save_pending_events takes care to transfer pending L0 events into
the queue of L1. That is mandatory as L1 may decide to switch the guest
state completely, invalidating or preserving the pending events for
later injection (including on a different node, once we support
migration).
This concept is based on the rule that a pending vmlaunch/vmresume is
not canceled. Otherwise, we would risk to lose injected events or leak
them into the wrong queues. Encode this rule via a WARN_ON_ONCE at the
entry of nested_vmx_vmexit.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Check if the interrupt or NMI window exit is for L1 by testing if it has
the corresponding controls enabled. This is required when we allow
direct injection from L0 to L2
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
During invalid guest state emulation vcpu cannot enter guest mode to try
to reexecute instruction that emulator failed to emulate, so emulation
will happen again and again. Prevent that by telling the emulator that
instruction reexecution should not be attempted.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The two use-cases where we needed to store the GDT were during ACPI S3 suspend
and resume. As the patches:
x86/gdt/i386: store/load GDT for ACPI S3 or hibernation/resume path is not needed
x86/gdt/64-bit: store/load GDT for ACPI S3 or hibernate/resume path is not needed.
have demonstrated - there are other mechanism by which the GDT is
saved and reloaded during early resume path.
Hence we do not need to worry about the pvops call-chain for saving the
GDT and can and can eliminate it. The other areas where the store_gdt is
used are never going to be hit when running under the pvops platforms.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: http://lkml.kernel.org/r/1365194544-14648-4-git-send-email-konrad.wilk@oracle.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The code was already properly aligned, now also add the braces to avoid
that err is checked even if alloc_apic_access_page didn't run and change
it. Found via Coccinelle by Fengguang Wu.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Free vmx_msr_bitmap_longmode_x2apic and vmx_msr_bitmap_longmode if
kvm_init() fails.
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Obviously a copy&paste mistake: prepare_vmcs12 has to check L1's exit
controls for VM_EXIT_SAVE_IA32_PAT.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
The CS base was initialized to 0 on VMX (wrong, but usually overridden
by userspace before starting) or 0xf0000 on SVM. The correct value is
0xffff0000, and VMX is able to emulate it now, so use it.
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Very old user space (namely qemu-kvm before kvm-49) didn't set the TSS
base before running the VCPU. We always warned about this bug, but no
reports about users actually seeing this are known. Time to finally
remove the workaround that effectively prevented to call vmx_vcpu_reset
while already holding the KVM srcu lock.
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Provided the host has this feature, it's straightforward to offer it to
the guest as well. We just need to load to timer value on L2 entry if
the feature was enabled by L1 and watch out for the corresponding exit
reason.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
We will need EFER.LMA saving to provide unrestricted guest mode. All
what is missing for this is picking up EFER.LMA from VM_ENTRY_CONTROLS
on L2->L1 switches. If the host does not support EFER.LMA saving,
no change is performed, otherwise we properly emulate for L1 what the
hardware does for L0. Advertise the support, depending on the host
feature.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Only interrupt and NMI exiting are mandatory for KVM to work, thus can
be exposed to the guest unconditionally, virtual NMI exiting is
optional. So we must not advertise it unless the host supports it.
Introduce the symbolic constant PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR at
this chance.
Reviewed-by:: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
A VCPU sending INIT or SIPI to some other VCPU races for setting the
remote VCPU's mp_state. When we were unlucky, KVM_MP_STATE_INIT_RECEIVED
was overwritten by kvm_emulate_halt and, thus, got lost.
This introduces APIC events for those two signals, keeping them in
kvm_apic until kvm_apic_accept_events is run over the target vcpu
context. kvm_apic_has_events reports to kvm_arch_vcpu_runnable if there
are pending events, thus if vcpu blocking should end.
The patch comes with the side effect of effectively obsoleting
KVM_MP_STATE_SIPI_RECEIVED. We still accept it from user space, but
immediately translate it to KVM_MP_STATE_INIT_RECEIVED + KVM_APIC_SIPI.
The vcpu itself will no longer enter the KVM_MP_STATE_SIPI_RECEIVED
state. That also means we no longer exit to user space after receiving a
SIPI event.
Furthermore, we already reset the VCPU on INIT, only fixing up the code
segment later on when SIPI arrives. Moreover, we fix INIT handling for
the BSP: it never enter wait-for-SIPI but directly starts over on INIT.
Tested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>