An interesting thing happened when a guest Linux instance took a machine
check. The VMM unmapped the bad page from guest physical space and
passed the machine check to the guest.
Linux took all the normal actions to offline the page from the process
that was using it. But then guest Linux crashed because it said there
was a second machine check inside the kernel with this stack trace:
do_memory_failure
set_mce_nospec
set_memory_uc
_set_memory_uc
change_page_attr_set_clr
cpa_flush
clflush_cache_range_opt
This was odd, because a CLFLUSH instruction shouldn't raise a machine
check (it isn't consuming the data). Further investigation showed that
the VMM had passed in another machine check because is appeared that the
guest was accessing the bad page.
Fix is to check the scope of the poison by checking the MCi_MISC register.
If the entire page is affected, then unmap the page. If only part of the
page is affected, then mark the page as uncacheable.
This assumes that VMMs will do the logical thing and pass in the "whole
page scope" via the MCi_MISC register (since they unmapped the entire
page).
[ bp: Adjust to x86/entry changes. ]
Fixes: 284ce4011b ("x86/memory_failure: Introduce {set, clear}_mce_nospec()")
Reported-by: Jue Wang <juew@google.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jue Wang <juew@google.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200520163546.GA7977@agluck-desk2.amr.corp.intel.com
to fixup conflicts in arch/x86/kernel/cpu/mce/core.c so MCE specific follow
up patches can be applied without creating a horrible merge conflict
afterwards.
The typical pattern for trace_hardirqs_off_prepare() is:
ENTRY
lockdep_hardirqs_off(); // because hardware
... do entry magic
instrumentation_begin();
trace_hardirqs_off_prepare();
... do actual work
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare();
instrumentation_end();
... do exit magic
lockdep_hardirqs_on();
which shows that it's named wrong, rename it to
trace_hardirqs_off_finish(), as it concludes the hardirq_off transition.
Also, given that the above is the only correct order, make the traditional
all-in-one trace_hardirqs_off() follow suit.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200529213321.415774872@infradead.org
Mark the relevant functions noinstr, use the plain non-instrumented MSR
accessors. The only odd part is the instrumentation_begin()/end() pair around the
indirect machine_check_vector() call as objtool can't figure that out. The
possible invoked functions are annotated correctly.
Also use notrace variant of nmi_enter/exit(). If MCEs happen then hardware
latency tracing is the least of the worries.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135315.476734898@linutronix.de
mce_check_crashing_cpu() is called right at the entry of the MCE
handler. It uses mce_rdmsr() and mce_wrmsr() which are wrappers around
rdmsr() and wrmsr() to handle the MCE error injection mechanism, which is
pointless in this context, i.e. when the MCE hits an offline CPU or the
system is already marked crashing.
The MSR access can also be traced, so use the untraceable variants. This
is also safe vs. XEN paravirt as these MSRs are not affected by XEN PV
modifications.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.426347351@linutronix.de
Convert #MC to IDTENTRY_MCE:
- Implement the C entry points with DEFINE_IDTENTRY_MCE
- Emit the ASM stub with DECLARE_IDTENTRY_MCE
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the error code from *machine_check_vector() as
it is always 0 and not used by any of the functions
it can point to. Fixup all the functions as well.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.334980426@linutronix.de
A few exceptions (like #DB and #BP) can happen at any location in the code,
this then means that tracers should treat events from these exceptions as
NMI-like. The interrupted context could be holding locks with interrupts
disabled for instance.
Similarly, #MC is an actual NMI-like exception.
All of them use ist_enter() which only concerns itself with RCU, but does
not do any of the other setup that NMIs need. This means things like:
printk()
raw_spin_lock_irq(&logbuf_lock);
<#DB/#BP/#MC>
printk()
raw_spin_lock_irq(&logbuf_lock);
are entirely possible (well, not really since printk tries hard to
play nice, but the concept stands).
So replace ist_enter() with nmi_enter(). Also observe that any nmi_enter()
caller must be both notrace and NOKPROBE, or in the noinstr text section.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134101.525508608@linutronix.de
The severity grading code returns IN_KERNEL_RECOV error context for
errors which have happened in kernel space but from which the kernel can
recover. Whether the recovery can happen is determined by the exception
table entry having as handler ex_handler_fault() and which has been
declared at build time using _ASM_EXTABLE_FAULT().
IN_KERNEL_RECOV is used in mce_severity_intel() to lookup the
corresponding error severity in the severities table.
However, the mapping back from error severity to whether the error is
IN_KERNEL_RECOV is ambiguous and in the very paranoid case - which
might not be possible right now - but be better safe than sorry later,
an exception fixup could be attempted for another MCE whose address
is in the exception table and has the proper severity. Which would be
unfortunate, to say the least.
Therefore, mark such MCEs explicitly as MCE_IN_KERNEL_RECOV so that the
recovery attempt is done only for them.
Document the whole handling, while at it, as it is not trivial.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200407163414.18058-10-bp@alien8.de
If the handler took any action to log or deal with the error, set a bit
in mce->kflags so that the default handler on the end of the machine
check chain can see what has been done.
Get rid of NOTIFY_STOP returns. Make the EDAC and dev-mcelog handlers
skip over errors already processed by CEC.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200214222720.13168-5-tony.luck@intel.com
It isn't going to be first on the notifier chain when the CEC is moved
to be a normal user of the notifier chain.
Fix the enum for the MCE_PRIO symbols to list them in reverse order so
that the compiler can give them numbers from low to high priority. Add
an entry for MCE_PRIO_CEC as the highest priority.
[ bp: Use passive voice, add comments. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200214222720.13168-2-tony.luck@intel.com
Drop the stupid threshold_init_device() initcall iterating over all
online CPUs in favor of properly setting up everything on the CPU
hotplug path, when each CPU's callback is invoked.
[ bp: Write commit message. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200403161943.1458-5-bp@alien8.de
Pull x86 entry code updates from Thomas Gleixner:
- Convert the 32bit syscalls to be pt_regs based which removes the
requirement to push all 6 potential arguments onto the stack and
consolidates the interface with the 64bit variant
- The first small portion of the exception and syscall related entry
code consolidation which aims to address the recently discovered
issues vs. RCU, int3, NMI and some other exceptions which can
interrupt any context. The bulk of the changes is still work in
progress and aimed for 5.8.
- A few lockdep namespace cleanups which have been applied into this
branch to keep the prerequisites for the ongoing work confined.
* tag 'x86-entry-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits)
x86/entry: Fix build error x86 with !CONFIG_POSIX_TIMERS
lockdep: Rename trace_{hard,soft}{irq_context,irqs_enabled}()
lockdep: Rename trace_softirqs_{on,off}()
lockdep: Rename trace_hardirq_{enter,exit}()
x86/entry: Rename ___preempt_schedule
x86: Remove unneeded includes
x86/entry: Drop asmlinkage from syscalls
x86/entry/32: Enable pt_regs based syscalls
x86/entry/32: Use IA32-specific wrappers for syscalls taking 64-bit arguments
x86/entry/32: Rename 32-bit specific syscalls
x86/entry/32: Clean up syscall_32.tbl
x86/entry: Remove ABI prefixes from functions in syscall tables
x86/entry/64: Add __SYSCALL_COMMON()
x86/entry: Remove syscall qualifier support
x86/entry/64: Remove ptregs qualifier from syscall table
x86/entry: Move max syscall number calculation to syscallhdr.sh
x86/entry/64: Split X32 syscall table into its own file
x86/entry/64: Move sys_ni_syscall stub to common.c
x86/entry/64: Use syscall wrappers for x32_rt_sigreturn
x86/entry: Refactor SYS_NI macros
...
Newer AMD CPUs support a feature called protected processor
identification number (PPIN). This feature can be detected via
CPUID_Fn80000008_EBX[23].
However, CPUID alone is not enough to read the processor identification
number - MSR_AMD_PPIN_CTL also needs to be configured properly. If, for
any reason, MSR_AMD_PPIN_CTL[PPIN_EN] can not be turned on, such as
disabled in BIOS, the CPU capability bit X86_FEATURE_AMD_PPIN needs to
be cleared.
When the X86_FEATURE_AMD_PPIN capability is available, the
identification number is issued together with the MCE error info in
order to keep track of the source of MCE errors.
[ bp: Massage. ]
Co-developed-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200321193800.3666964-1-wei.huang2@amd.com
A user has reported that they are seeing spurious corrected errors on
their hardware.
Intel Errata HSD131, HSM142, HSW131, and BDM48 report that "spurious
corrected errors may be logged in the IA32_MC0_STATUS register with
the valid field (bit 63) set, the uncorrected error field (bit 61) not
set, a Model Specific Error Code (bits [31:16]) of 0x000F, and an MCA
Error Code (bits [15:0]) of 0x0005." The Errata PDFs are linked in the
bugzilla below.
Block these spurious errors from the console and logs.
[ bp: Move the intel_filter_mce() header declarations into the already
existing CONFIG_X86_MCE_INTEL ifdeffery. ]
Co-developed-by: Alexander Krupp <centos@akr.yagii.de>
Signed-off-by: Alexander Krupp <centos@akr.yagii.de>
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206587
Link: https://lkml.kernel.org/r/20200219131611.36816-1-prarit@redhat.com
Pull RAS updates from Borislav Petkov:
- Misc fixes to the MCE code all over the place, by Jan H. Schönherr.
- Initial support for AMD F19h and other cleanups to amd64_edac, by
Yazen Ghannam.
- Other small cleanups.
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
EDAC/mce_amd: Make fam_ops static global
EDAC/amd64: Drop some family checks for newer systems
EDAC/amd64: Add family ops for Family 19h Models 00h-0Fh
x86/amd_nb: Add Family 19h PCI IDs
EDAC/mce_amd: Always load on SMCA systems
x86/MCE/AMD, EDAC/mce_amd: Add new Load Store unit McaType
x86/mce: Fix use of uninitialized MCE message string
x86/mce: Fix mce=nobootlog
x86/mce: Take action on UCNA/Deferred errors again
x86/mce: Remove mce_inject_log() in favor of mce_log()
x86/mce: Pass MCE message to mce_panic() on failed kernel recovery
x86/mce/therm_throt: Mark throttle_active_work() as __maybe_unused
The function mce_severity() is not required to update its msg argument.
In fact, mce_severity_amd() does not, which makes mce_no_way_out()
return uninitialized data, which may be used later for printing.
Assuming that implementations of mce_severity() either always or never
update the msg argument (which is currently the case), it is sufficient
to initialize the temporary variable in mce_no_way_out().
While at it, avoid printing a useless "Unknown".
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200103150722.20313-4-jschoenh@amazon.de
Since commit
8b38937b7a ("x86/mce: Do not enter deferred errors into the generic
pool twice")
the mce=nobootlog option has become mostly ineffective (after being only
slightly ineffective before), as the code is taking actions on MCEs left
over from boot when they have a usable address.
Move the check for MCP_DONTLOG a bit outward to make it effective again.
Also, since commit
011d826111 ("RAS: Add a Corrected Errors Collector")
the two branches of the remaining "if" at the bottom of machine_check_poll()
do same. Unify them.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200103150722.20313-3-jschoenh@amazon.de
Commit
fa92c58694 ("x86, mce: Support memory error recovery for both UCNA
and Deferred error in machine_check_poll")
added handling of UCNA and Deferred errors by adding them to the ring
for SRAO errors.
Later, commit
fd4cf79fcc ("x86/mce: Remove the MCE ring for Action Optional errors")
switched storage from the SRAO ring to the unified pool that is still
in use today. In order to only act on the intended errors, a filter
for MCE_AO_SEVERITY is used -- effectively removing handling of
UCNA/Deferred errors again.
Extend the severity filter to include UCNA/Deferred errors again.
Also, generalize the naming of the notifier from SRAO to UC to capture
the extended scope.
Note, that this change may cause a message like the following to appear,
as the same address may be reported as SRAO and as UCNA:
Memory failure: 0x5fe3284: already hardware poisoned
Technically, this is a return to previous behavior.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200103150722.20313-2-jschoenh@amazon.de
Pull force_sig() argument change from Eric Biederman:
"A source of error over the years has been that force_sig has taken a
task parameter when it is only safe to use force_sig with the current
task.
The force_sig function is built for delivering synchronous signals
such as SIGSEGV where the userspace application caused a synchronous
fault (such as a page fault) and the kernel responded with a signal.
Because the name force_sig does not make this clear, and because the
force_sig takes a task parameter the function force_sig has been
abused for sending other kinds of signals over the years. Slowly those
have been fixed when the oopses have been tracked down.
This set of changes fixes the remaining abusers of force_sig and
carefully rips out the task parameter from force_sig and friends
making this kind of error almost impossible in the future"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (27 commits)
signal/x86: Move tsk inside of CONFIG_MEMORY_FAILURE in do_sigbus
signal: Remove the signal number and task parameters from force_sig_info
signal: Factor force_sig_info_to_task out of force_sig_info
signal: Generate the siginfo in force_sig
signal: Move the computation of force into send_signal and correct it.
signal: Properly set TRACE_SIGNAL_LOSE_INFO in __send_signal
signal: Remove the task parameter from force_sig_fault
signal: Use force_sig_fault_to_task for the two calls that don't deliver to current
signal: Explicitly call force_sig_fault on current
signal/unicore32: Remove tsk parameter from __do_user_fault
signal/arm: Remove tsk parameter from __do_user_fault
signal/arm: Remove tsk parameter from ptrace_break
signal/nds32: Remove tsk parameter from send_sigtrap
signal/riscv: Remove tsk parameter from do_trap
signal/sh: Remove tsk parameter from force_sig_info_fault
signal/um: Remove task parameter from send_sigtrap
signal/x86: Remove task parameter from send_sigtrap
signal: Remove task parameter from force_sig_mceerr
signal: Remove task parameter from force_sig
signal: Remove task parameter from force_sigsegv
...
When calling debugfs functions, there is no need to ever check the
return value. The function can work or not, but the code logic should
never do something different based on this.
The only way this can fail is if:
* debugfs superblock can not be pinned - something really went wrong with the
vfs layer.
* file is created with same name - the caller's fault.
* new_inode() fails - happens if memory is exhausted.
so failing to clean up debugfs properly is the least of the system's
sproblems in uch a situation.
[ bp: Extend commit message, remove unused err var in inject_init(). ]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190612151531.GA16278@kroah.com
The OS is expected to write all bits to MCA_CTL for each bank,
thus enabling error reporting in all banks. However, some banks
may be unused in which case the registers for such banks are
Read-as-Zero/Writes-Ignored. Also, the OS may avoid setting some control
bits because of quirks, etc.
A bank can be considered uninitialized if the MCA_CTL register returns
zero. This is because either the OS did not write anything or because
the hardware is enforcing RAZ/WI for the bank.
Set a bank's init value based on if the control bits are set or not in
hardware. Return an error code in the sysfs interface for uninitialized
banks.
Do a final bank init check in a separate function which is not part of
any user-controlled code flows. This is so a user may enable/disable a
bank during runtime without having to restart their system.
[ bp: Massage a bit. Discover bank init state at boot. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-6-Yazen.Ghannam@amd.com
The number of MCA banks is provided per logical CPU. Historically, this
number has been the same across all CPUs, but this is not an
architectural guarantee. Future AMD systems may have MCA bank counts
that vary between logical CPUs in a system.
This issue was partially addressed in
006c077041 ("x86/mce: Handle varying MCA bank counts")
by allocating structures using the maximum number of MCA banks and by
saving the maximum MCA bank count in a system as the global count. This
means that some extra structures are allocated. Also, this means that
CPUs will spend more time in the #MC and other handlers checking extra
MCA banks.
Thus, define the number of MCA banks as a per-CPU variable.
[ bp: Make mce_num_banks an unsigned int. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-5-Yazen.Ghannam@amd.com
Current AMD systems have unique MCA banks per logical CPU even though
the type of the banks may all align to the same bank number. Each CPU
will have control of a set of MCA banks in the hardware and these are
not shared with other CPUs.
For example, bank 0 may be the Load-Store Unit on every logical CPU, but
each bank 0 is a unique structure in the hardware. In other words, there
isn't a *single* Load-Store Unit at MCA bank 0 that all logical CPUs
share.
This idea extends even to non-core MCA banks. For example, CPU0 and CPU4
may see a Unified Memory Controller at bank 15, but each CPU is actually
seeing a unique hardware structure that is not shared with other CPUs.
Because the MCA banks are all unique hardware structures, it would be
good to control them in a more granular way. For example, if there is a
known issue with the Floating Point Unit on CPU5 and a user wishes to
disable an error type on the Floating Point Unit, then it would be good
to do this only for CPU5 rather than all CPUs.
Also, future AMD systems may have heterogeneous MCA banks. Meaning
the bank numbers may not necessarily represent the same types between
CPUs. For example, bank 20 visible to CPU0 may be a Unified Memory
Controller and bank 20 visible to CPU4 may be a Coherent Slave. So
granular control will be even more necessary should the user wish to
control specific MCA banks.
Split the device attributes from struct mce_bank leaving only the MCA
bank control fields.
Make struct mce_banks[] per_cpu in order to have more granular control
over individual MCA banks in the hardware.
Allocate the device attributes statically based on the maximum number of
MCA banks supported. The sysfs interface will use as many as needed per
CPU. Currently, this is set to mca_cfg.banks, but will be changed to a
per_cpu bank count in a future patch.
Allocate the MCA control bits statically. This is in order to avoid
locking warnings when memory is allocated during secondary CPUs' init
sequences.
Also, remove the now unnecessary return values from
__mcheck_cpu_mce_banks_init() and __mcheck_cpu_cap_init().
Redo the sysfs store/show functions to handle the per_cpu mce_banks[].
[ bp: s/mce_banks_percpu/mce_banks_array/g ]
[ Locking issue reported by ]
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607201752.221446-3-Yazen.Ghannam@amd.com
All of the remaining callers pass current into force_sig so
remove the task parameter to make this obvious and to make
misuse more difficult in the future.
This also makes it clear force_sig passes current into force_sig_info.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have EXPORT_.*_SYMBOL_GPL inside which was used in the
initial scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Calling this function has been wrong for a while now:
* Can't call schedule_work() in #MC context.
* mce_notify_irq() either.
* None of that noodling is needed anymore - all it needs to do is kick
the IRQ work which would self-IPI so that once the #MC handler is done,
the work queue will run and process queued MCE records.
So remove it.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190325172121.7926-1-bp@alien8.de
Linux reads MCG_CAP[Count] to find the number of MCA banks visible to a
CPU. Currently, this number is the same for all CPUs and a warning is
shown if there is a difference. The number of banks is overwritten with
the MCG_CAP[Count] value of each following CPU that boots.
According to the Intel SDM and AMD APM, the MCG_CAP[Count] value gives
the number of banks that are available to a "processor implementation".
The AMD BKDGs/PPRs further clarify that this value is per core. This
value has historically been the same for every core in the system, but
that is not an architectural requirement.
Future AMD systems may have different MCG_CAP[Count] values per core,
so the assumption that all CPUs will have the same MCG_CAP[Count] value
will no longer be valid.
Also, the first CPU to boot will allocate the struct mce_banks[] array
using the number of banks based on its MCG_CAP[Count] value. The machine
check handler and other functions use the global number of banks to
iterate and index into the mce_banks[] array. So it's possible to use an
out-of-bounds index on an asymmetric system where a following CPU sees a
MCG_CAP[Count] value greater than its predecessors.
Thus, allocate the mce_banks[] array to the maximum number of banks.
This will avoid the potential out-of-bounds index since the value of
mca_cfg.banks is capped to MAX_NR_BANKS.
Set the value of mca_cfg.banks equal to the max of the previous value
and the value for the current CPU. This way mca_cfg.banks will always
represent the max number of banks detected on any CPU in the system.
This will ensure that all CPUs will access all the banks that are
visible to them. A CPU that can access fewer than the max number of
banks will find the registers of the extra banks to be read-as-zero.
Furthermore, print the resulting number of MCA banks in use. Do this in
mcheck_late_init() so that the final value is printed after all CPUs
have been initialized.
Finally, get bank count from target CPU when doing injection with mce-inject
module.
[ bp: Remove out-of-bounds example, passify and cleanup commit message. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20180727214009.78289-1-Yazen.Ghannam@amd.com
There has been a lurking "TBD" in the machine check poll routine ever
since it was first split out from the machine check handler. The
potential issue is that the poll routine may have just begun a read from
the STATUS register in a machine check bank when the hardware logs an
error in that bank and signals a machine check.
That race used to be pretty small back when machine checks were
broadcast, but the addition of local machine check means that the poll
code could continue running and clear the error from the bank before the
local machine check handler on another CPU gets around to reading it.
Fix the code to be sure to only process errors that need to be processed
in the poll code, leaving other logged errors alone for the machine
check handler to find and process.
[ bp: Massage a bit and flip the "== 0" check to the usual !(..) test. ]
Fixes: b79109c3bb ("x86, mce: separate correct machine check poller and fatal exception handler")
Fixes: ed7290d0ee ("x86, mce: implement new status bits")
Reported-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Link: https://lkml.kernel.org/r/20190312170938.GA23035@agluck-desk