* PSCI relay at EL2 when "protected KVM" is enabled
* New exception injection code
* Simplification of AArch32 system register handling
* Fix PMU accesses when no PMU is enabled
* Expose CSV3 on non-Meltdown hosts
* Cache hierarchy discovery fixes
* PV steal-time cleanups
* Allow function pointers at EL2
* Various host EL2 entry cleanups
* Simplification of the EL2 vector allocation
s390:
* memcg accouting for s390 specific parts of kvm and gmap
* selftest for diag318
* new kvm_stat for when async_pf falls back to sync
x86:
* Tracepoints for the new pagetable code from 5.10
* Catch VFIO and KVM irqfd events before userspace
* Reporting dirty pages to userspace with a ring buffer
* SEV-ES host support
* Nested VMX support for wait-for-SIPI activity state
* New feature flag (AVX512 FP16)
* New system ioctl to report Hyper-V-compatible paravirtualization features
Generic:
* Selftest improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl/bdL4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNgQQgAnTH6rhXa++Zd5F0EM2NwXwz3iEGb
lOq1DZSGjs6Eekjn8AnrWbmVQr+CBCuGU9MrxpSSzNDK/awryo3NwepOWAZw9eqk
BBCVwGBbJQx5YrdgkGC0pDq2sNzcpW/VVB3vFsmOxd9eHblnuKSIxEsCCXTtyqIt
XrLpQ1UhvI4yu102fDNhuFw2EfpzXm+K0Lc0x6idSkdM/p7SyeOxiv8hD4aMr6+G
bGUQuMl4edKZFOWFigzr8NovQAvDHZGrwfihu2cLRYKLhV97QuWVmafv/yYfXcz2
drr+wQCDNzDOXyANnssmviazrhOX0QmTAhbIXGGX/kTxYKcfPi83ZLoI3A==
=ISud
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Much x86 work was pushed out to 5.12, but ARM more than made up for it.
ARM:
- PSCI relay at EL2 when "protected KVM" is enabled
- New exception injection code
- Simplification of AArch32 system register handling
- Fix PMU accesses when no PMU is enabled
- Expose CSV3 on non-Meltdown hosts
- Cache hierarchy discovery fixes
- PV steal-time cleanups
- Allow function pointers at EL2
- Various host EL2 entry cleanups
- Simplification of the EL2 vector allocation
s390:
- memcg accouting for s390 specific parts of kvm and gmap
- selftest for diag318
- new kvm_stat for when async_pf falls back to sync
x86:
- Tracepoints for the new pagetable code from 5.10
- Catch VFIO and KVM irqfd events before userspace
- Reporting dirty pages to userspace with a ring buffer
- SEV-ES host support
- Nested VMX support for wait-for-SIPI activity state
- New feature flag (AVX512 FP16)
- New system ioctl to report Hyper-V-compatible paravirtualization features
Generic:
- Selftest improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
KVM: SVM: fix 32-bit compilation
KVM: SVM: Add AP_JUMP_TABLE support in prep for AP booting
KVM: SVM: Provide support to launch and run an SEV-ES guest
KVM: SVM: Provide an updated VMRUN invocation for SEV-ES guests
KVM: SVM: Provide support for SEV-ES vCPU loading
KVM: SVM: Provide support for SEV-ES vCPU creation/loading
KVM: SVM: Update ASID allocation to support SEV-ES guests
KVM: SVM: Set the encryption mask for the SVM host save area
KVM: SVM: Add NMI support for an SEV-ES guest
KVM: SVM: Guest FPU state save/restore not needed for SEV-ES guest
KVM: SVM: Do not report support for SMM for an SEV-ES guest
KVM: x86: Update __get_sregs() / __set_sregs() to support SEV-ES
KVM: SVM: Add support for CR8 write traps for an SEV-ES guest
KVM: SVM: Add support for CR4 write traps for an SEV-ES guest
KVM: SVM: Add support for CR0 write traps for an SEV-ES guest
KVM: SVM: Add support for EFER write traps for an SEV-ES guest
KVM: SVM: Support string IO operations for an SEV-ES guest
KVM: SVM: Support MMIO for an SEV-ES guest
KVM: SVM: Create trace events for VMGEXIT MSR protocol processing
KVM: SVM: Create trace events for VMGEXIT processing
...
If we get a FSC_PERM fault, just using (logging_active && writable) to
determine calling kvm_pgtable_stage2_map(). There will be two more cases
we should consider.
(1) After logging_active is configged back to false from true. When we
get a FSC_PERM fault with write_fault and adjustment of hugepage is needed,
we should merge tables back to a block entry. This case is ignored by still
calling kvm_pgtable_stage2_relax_perms(), which will lead to an endless
loop and guest panic due to soft lockup.
(2) We use (FSC_PERM && logging_active && writable) to determine
collapsing a block entry into a table by calling kvm_pgtable_stage2_map().
But sometimes we may only need to relax permissions when trying to write
to a page other than a block.
In this condition,using kvm_pgtable_stage2_relax_perms() will be fine.
The ISS filed bit[1:0] in ESR_EL2 regesiter indicates the stage2 lookup
level at which a D-abort or I-abort occurred. By comparing granule of
the fault lookup level with vma_pagesize, we can strictly distinguish
conditions of calling kvm_pgtable_stage2_relax_perms() or
kvm_pgtable_stage2_map(), and the above two cases will be well considered.
Suggested-by: Keqian Zhu <zhukeqian1@huawei.com>
Signed-off-by: Yanan Wang <wangyanan55@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201201201034.116760-4-wangyanan55@huawei.com
The only use of the register mapping code was for the sake of the LR
mapping, which we trivially solved in a previous patch. Get rid of
the whole thing now.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Move the AArch32 exception injection code back into the inject_fault.c
file, removing the need for a few non-static functions now that AArch32
host support is a thing of the past.
Signed-off-by: Marc Zyngier <maz@kernel.org>
The SPSR setting code is now completely unused, including that dealing
with banked AArch32 SPSRs. Cleanup time.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Move the AArch64 exception injection code from EL1 to HYP, leaving
only the ESR_EL1 updates to EL1. In order to come with the differences
between VHE and nVHE, two set of system register accessors are provided.
SPSR, ELR, PC and PSTATE are now completely handled in the hypervisor.
Signed-off-by: Marc Zyngier <maz@kernel.org>
In an effort to remove the vcpu PC manipulations from EL1 on nVHE
systems, move kvm_skip_instr() to be HYP-specific. EL1's intent
to increment PC post emulation is now signalled via a flag in the
vcpu structure.
Signed-off-by: Marc Zyngier <maz@kernel.org>
There is no need to feed the result of kvm_vcpu_trap_il_is32bit()
to kvm_skip_instr(), as only AArch32 has a variable length ISA, and
this helper can equally be called from kvm_skip_instr32(), reducing
the complexity at all the call sites.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
- Userspace support for the Memory Tagging Extension introduced by Armv8.5.
Kernel support (via KASAN) is likely to follow in 5.11.
- Selftests for MTE, Pointer Authentication and FPSIMD/SVE context
switching.
- Fix and subsequent rewrite of our Spectre mitigations, including the
addition of support for PR_SPEC_DISABLE_NOEXEC.
- Support for the Armv8.3 Pointer Authentication enhancements.
- Support for ASID pinning, which is required when sharing page-tables with
the SMMU.
- MM updates, including treating flush_tlb_fix_spurious_fault() as a no-op.
- Perf/PMU driver updates, including addition of the ARM CMN PMU driver and
also support to handle CPU PMU IRQs as NMIs.
- Allow prefetchable PCI BARs to be exposed to userspace using normal
non-cacheable mappings.
- Implementation of ARCH_STACKWALK for unwinding.
- Improve reporting of unexpected kernel traps due to BPF JIT failure.
- Improve robustness of user-visible HWCAP strings and their corresponding
numerical constants.
- Removal of TEXT_OFFSET.
- Removal of some unused functions, parameters and prototypes.
- Removal of MPIDR-based topology detection in favour of firmware
description.
- Cleanups to handling of SVE and FPSIMD register state in preparation
for potential future optimisation of handling across syscalls.
- Cleanups to the SDEI driver in preparation for support in KVM.
- Miscellaneous cleanups and refactoring work.
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl+AUXMQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNFc1B/4q2Kabe+pPu7s1f58Q+OTaEfqcr3F1qh27
F1YpFZUYxg0GPfPsFrnbJpo5WKo7wdR9ceI9yF/GHjs7A/MSoQJis3pG6SlAd9c0
nMU5tCwhg9wfq6asJtl0/IPWem6cqqhdzC6m808DjeHuyi2CCJTt0vFWH3OeHEhG
cfmLfaSNXOXa/MjEkT8y1AXJ/8IpIpzkJeCRA1G5s18PXV9Kl5bafIo9iqyfKPLP
0rJljBmoWbzuCSMc81HmGUQI4+8KRp6HHhyZC/k0WEVgj3LiumT7am02bdjZlTnK
BeNDKQsv2Jk8pXP2SlrI3hIUTz0bM6I567FzJEokepvTUzZ+CVBi
=9J8H
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"There's quite a lot of code here, but much of it is due to the
addition of a new PMU driver as well as some arm64-specific selftests
which is an area where we've traditionally been lagging a bit.
In terms of exciting features, this includes support for the Memory
Tagging Extension which narrowly missed 5.9, hopefully allowing
userspace to run with use-after-free detection in production on CPUs
that support it. Work is ongoing to integrate the feature with KASAN
for 5.11.
Another change that I'm excited about (assuming they get the hardware
right) is preparing the ASID allocator for sharing the CPU page-table
with the SMMU. Those changes will also come in via Joerg with the
IOMMU pull.
We do stray outside of our usual directories in a few places, mostly
due to core changes required by MTE. Although much of this has been
Acked, there were a couple of places where we unfortunately didn't get
any review feedback.
Other than that, we ran into a handful of minor conflicts in -next,
but nothing that should post any issues.
Summary:
- Userspace support for the Memory Tagging Extension introduced by
Armv8.5. Kernel support (via KASAN) is likely to follow in 5.11.
- Selftests for MTE, Pointer Authentication and FPSIMD/SVE context
switching.
- Fix and subsequent rewrite of our Spectre mitigations, including
the addition of support for PR_SPEC_DISABLE_NOEXEC.
- Support for the Armv8.3 Pointer Authentication enhancements.
- Support for ASID pinning, which is required when sharing
page-tables with the SMMU.
- MM updates, including treating flush_tlb_fix_spurious_fault() as a
no-op.
- Perf/PMU driver updates, including addition of the ARM CMN PMU
driver and also support to handle CPU PMU IRQs as NMIs.
- Allow prefetchable PCI BARs to be exposed to userspace using normal
non-cacheable mappings.
- Implementation of ARCH_STACKWALK for unwinding.
- Improve reporting of unexpected kernel traps due to BPF JIT
failure.
- Improve robustness of user-visible HWCAP strings and their
corresponding numerical constants.
- Removal of TEXT_OFFSET.
- Removal of some unused functions, parameters and prototypes.
- Removal of MPIDR-based topology detection in favour of firmware
description.
- Cleanups to handling of SVE and FPSIMD register state in
preparation for potential future optimisation of handling across
syscalls.
- Cleanups to the SDEI driver in preparation for support in KVM.
- Miscellaneous cleanups and refactoring work"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (148 commits)
Revert "arm64: initialize per-cpu offsets earlier"
arm64: random: Remove no longer needed prototypes
arm64: initialize per-cpu offsets earlier
kselftest/arm64: Check mte tagged user address in kernel
kselftest/arm64: Verify KSM page merge for MTE pages
kselftest/arm64: Verify all different mmap MTE options
kselftest/arm64: Check forked child mte memory accessibility
kselftest/arm64: Verify mte tag inclusion via prctl
kselftest/arm64: Add utilities and a test to validate mte memory
perf: arm-cmn: Fix conversion specifiers for node type
perf: arm-cmn: Fix unsigned comparison to less than zero
arm64: dbm: Invalidate local TLB when setting TCR_EL1.HD
arm64: mm: Make flush_tlb_fix_spurious_fault() a no-op
arm64: Add support for PR_SPEC_DISABLE_NOEXEC prctl() option
arm64: Pull in task_stack_page() to Spectre-v4 mitigation code
KVM: arm64: Allow patching EL2 vectors even with KASLR is not enabled
arm64: Get rid of arm64_ssbd_state
KVM: arm64: Convert ARCH_WORKAROUND_2 to arm64_get_spectre_v4_state()
KVM: arm64: Get rid of kvm_arm_have_ssbd()
KVM: arm64: Simplify handling of ARCH_WORKAROUND_2
...
Owing to the fact that the host kernel is always mitigated, we can
drastically simplify the WA2 handling by keeping the mitigation
state ON when entering the guest. This means the guest is either
unaffected or not mitigated.
This results in a nice simplification of the mitigation space,
and the removal of a lot of code that was never really used anyway.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Now that kvm_vcpu_trap_is_write_fault() checks for S1PTW, there
is no need for kvm_vcpu_dabt_iswrite() to do the same thing, as
we already check for this condition on all existing paths.
Drop the check and add a comment instead.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200915104218.1284701-3-maz@kernel.org
KVM currently assumes that an instruction abort can never be a write.
This is in general true, except when the abort is triggered by
a S1PTW on instruction fetch that tries to update the S1 page tables
(to set AF, for example).
This can happen if the page tables have been paged out and brought
back in without seeing a direct write to them (they are thus marked
read only), and the fault handling code will make the PT executable(!)
instead of writable. The guest gets stuck forever.
In these conditions, the permission fault must be considered as
a write so that the Stage-1 update can take place. This is essentially
the I-side equivalent of the problem fixed by 60e21a0ef5 ("arm64: KVM:
Take S1 walks into account when determining S2 write faults").
Update kvm_is_write_fault() to return true on IABT+S1PTW, and introduce
kvm_vcpu_trap_is_exec_fault() that only return true when no faulting
on a S1 fault. Additionally, kvm_vcpu_dabt_iss1tw() is renamed to
kvm_vcpu_abt_iss1tw(), as the above makes it plain that it isn't
specific to data abort.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Will Deacon <will@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200915104218.1284701-2-maz@kernel.org
kvm_vcpu_dabt_isextabt() is not specific to data aborts and, unlike
kvm_vcpu_dabt_issext(), has nothing to do with sign extension.
Rename it to 'kvm_vcpu_abt_issea()'.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20200729102821.23392-2-will@kernel.org
SPSR_EL1 being a VNCR-capable register with ARMv8.4-NV, move it to
the sysregs array and update the accessors.
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
As we're about to move SPSR_EL1 into the VNCR page, we need to
disassociate it from the rest of the 32bit cruft. Let's break
the array into individual fields.
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
As ELR-EL1 is a VNCR-capable register with ARMv8.4-NV, let's move it to
the sys_regs array and repaint the accessors. While we're at it, let's
kill the now useless accessors used only on the fault injection path.
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
struct kvm_regs is used by userspace to indicate which register gets
accessed by the {GET,SET}_ONE_REG API. But as we're about to refactor
the layout of the in-kernel register structures, we need the kernel to
move away from it.
Let's make kvm_regs userspace only, and let the kernel map it to its own
internal representation.
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
kvm/arm32 isn't supported since commit 541ad0150c ("arm: Remove
32bit KVM host support"). So HSR isn't meaningful since then. This
renames HSR to ESR accordingly. This shouldn't cause any functional
changes:
* Rename kvm_vcpu_get_hsr() to kvm_vcpu_get_esr() to make the
function names self-explanatory.
* Rename variables from @hsr to @esr to make them self-explanatory.
Note that the renaming on uapi and tracepoint will cause ABI changes,
which we should avoid. Specificly, there are 4 related source files
in this regard:
* arch/arm64/include/uapi/asm/kvm.h (struct kvm_debug_exit_arch::hsr)
* arch/arm64/kvm/handle_exit.c (struct kvm_debug_exit_arch::hsr)
* arch/arm64/kvm/trace_arm.h (tracepoints)
* arch/arm64/kvm/trace_handle_exit.h (tracepoints)
Signed-off-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Andrew Scull <ascull@google.com>
Link: https://lore.kernel.org/r/20200630015705.103366-1-gshan@redhat.com
With nVHE code now fully separated from the rest of the kernel, the effects of
the __hyp_text macro (which had to be applied on all nVHE code) can be
achieved with build rules instead. The macro used to:
(a) move code to .hyp.text ELF section, now done by renaming .text using
`objcopy`, and
(b) `notrace` and `__noscs` would negate effects of CC_FLAGS_FTRACE and
CC_FLAGS_SCS, respectivelly, now those flags are erased from
KBUILD_CFLAGS (same way as in EFI stub).
Note that by removing __hyp_text from code shared with VHE, all VHE code is now
compiled into .text and without `notrace` and `__noscs`.
Use of '.pushsection .hyp.text' removed from assembly files as this is now also
covered by the build rules.
For MAINTAINERS: if needed to re-run, uses of macro were removed with the
following command. Formatting was fixed up manually.
find arch/arm64/kvm/hyp -type f -name '*.c' -o -name '*.h' \
-exec sed -i 's/ __hyp_text//g' {} +
Signed-off-by: David Brazdil <dbrazdil@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200625131420.71444-15-dbrazdil@google.com
* 32bit VM fixes:
- Fix embarassing mapping issue between AArch32 CSSELR and AArch64
ACTLR
- Add ACTLR2 support for AArch32
- Get rid of the useless ACTLR_EL1 save/restore
- Fix CP14/15 accesses for AArch32 guests on BE hosts
- Ensure that we don't loose any state when injecting a 32bit
exception when running on a VHE host
* 64bit VM fixes:
- Fix PtrAuth host saving happening in preemptible contexts
- Optimize PtrAuth lazy enable
- Drop vcpu to cpu context pointer
- Fix sparse warnings for HYP per-CPU accesses
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl7h6r8PHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDE3gP/iogqGjZasUIwk4gdIc4IaxxNsfTYJFIh5uw
sedAqwCQg3OftX0jptp6GhI3ZIG5UPuGDM7f3aio6i02pjx6bfBxGJ9AXqNcp6gN
WcECHsAfzHUScznRhBbVflKkOF4dzfzyiutnMdknihePOyO9drwdvzXuJa37cs52
tsCneP9xQ/vQWdqu42uPS7HtSepSa/Lf/qeKGaTDWQIvNYGI3PctQvRAxx4FNHc/
SMUpS5zdTFceVoya/2+azTJ24R1lbwlPwaw2WoaghB+QmREKN8uMKy5kjrO5YUnH
8BtjESiNBI2CZYSwcxFt+QNA6EmymwDwfrmOE+7iBCZelOLWLVYbJ7icKX3kT731
gts5PBD8JlZWAnbH/Mbo4qngXJwHaijA38Bt8rvSphI0aK6iOU6DP5BuOurzNRde
XczDYq3lqdCC2ynROjRpH4paVo7s0sBjjgZ7OsWqsw9uRAogwTkVE2sEi4HdqNAH
JHhIHEKj7t/bRtzneXVk6ngoezIs6sIdcqrUZ+rAMnmMHbrzBoEqnlrlQ7e2/UXY
yvY5Yc3/H2pKRCK/KznOi1nVG+xUZp4RZp552pwULF+JVbmMHIOxn3IxiejfMZVx
czD5cxMcgMWa14ZZRN0DynT9wCg+s+MGaKGR6STyudVYHFBTr7hrsuM1zq/neMQf
JcUBVUot
=I2Li
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for Linux 5.8, take #1
* 32bit VM fixes:
- Fix embarassing mapping issue between AArch32 CSSELR and AArch64
ACTLR
- Add ACTLR2 support for AArch32
- Get rid of the useless ACTLR_EL1 save/restore
- Fix CP14/15 accesses for AArch32 guests on BE hosts
- Ensure that we don't loose any state when injecting a 32bit
exception when running on a VHE host
* 64bit VM fixes:
- Fix PtrAuth host saving happening in preemptible contexts
- Optimize PtrAuth lazy enable
- Drop vcpu to cpu context pointer
- Fix sparse warnings for HYP per-CPU accesses
When using the PtrAuth feature in a guest, we need to save the host's
keys before allowing the guest to program them. For that, we dump
them in a per-CPU data structure (the so called host context).
But both call sites that do this are in preemptible context,
which may end up in disaster should the vcpu thread get preempted
before reentering the guest.
Instead, save the keys eagerly on each vcpu_load(). This has an
increased overhead, but is at least safe.
Cc: stable@vger.kernel.org
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Merge in user support for Branch Target Identification, which narrowly
missed the cut for 5.7 after a late ABI concern.
* for-next/bti-user:
arm64: bti: Document behaviour for dynamically linked binaries
arm64: elf: Fix allnoconfig kernel build with !ARCH_USE_GNU_PROPERTY
arm64: BTI: Add Kconfig entry for userspace BTI
mm: smaps: Report arm64 guarded pages in smaps
arm64: mm: Display guarded pages in ptdump
KVM: arm64: BTI: Reset BTYPE when skipping emulated instructions
arm64: BTI: Reset BTYPE when skipping emulated instructions
arm64: traps: Shuffle code to eliminate forward declarations
arm64: unify native/compat instruction skipping
arm64: BTI: Decode BYTPE bits when printing PSTATE
arm64: elf: Enable BTI at exec based on ELF program properties
elf: Allow arch to tweak initial mmap prot flags
arm64: Basic Branch Target Identification support
ELF: Add ELF program property parsing support
ELF: UAPI and Kconfig additions for ELF program properties
Just like for VLPIs, it is beneficial to avoid trapping on WFI when the
vcpu is using the GICv4.1 SGIs.
Add such a check to vcpu_clear_wfx_traps().
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Link: https://lore.kernel.org/r/20200304203330.4967-23-maz@kernel.org
Since normal execution of any non-branch instruction resets the
PSTATE BTYPE field to 0, so do the same thing when emulating a
trapped instruction.
Branches don't trap directly, so we should never need to assign a
non-zero value to BTYPE here.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On non VHE CPUs, KVM's __hyp_text contains code run at EL2 while the rest
of the kernel runs at EL1. This code lives in its own section with start
and end markers so we can map it to EL2.
The compiler may decide not to inline static-inline functions from the
header file. It may also decide not to put these out-of-line functions
in the same section, meaning they aren't mapped when called at EL2.
Clang-9 does exactly this with __kern_hyp_va() and a few others when
x18 is reserved for the shadow call stack. Add the additional __always_
hint to all the static-inlines that are called from a hyp file.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200220165839.256881-2-james.morse@arm.com
----
kvm_get_hyp_vector() pulls in all the regular per-cpu accessors
and this_cpu_has_cap(), fortunately its only called for VHE.
Our MMIO handling is a bit odd, in the sense that it uses an
intermediate per-vcpu structure to store the various decoded
information that describe the access.
But the same information is readily available in the HSR/ESR_EL2
field, and we actually use this field to populate the structure.
Let's simplify the whole thing by getting rid of the superfluous
structure and save a (tiny) bit of space in the vcpu structure.
[32bit fix courtesy of Olof Johansson <olof@lixom.net>]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Confusingly, there are three SPSR layouts that a kernel may need to deal
with:
(1) An AArch64 SPSR_ELx view of an AArch64 pstate
(2) An AArch64 SPSR_ELx view of an AArch32 pstate
(3) An AArch32 SPSR_* view of an AArch32 pstate
When the KVM AArch32 support code deals with SPSR_{EL2,HYP}, it's either
dealing with #2 or #3 consistently. On arm64 the PSR_AA32_* definitions
match the AArch64 SPSR_ELx view, and on arm the PSR_AA32_* definitions
match the AArch32 SPSR_* view.
However, when we inject an exception into an AArch32 guest, we have to
synthesize the AArch32 SPSR_* that the guest will see. Thus, an AArch64
host needs to synthesize layout #3 from layout #2.
This patch adds a new host_spsr_to_spsr32() helper for this, and makes
use of it in the KVM AArch32 support code. For arm64 we need to shuffle
the DIT bit around, and remove the SS bit, while for arm we can use the
value as-is.
I've open-coded the bit manipulation for now to avoid having to rework
the existing PSR_* definitions into PSR64_AA32_* and PSR32_AA32_*
definitions. I hope to perform a more thorough refactoring in future so
that we can handle pstate view manipulation more consistently across the
kernel tree.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200108134324.46500-4-mark.rutland@arm.com
On AArch64 you can do a sign-extended load to either a 32-bit or 64-bit
register, and we should only sign extend the register up to the width of
the register as specified in the operation (by using the 32-bit Wn or
64-bit Xn register specifier).
As it turns out, the architecture provides this decoding information in
the SF ("Sixty-Four" -- how cute...) bit.
Let's take advantage of this with the usual 32-bit/64-bit header file
dance and do the right thing on AArch64 hosts.
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20191212195055.5541-1-christoffer.dall@arm.com
Just like we do for WFE trapping, it can be useful to turn off
WFI trapping when the physical CPU is not oversubscribed (that
is, the vcpu is the only runnable process on this CPU) *and*
that we're using direct injection of interrupts.
The conditions are reevaluated on each vcpu_load(), ensuring that
we don't switch to this mode on a busy system.
On a GICv4 system, this has the effect of reducing the generation
of doorbell interrupts to zero when the right conditions are
met, which is a huge improvement over the current situation
(where the doorbells are screaming if the CPU ever hits a
blocking WFI).
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Link: https://lore.kernel.org/r/20191107160412.30301-3-maz@kernel.org
On CPUs that support S2FWB (Armv8.4+), KVM configures the stage 2 page
tables to override the memory attributes of memory accesses, regardless
of the stage 1 page table configurations, and also when the stage 1 MMU
is turned off. This results in all memory accesses to RAM being
cacheable, including during early boot of the guest.
On CPUs without this feature, memory accesses were non-cacheable during
boot until the guest turned on the stage 1 MMU, and we had to detect
when the guest turned on the MMU, such that we could invalidate all cache
entries and ensure a consistent view of memory with the MMU turned on.
When the guest turned on the caches, we would call stage2_flush_vm()
from kvm_toggle_cache().
However, stage2_flush_vm() walks all the stage 2 tables, and calls
__kvm_flush-dcache_pte, which on a system with S2FWB does ... absolutely
nothing.
We can avoid that whole song and dance, and simply not set TVM when
creating a VM on a system that has S2FWB.
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20191028130541.30536-1-christoffer.dall@arm.com
For a long time, if a guest accessed memory outside of a memslot using
any of the load/store instructions in the architecture which doesn't
supply decoding information in the ESR_EL2 (the ISV bit is not set), the
kernel would print the following message and terminate the VM as a
result of returning -ENOSYS to userspace:
load/store instruction decoding not implemented
The reason behind this message is that KVM assumes that all accesses
outside a memslot is an MMIO access which should be handled by
userspace, and we originally expected to eventually implement some sort
of decoding of load/store instructions where the ISV bit was not set.
However, it turns out that many of the instructions which don't provide
decoding information on abort are not safe to use for MMIO accesses, and
the remaining few that would potentially make sense to use on MMIO
accesses, such as those with register writeback, are not used in
practice. It also turns out that fetching an instruction from guest
memory can be a pretty horrible affair, involving stopping all CPUs on
SMP systems, handling multiple corner cases of address translation in
software, and more. It doesn't appear likely that we'll ever implement
this in the kernel.
What is much more common is that a user has misconfigured his/her guest
and is actually not accessing an MMIO region, but just hitting some
random hole in the IPA space. In this scenario, the error message above
is almost misleading and has led to a great deal of confusion over the
years.
It is, nevertheless, ABI to userspace, and we therefore need to
introduce a new capability that userspace explicitly enables to change
behavior.
This patch introduces KVM_CAP_ARM_NISV_TO_USER (NISV meaning Non-ISV)
which does exactly that, and introduces a new exit reason to report the
event to userspace. User space can then emulate an exception to the
guest, restart the guest, suspend the guest, or take any other
appropriate action as per the policy of the running system.
Reported-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Currently, the {read,write}_sysreg_el*() accessors for accessing
particular ELs' sysregs in the presence of VHE rely on some local
hacks and define their system register encodings in a way that is
inconsistent with the core definitions in <asm/sysreg.h>.
As a result, it is necessary to add duplicate definitions for any
system register that already needs a definition in sysreg.h for
other reasons.
This is a bit of a maintenance headache, and the reasons for the
_el*() accessors working the way they do is a bit historical.
This patch gets rid of the shadow sysreg definitions in
<asm/kvm_hyp.h>, converts the _el*() accessors to use the core
__msr_s/__mrs_s interface, and converts all call sites to use the
standard sysreg #define names (i.e., upper case, with SYS_ prefix).
This patch will conflict heavily anyway, so the opportunity
to clean up some bad whitespace in the context of the changes is
taken.
The change exposes a few system registers that have no sysreg.h
definition, due to msr_s/mrs_s being used in place of msr/mrs:
additions are made in order to fill in the gaps.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://www.spinics.net/lists/kvm-arm/msg31717.html
[Rebased to v4.21-rc1]
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
[Rebased to v5.2-rc5, changelog updates]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
KVM implements the firmware interface for mitigating cache speculation
vulnerabilities. Guests may use this interface to ensure mitigation is
active.
If we want to migrate such a guest to a host with a different support
level for those workarounds, migration might need to fail, to ensure that
critical guests don't loose their protection.
Introduce a way for userland to save and restore the workarounds state.
On restoring we do checks that make sure we don't downgrade our
mitigation level.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not see http www gnu org
licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 503 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When pointer authentication is supported, a guest may wish to use it.
This patch adds the necessary KVM infrastructure for this to work, with
a semi-lazy context switch of the pointer auth state.
Pointer authentication feature is only enabled when VHE is built
in the kernel and present in the CPU implementation so only VHE code
paths are modified.
When we schedule a vcpu, we disable guest usage of pointer
authentication instructions and accesses to the keys. While these are
disabled, we avoid context-switching the keys. When we trap the guest
trying to use pointer authentication functionality, we change to eagerly
context-switching the keys, and enable the feature. The next time the
vcpu is scheduled out/in, we start again. However the host key save is
optimized and implemented inside ptrauth instruction/register access
trap.
Pointer authentication consists of address authentication and generic
authentication, and CPUs in a system might have varied support for
either. Where support for either feature is not uniform, it is hidden
from guests via ID register emulation, as a result of the cpufeature
framework in the host.
Unfortunately, address authentication and generic authentication cannot
be trapped separately, as the architecture provides a single EL2 trap
covering both. If we wish to expose one without the other, we cannot
prevent a (badly-written) guest from intermittently using a feature
which is not uniformly supported (when scheduled on a physical CPU which
supports the relevant feature). Hence, this patch expects both type of
authentication to be present in a cpu.
This switch of key is done from guest enter/exit assembly as preparation
for the upcoming in-kernel pointer authentication support. Hence, these
key switching routines are not implemented in C code as they may cause
pointer authentication key signing error in some situations.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[Only VHE, key switch in full assembly, vcpu_has_ptrauth checks
, save host key in ptrauth exception trap]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
[maz: various fixups]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
On SMP ARM systems, cache maintenance by set/way should only ever be
done in the context of onlining or offlining CPUs, which is typically
done by bare metal firmware and never in a virtual machine. For this
reason, we trap set/way cache maintenance operations and replace them
with conditional flushing of the entire guest address space.
Due to this trapping, the set/way arguments passed into the set/way
ops are completely ignored, and thus irrelevant. This also means that
the set/way geometry is equally irrelevant, and we can simply report
it as 1 set and 1 way, so that legacy 32-bit ARM system software (i.e.,
the kind that only receives odd fixes) doesn't take a performance hit
due to the trapping when iterating over the cachelines.
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We currently permit CPUs in the same system to deviate in the exact
topology of the caches, and we subsequently hide this fact from user
space by exposing a sanitised value of the cache type register CTR_EL0.
However, guests running under KVM see the bare value of CTR_EL0, which
could potentially result in issues with, e.g., JITs or other pieces of
code that are sensitive to misreported cache line sizes.
So let's start trapping cache ID instructions if there is a mismatch,
and expose the sanitised version of CTR_EL0 to guests. Note that CTR_EL0
is treated as an invariant to KVM user space, so update that part as well.
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Move this little function to the header files for arm/arm64 so other
code can make use of it directly.
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When we emulate a guest instruction, we don't advance the hardware
singlestep state machine, and thus the guest will receive a software
step exception after a next instruction which is not emulated by the
host.
We bodge around this in an ad-hoc fashion. Sometimes we explicitly check
whether userspace requested a single step, and fake a debug exception
from within the kernel. Other times, we advance the HW singlestep state
rely on the HW to generate the exception for us. Thus, the observed step
behaviour differs for host and guest.
Let's make this simpler and consistent by always advancing the HW
singlestep state machine when we skip an instruction. Thus we can rely
on the hardware to generate the singlestep exception for us, and never
need to explicitly check for an active-pending step, nor do we need to
fake a debug exception from the guest.
Cc: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Extracting target register from ESR.ISS encoding has already been required
at multiple instances. Just make it a macro definition and replace all the
existing use cases.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAltxmb4VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpD7E0P/0qn1IMtskaC7EglFCm72+NXe1CW
ZAtxTHzetjf7977dA3bVsg4gEKvVx5b3YuRT76u4hBoSa0rFJ8Q9iSC8wL4u9Idf
JUQjwVIUxMeGW5fR0VFDkd9SkDYtNGdjQcVl2I8UpV+lnLC/2Vfr4xR5qBad2pAQ
zjthdpQMjZWClyhPkOv6WjVsW0lNw0xDkZWgCViBY+TdT7Gmw/q8hmvj9TEwbMGT
7tmQl9MupQ2bLY8WuTiGA6eNiEZld9esJGthI43xGQDJl4Y3FeciIZWcBru20+wu
GnC3QS3FlmYlp2WuWcKU9lEGXhmoX/7/1WVhZkoMsIvi05c2JCxSxstK7QNfUaAH
8q2/Wc0fYIGm2owH+b1Mpn0w37GZtgl7Bxxzakg7B7Ko0q/EnO7z6XVup1/abKRU
NtUKlWIL7NDiHjHO6j0hBb3rGi7B3wo86P7GTPJb12Dg9EBF5DVhekXeGI/ChzE9
WIV1PxR0seSapzlJ92HHmWLAtcRLtXXesqcctmN4d2URBtsx9DEwo0Upiz//reYE
TBncQbtniVt2xXEl7sqNEYei75IxC3Dg1AgDL/zVQDl8PW0UvKo8Qb0cW7EnF9Vg
AcjD6R72dAgbqUMYOP0nriKxzXwa0Jls9aF3zBgcikKMGeyD6Z/Exlq4LexhSeuw
cWKsrQUYcLGKZPRN
=b6+A
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-for-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for 4.19
- Support for Group0 interrupts in guests
- Cache management optimizations for ARMv8.4 systems
- Userspace interface for RAS, allowing error retrival and injection
- Fault path optimization
- Emulated physical timer fixes
- Random cleanups
For the migrating VMs, user space may need to know the exception
state. For example, in the machine A, KVM make an SError pending,
when migrate to B, KVM also needs to pend an SError.
This new IOCTL exports user-invisible states related to SError.
Together with appropriate user space changes, user space can get/set
the SError exception state to do migrate/snapshot/suspend.
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: James Morse <james.morse@arm.com>
[expanded documentation wording]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Trapping blocking WFE is extremely beneficial in situations where
the system is oversubscribed, as it allows another thread to run
while being blocked. In a non-oversubscribed environment, this is
the complete opposite, and trapping WFE is just unnecessary overhead.
Let's only enable WFE trapping if the CPU has more than a single task
to run (that is, more than just the vcpu thread).
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Up to ARMv8.3, the combinaison of Stage-1 and Stage-2 attributes
results in the strongest attribute of the two stages. This means
that the hypervisor has to perform quite a lot of cache maintenance
just in case the guest has some non-cacheable mappings around.
ARMv8.4 solves this problem by offering a different mode (FWB) where
Stage-2 has total control over the memory attribute (this is limited
to systems where both I/O and instruction fetches are coherent with
the dcache). This is achieved by having a different set of memory
attributes in the page tables, and a new bit set in HCR_EL2.
On such a system, we can then safely sidestep any form of dcache
management.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Some code cares about the SPSR_ELx format for exceptions taken from
AArch32 to inspect or manipulate the SPSR_ELx value, which is already in
the SPSR_ELx format, and not in the AArch32 PSR format.
To separate these from cases where we care about the AArch32 PSR format,
migrate these cases to use the PSR_AA32_* definitions rather than
COMPAT_PSR_*.
There should be no functional change as a result of this patch.
Note that arm64 KVM does not support a compat KVM API, and always uses
the SPSR_ELx format, even for AArch32 guests.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A typo in kvm_vcpu_set_be()'s call:
| vcpu_write_sys_reg(vcpu, SCTLR_EL1, sctlr)
causes us to use the 32bit register value as an index into the sys_reg[]
array, and sail off the end of the linear map when we try to bring up
big-endian secondaries.
| Unable to handle kernel paging request at virtual address ffff80098b982c00
| Mem abort info:
| ESR = 0x96000045
| Exception class = DABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| Data abort info:
| ISV = 0, ISS = 0x00000045
| CM = 0, WnR = 1
| swapper pgtable: 4k pages, 48-bit VAs, pgdp = 000000002ea0571a
| [ffff80098b982c00] pgd=00000009ffff8803, pud=0000000000000000
| Internal error: Oops: 96000045 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 2 PID: 1561 Comm: kvm-vcpu-0 Not tainted 4.17.0-rc3-00001-ga912e2261ca6-dirty #1323
| Hardware name: ARM Juno development board (r1) (DT)
| pstate: 60000005 (nZCv daif -PAN -UAO)
| pc : vcpu_write_sys_reg+0x50/0x134
| lr : vcpu_write_sys_reg+0x50/0x134
| Process kvm-vcpu-0 (pid: 1561, stack limit = 0x000000006df4728b)
| Call trace:
| vcpu_write_sys_reg+0x50/0x134
| kvm_psci_vcpu_on+0x14c/0x150
| kvm_psci_0_2_call+0x244/0x2a4
| kvm_hvc_call_handler+0x1cc/0x258
| handle_hvc+0x20/0x3c
| handle_exit+0x130/0x1ec
| kvm_arch_vcpu_ioctl_run+0x340/0x614
| kvm_vcpu_ioctl+0x4d0/0x840
| do_vfs_ioctl+0xc8/0x8d0
| ksys_ioctl+0x78/0xa8
| sys_ioctl+0xc/0x18
| el0_svc_naked+0x30/0x34
| Code: 73620291 604d00b0 00201891 1ab10194 (957a33f8)
|---[ end trace 4b4a4f9628596602 ]---
Fix the order of the arguments.
Fixes: 8d404c4c24 ("KVM: arm64: Rewrite system register accessors to read/write functions")
CC: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
32-bit registers are not used by a 64-bit host kernel and can be
deferred, but we need to rework the accesses to these register to access
the latest values depending on whether or not guest system registers are
loaded on the CPU or only reside in memory.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>