Starting with POWER8, the subcore logic relies on all threads of a core
being booted so that they can participate in split mode switches. So on
those machines we ignore the smt_enabled_at_boot setting (smt-enabled on
the kernel command line).
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
[mpe: Update comment and change log to be more precise]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Winkle is a deep idle state supported in power8 chips. A core enters
winkle when all the threads of the core enter winkle. In this state
power supply to the entire chiplet i.e core, private L2 and private L3
is turned off. As a result it gives higher powersavings compared to
sleep.
But entering winkle results in a total hypervisor state loss. Hence the
hypervisor context has to be preserved before entering winkle and
restored upon wake up.
Power-on Reset Engine (PORE) is a dedicated engine which is responsible
for powering on the chiplet during wake up. It can be programmed to
restore the register contests of a few specific registers. This patch
uses PORE to restore register state wherever possible and uses stack to
save and restore rest of the necessary registers.
With hypervisor state restore things fall under three categories-
per-core state, per-subcore state and per-thread state. To manage this,
extend the infrastructure introduced for sleep. Mainly we add a paca
variable subcore_sibling_mask. Using this and the core_idle_state we can
distingush first thread in core and subcore.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Deep idle states like sleep and winkle are per core idle states. A core
enters these states only when all the threads enter either the
particular idle state or a deeper one. There are tasks like fastsleep
hardware bug workaround and hypervisor core state save which have to be
done only by the last thread of the core entering deep idle state and
similarly tasks like timebase resync, hypervisor core register restore
that have to be done only by the first thread waking up from these
state.
The current idle state management does not have a way to distinguish the
first/last thread of the core waking/entering idle states. Tasks like
timebase resync are done for all the threads. This is not only is
suboptimal, but can cause functionality issues when subcores and kvm is
involved.
This patch adds the necessary infrastructure to track idle states of
threads in a per-core structure. It uses this info to perform tasks like
fastsleep workaround and timebase resync only once per core.
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Originally-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The secondary threads should enter deep idle states so as to gain maximum
powersavings when the entire core is offline. To do so the offline path
must be made aware of the available deepest idle state. Hence probe the
device tree for the possible idle states in powernv core code and
expose the deepest idle state through flags.
Since the device tree is probed by the cpuidle driver as well, move
the parameters required to discover the idle states into an appropriate
common place to both the driver and the powernv core code.
Another point is that fastsleep idle state may require workarounds in
the kernel to function properly. This workaround is introduced in the
subsequent patches. However neither the cpuidle driver or the hotplug
path need be bothered about this workaround.
They will be taken care of by the core powernv code.
Originally-by: Srivatsa S. Bhat <srivatsa@mit.edu>
Signed-off-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Shreyas B. Prabhu <shreyas@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When a secondary hardware thread has finished running a KVM guest, we
currently put that thread into nap mode using a nap instruction in
the KVM code. This changes the code so that instead of doing a nap
instruction directly, we instead cause the call to power7_nap() that
put the thread into nap mode to return. The reason for doing this is
to avoid having the KVM code having to know what low-power mode to
put the thread into.
In the case of a secondary thread used to run a KVM guest, the thread
will be offline from the point of view of the host kernel, and the
relevant power7_nap() call is the one in pnv_smp_cpu_disable().
In this case we don't want to clear pending IPIs in the offline loop
in that function, since that might cause us to miss the wakeup for
the next time the thread needs to run a guest. To tell whether or
not to clear the interrupt, we use the SRR1 value returned from
power7_nap(), and check if it indicates an external interrupt. We
arrange that the return from power7_nap() when we have finished running
a guest returns 0, so pending interrupts don't get flushed in that
case.
Note that it is important a secondary thread that has finished
executing in the guest, or that didn't have a guest to run, should
not return to power7_nap's caller while the kvm_hstate.hwthread_req
flag in the PACA is non-zero, because the return from power7_nap
will reenable the MMU, and the MMU might still be in guest context.
In this situation we spin at low priority in real mode waiting for
hwthread_req to become zero.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On PowerNV platforms, when a CPU is offline, we put it into nap mode.
It's possible that the CPU wakes up from nap mode while it is still
offline due to a stray IPI. A misdirected device interrupt could also
potentially cause it to wake up. In that circumstance, we need to clear
the interrupt so that the CPU can go back to nap mode.
In the past the clearing of the interrupt was accomplished by briefly
enabling interrupts and allowing the normal interrupt handling code
(do_IRQ() etc.) to handle the interrupt. This has the problem that
this code calls irq_enter() and irq_exit(), which call functions such
as account_system_vtime() which use RCU internally. Use of RCU is not
permitted on offline CPUs and will trigger errors if RCU checking is
enabled.
To avoid calling into any generic code which might use RCU, we adopt
a different method of clearing interrupts on offline CPUs. Since we
are on the PowerNV platform, we know that the system interrupt
controller is a XICS being driven directly (i.e. not via hcalls) by
the kernel. Hence this adds a new icp_native_flush_interrupt()
function to the native-mode XICS driver and arranges to call that
when an offline CPU is woken from nap. This new function reads the
interrupt from the XICS. If it is an IPI, it clears the IPI; if it
is a device interrupt, it prints a warning and disables the source.
Then it does the end-of-interrupt processing for the interrupt.
The other thing that briefly enabling interrupts did was to check and
clear the irq_happened flag in this CPU's PACA. Therefore, after
flushing the interrupt from the XICS, we also clear all bits except
the PACA_IRQ_HARD_DIS (interrupts are hard disabled) bit from the
irq_happened flag. The PACA_IRQ_HARD_DIS flag is set by power7_nap()
and is left set to indicate that interrupts are hard disabled. This
means we then have to ignore that flag in power7_nap(), which is
reasonable since it doesn't indicate that any interrupt event needs
servicing.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch enables POWER8 doorbell IPIs on powernv.
Since doorbells can only IPI within a core, we test to see when we can use
doorbells and if not we fall back to XICS. This also enables hypervisor
doorbells to wakeup us up from nap/sleep via the LPCR PECEDH bit.
Based on tests by Anton, the best case IPI latency between two threads dropped
from 894ns to 512ns.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Upcoming POWER8 chips support a concept called split core. This is where the
core can be split into subcores that although not full cores, are able to
appear as full cores to a guest.
The splitting & unsplitting procedure is mildly complicated, and explained at
length in the comments within the patch.
One notable detail is that when splitting or unsplitting we need to pull
offline cpus out of their offline state to do work as part of the procedure.
The interface for changing the split mode is via a sysfs file, eg:
$ echo 2 > /sys/devices/system/cpu/subcores_per_core
Currently supported values are '1', '2' and '4'. And indicate respectively that
the core should be unsplit, split in half, and split in quarters. These modes
correspond to threads_per_subcore of 8, 4 and 2.
We do not allow changing the split mode while KVM VMs are active. This is to
prevent the value changing while userspace is configuring the VM, and also to
prevent the mode being changed in such a way that existing guests are unable to
be run.
CPU hotplug fixes by Srivatsa. max_cpus fixes by Mahesh. cpuset fixes by
benh. Fix for irq race by paulus. The rest by mikey and mpe.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
To support split core we need to be able to force all secondaries into
nap, so the core can detect they are idle and do an unsplit.
Currently power7_nap() will return without napping if there is an irq
pending. We want to ignore the pending irq and nap anyway, we will deal
with the interrupt later.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This series adds support for building the powerpc 64-bit
LE kernel using the new ABI v2. We already supported
running ABI v2 userspace programs but this adds support
for building the kernel itself using the new ABI.
Up until now we have been setting the runlatch bits for a busy CPU and
clearing it when a CPU enters idle state. The runlatch bit has thus
been consistent with the utilization of a CPU as long as the CPU is online.
However when a CPU is hotplugged out the runlatch bit is not cleared. It
needs to be cleared to indicate an unused CPU. Hence this patch has the
runlatch bit cleared for an offline CPU just before entering an idle state
and sets it immediately after it exits the idle state.
Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
There is no need to put a function descriptor in
__secondary_hold_spinloop. Use ppc_function_entry to get the
instruction address and put it in __secondary_hold_spinloop instead.
Also fix an issue where we assumed cur_cpu_spec held a function
descriptor.
Signed-off-by: Anton Blanchard <anton@samba.org>
T4, Cell, powernv, and pseries had the same implementation, so switch
them to use a generic version. A2 apparently had a version, but
removed it at some point, so we remove the declaration, too.
Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the powerpc uses of the __cpuinit macros. There
are no __CPUINIT users in assembly files in powerpc.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Josh Boyer <jwboyer@gmail.com>
Cc: Matt Porter <mporter@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
'system_state < SYSTEM_RUNNING' will have same effect
with 'system_state == SYSTEM_BOOTING', but the later
one is more clearer.
Signed-off-by: liguang <lig.fnst@cn.fujitsu.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The current code fails to handle kexec on OPALv2. This fixes it
and adds code to improve the situation on OPALv3 where we can
query the CPU status from the firmware and decide what to do
based on that.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
If OPAL returns an error, propagate it upward rather than spinning
seconds waiting for a CPU that will never show up
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CONFIG_HOTPLUG is going away as an option. As a result, the __dev*
markings need to be removed.
This change removes the use of __devinit, __devexit_p, __devinitdata,
__devinitconst, and __devexit from these drivers.
Based on patches originally written by Bill Pemberton, but redone by me
in order to handle some of the coding style issues better, by hand.
Cc: Bill Pemberton <wfp5p@virginia.edu>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The CPU hotplug code for the powernv platform currently only puts
offline CPUs into nap mode if the powersave_nap variable is set.
However, HV-style KVM on this platform requires secondary CPU threads
to be offline and in nap mode. Since we know nap mode works just
fine on all POWER7 machines, and the only machines that support the
powernv platform are POWER7 machines, this changes the code to
always put offline CPUs into nap mode, regardless of powersave_nap.
Powersave_nap still controls whether or not CPUs go into nap mode
when idle, as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Disintegrate asm/system.h for PowerPC.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
cc: linuxppc-dev@lists.ozlabs.org
At present, on the powernv platform, if you off-line a CPU that was
online, and then try to on-line it again, the kernel generates a
warning message "OPAL Error -1 starting CPU n". Furthermore, if the
CPU is a secondary thread that was used by KVM while it was off-line,
the CPU fails to come online.
The first problem is fixed by only calling OPAL to start the CPU the
first time it is on-lined, as indicated by the cpu_start field of its
PACA being zero. The second problem is fixed by restoring the
cpu_start field to 1 instead of 0 when using the CPU within KVM.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Add definition of OPAL interfaces along with the wrappers to call
into OPAL runtime and the early device-tree parsing hook to locate
the OPAL runtime firmware.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This adds a skeletton for the new Power "Non Virtualized"
platform which will be used by machines supporting running
without an hypervisor, for example in order to run KVM.
These machines will be using a new firmware called OPAL
for which the support will be provided by later patches.
The PowerNV platform is intended to be also usable under
the BML environment used internally for early CPU bringup
which is why the code also supports using RTAS instead of
OPAL in various places.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>