The DD2 core still has some unstability. Define CPU_FTR_476_DD2 to
enable workarounds in later patches.
This is based on an earlier, unreleased patch for DD1 by Ben Herrenschmidt.
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
POWER5 added popcntb, and POWER7 added popcntw and popcntd. As a first step
this patch does all the work out of line, but it would be nice to implement
them as inlines with an out of line fallback.
The performance issue with hweight was noticed when disabling SMT on a large
(192 thread) POWER7 box. The patch improves that testcase by about 8%.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The POWER architecture does not require stcx to check that it is operating
on the same address as the larx. This means it is possible for an
an exception handler to execute a larx, get a reservation, decide
not to do the stcx and then return back with an active reservation. If the
interrupted code was in the middle of a larx/stcx sequence the stcx could
incorrectly succeed.
All recent POWER CPUs check the address before letting the stcx succeed
so we can create a CPU feature and nop it out. As Ben suggested, we can
only do this in our syscall path because there is a remote possibility
some kernel code gets interrupted by an exception that ends up operating
on the same cacheline.
Thanks to Paul Mackerras and Derek Williams for the idea.
To test this I used a very simple null syscall (actually getppid) testcase
at http://ozlabs.org/~anton/junkcode/null_syscall.c
I tested against 2.6.35-git10 with the following changes against the
pseries_defconfig:
CONFIG_VIRT_CPU_ACCOUNTING=n
CONFIG_AUDIT=n
CONFIG_PPC_4K_PAGES=n
CONFIG_PPC_64K_PAGES=y
CONFIG_FORCE_MAX_ZONEORDER=9
CONFIG_PPC_SUBPAGE_PROT=n
CONFIG_FUNCTION_TRACER=n
CONFIG_FUNCTION_GRAPH_TRACER=n
CONFIG_IRQSOFF_TRACER=n
CONFIG_STACK_TRACER=n
to remove the overhead of virtual CPU accounting, syscall auditing and
the ftrace mcount tracers. 64kB pages were enabled to minimise TLB misses.
POWER6: +8.2%
POWER7: +7.0%
Another suggestion was to use a larx to something in the L1 instead of a stcx.
This was almost as fast as removing the larx on POWER6, but only 3.5% faster
on POWER7. We can use this to speed up the reservation clear in our
exception exit code.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (27 commits)
sched: Use correct macro to display sched_child_runs_first in /proc/sched_debug
sched: No need for bootmem special cases
sched: Revert nohz_ratelimit() for now
sched: Reduce update_group_power() calls
sched: Update rq->clock for nohz balanced cpus
sched: Fix spelling of sibling
sched, cpuset: Drop __cpuexit from cpu hotplug callbacks
sched: Fix the racy usage of thread_group_cputimer() in fastpath_timer_check()
sched: run_posix_cpu_timers: Don't check ->exit_state, use lock_task_sighand()
sched: thread_group_cputime: Simplify, document the "alive" check
sched: Remove the obsolete exit_state/signal hacks
sched: task_tick_rt: Remove the obsolete ->signal != NULL check
sched: __sched_setscheduler: Read the RLIMIT_RTPRIO value lockless
sched: Fix comments to make them DocBook happy
sched: Fix fix_small_capacity
powerpc: Exclude arch_sd_sibiling_asym_packing() on UP
powerpc: Enable asymmetric SMT scheduling on POWER7
sched: Add asymmetric group packing option for sibling domain
sched: Fix capacity calculations for SMT4
sched: Change nohz idle load balancing logic to push model
...
Implement perf-events based hw-breakpoint interfaces for PowerPC
64-bit server (Book III S) processors. This allows access to a
given location to be used as an event that can be counted or
profiled by the perf_events subsystem.
This is done using the DABR (data breakpoint register), which can
also be used for process debugging via ptrace. When perf_event
hw_breakpoint support is configured in, the perf_event subsystem
manages the DABR and arbitrates access to it, and ptrace then
creates a perf_event when it is requested to set a data breakpoint.
[Adopted suggestions from Paul Mackerras <paulus@samba.org> to
- emulate_step() all system-wide breakpoints and single-step only the
per-task breakpoints
- perform arch-specific cleanup before unregistration through
arch_unregister_hw_breakpoint()
]
Signed-off-by: K.Prasad <prasad@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The POWER7 core has dynamic SMT mode switching which is controlled by
the hypervisor. There are 3 SMT modes:
SMT1 uses thread 0
SMT2 uses threads 0 & 1
SMT4 uses threads 0, 1, 2 & 3
When in any particular SMT mode, all threads have the same performance
as each other (ie. at any moment in time, all threads perform the same).
The SMT mode switching works such that when linux has threads 2 & 3 idle
and 0 & 1 active, it will cede (H_CEDE hypercall) threads 2 and 3 in the
idle loop and the hypervisor will automatically switch to SMT2 for that
core (independent of other cores). The opposite is not true, so if
threads 0 & 1 are idle and 2 & 3 are active, we will stay in SMT4 mode.
Similarly if thread 0 is active and threads 1, 2 & 3 are idle, we'll go
into SMT1 mode.
If we can get the core into a lower SMT mode (SMT1 is best), the threads
will perform better (since they share less core resources). Hence when
we have idle threads, we want them to be the higher ones.
This adds a feature bit for asymmetric packing to powerpc and then
enables it on POWER7.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: linuxppc-dev@ozlabs.org
LKML-Reference: <20100608045702.31FB5CC8C7@localhost.localdomain>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Most of the MSCR bit assigments are different in e500mc versus
e500, and they are now write-one-to-clear.
Some e500mc machine check conditions are made recoverable (as long as
they aren't stuck on), most notably L1 instruction cache parity errors.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
The 47x core's MCSR varies from 44x, so it needs it's own machine check
handler.
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
This patch adds the base support for the 476 processor. The code was
primarily written by Ben Herrenschmidt and Torez Smith, but I've been
maintaining it for a while.
The goal is to have a single binary that will run on 44x and 47x, but
we still have some details to work out. The biggest is that the L1 cache
line size differs on the two platforms, but it's currently a compile-time
option.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Torez Smith <lnxtorez@linux.vnet.ibm.com>
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Nick Piggin discovered that lwsync barriers around locks were faster than isync
on 970. That was a long time ago and I completely dropped the ball in testing
his patches across other ppc64 processors.
Turns out the idea helps on other chips. Using a microbenchmark that
uses a lot of threads to contend on a global pthread mutex (and therefore a
global futex), POWER6 improves 8% and POWER7 improves 2%. I checked POWER5
and while I couldn't measure an improvement, there was no regression.
This patch uses the lwsync patching code to replace the isyncs with lwsyncs
on CPUs that support the instruction. We were marking POWER3 and RS64 as lwsync
capable but in reality they treat it as a full sync (ie slow). Remove the
CPU_FTR_LWSYNC bit from these CPUs so they continue to use the faster isync
method.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
BestComm, a DMA engine in MPC52xx SoC, requires snooping when
CPU caches are enabled to work properly.
Adding CPU_FTR_NEED_COHERENT fixes NFS problems on MPC52xx machines
introduced by 'powerpc/mm: Fix handling of _PAGE_COHERENT in BAT setup
code' (sha1: 4c456a67f5).
Signed-off-by: Piotr Ziecik <kosmo@semihalf.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
The e500mc supports the new msgsnd/doorbell mechanisms that were added in
the Power ISA 2.05 architecture. We use the normal level doorbell for
doing SMP IPIs at this point.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We're soon running out of CPU features and I need to add some new
ones for various MMU related bits, so this patch separates the MMU
features from the CPU features. I moved over the 32-bit MMU related
ones, added base features for MMU type families, but didn't move
over any 64-bit only feature yet.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds supports to the "extended" DCR addressing via the indirect
mfdcrx/mtdcrx instructions supported by some 4xx cores (440H6 and
later).
I enabled the feature for now only on AMCC 460 chips.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
We were missing the CPU_FTR_NOEXECUTE bit in our cputable for all
these processors. The result is that update_mmu_cache() would flush
the cache for all pages mapped to userspace which is totally
unnecessary on those processors since we already handle flushing
on execute in the page fault path.
This should provide a nice speed up ;-)
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Add a new CPU feature bit, CPU_FTR_UNALIGNED_LD_STD, to be added
to the 64bit powerpc chips that can do unaligned load double and
store double without any performance hit.
This is added to Power6 and Cell and will be used in the next commit
to disable the code that gets the destination address aligned on
those CPUs where doing that doesn't improve performance.
Signed-off-by: Mark Nelson <markn@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Add a new CPU feature bit, CPU_FTR_CP_USE_DCBTZ, to be added to the
64bit powerpc chips that benefit from having dcbt and dcbz
instructions used in their memory copy routines.
This will be used in a subsequent patch that updates copy_4K_page().
The new bit is added to Cell, PPC970 and Power4 because they show
better performance with the new copy_4K_page() when dcbt and dcbz
instructions are used.
Signed-off-by: Mark Nelson <markn@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
The file arch/powerpc/kernel/sysfs.c is currently only compiled for
64-bit kernels. It contain code to register CPU sysdevs in sysfs and
add various properties such as cache topology and raw access by root
to performance monitor counters (PMCs). A lot of that can be re-used
as is on 32-bits.
This makes the file be built for both, with appropriate ifdef'ing
for the few bits that are really 64-bit specific, and adds some
support for the raw PMCs for 75x and 74xx processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
from include/asm-powerpc. This is the result of a
mkdir arch/powerpc/include/asm
git mv include/asm-powerpc/* arch/powerpc/include/asm
Followed by a few documentation/comment fixups and a couple of places
where <asm-powepc/...> was being used explicitly. Of the latter only
one was outside the arch code and it is a driver only built for powerpc.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>