Merge active entropy generation updates.
This is admittedly partly "for discussion". We need to have a way
forward for the boot time deadlocks where user space ends up waiting for
more entropy, but no entropy is forthcoming because the system is
entirely idle just waiting for something to happen.
While this was triggered by what is arguably a user space bug with
GDM/gnome-session asking for secure randomness during early boot, when
they didn't even need any such truly secure thing, the issue ends up
being that our "getrandom()" interface is prone to that kind of
confusion, because people don't think very hard about whether they want
to block for sufficient amounts of entropy.
The approach here-in is to decide to not just passively wait for entropy
to happen, but to start actively collecting it if it is missing. This
is not necessarily always possible, but if the architecture has a CPU
cycle counter, there is a fair amount of noise in the exact timings of
reasonably complex loads.
We may end up tweaking the load and the entropy estimates, but this
should be at least a reasonable starting point.
As part of this, we also revert the revert of the ext4 IO pattern
improvement that ended up triggering the reported lack of external
entropy.
* getrandom() active entropy waiting:
Revert "Revert "ext4: make __ext4_get_inode_loc plug""
random: try to actively add entropy rather than passively wait for it
For 5.3 we had to revert a nice ext4 IO pattern improvement, because it
caused a bootup regression due to lack of entropy at bootup together
with arguably broken user space that was asking for secure random
numbers when it really didn't need to.
See commit 72dbcf7215 (Revert "ext4: make __ext4_get_inode_loc plug").
This aims to solve the issue by actively generating entropy noise using
the CPU cycle counter when waiting for the random number generator to
initialize. This only works when you have a high-frequency time stamp
counter available, but that's the case on all modern x86 CPU's, and on
most other modern CPU's too.
What we do is to generate jitter entropy from the CPU cycle counter
under a somewhat complex load: calling the scheduler while also
guaranteeing a certain amount of timing noise by also triggering a
timer.
I'm sure we can tweak this, and that people will want to look at other
alternatives, but there's been a number of papers written on jitter
entropy, and this should really be fairly conservative by crediting one
bit of entropy for every timer-induced jump in the cycle counter. Not
because the timer itself would be all that unpredictable, but because
the interaction between the timer and the loop is going to be.
Even if (and perhaps particularly if) the timer actually happens on
another CPU, the cacheline interaction between the loop that reads the
cycle counter and the timer itself firing is going to add perturbations
to the cycle counter values that get mixed into the entropy pool.
As Thomas pointed out, with a modern out-of-order CPU, even quite simple
loops show a fair amount of hard-to-predict timing variability even in
the absense of external interrupts. But this tries to take that further
by actually having a fairly complex interaction.
This is not going to solve the entropy issue for architectures that have
no CPU cycle counter, but it's not clear how (and if) that is solvable,
and the hardware in question is largely starting to be irrelevant. And
by doing this we can at least avoid some of the even more contentious
approaches (like making the entropy waiting time out in order to avoid
the possibly unbounded waiting).
Cc: Ahmed Darwish <darwish.07@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Nicholas Mc Guire <hofrat@opentech.at>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Alexander E. Patrakov <patrakov@gmail.com>
Cc: Lennart Poettering <mzxreary@0pointer.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull crypto updates from Herbert Xu:
"API:
- Add the ability to abort a skcipher walk.
Algorithms:
- Fix XTS to actually do the stealing.
- Add library helpers for AES and DES for single-block users.
- Add library helpers for SHA256.
- Add new DES key verification helper.
- Add surrounding bits for ESSIV generator.
- Add accelerations for aegis128.
- Add test vectors for lzo-rle.
Drivers:
- Add i.MX8MQ support to caam.
- Add gcm/ccm/cfb/ofb aes support in inside-secure.
- Add ofb/cfb aes support in media-tek.
- Add HiSilicon ZIP accelerator support.
Others:
- Fix potential race condition in padata.
- Use unbound workqueues in padata"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (311 commits)
crypto: caam - Cast to long first before pointer conversion
crypto: ccree - enable CTS support in AES-XTS
crypto: inside-secure - Probe transform record cache RAM sizes
crypto: inside-secure - Base RD fetchcount on actual RD FIFO size
crypto: inside-secure - Base CD fetchcount on actual CD FIFO size
crypto: inside-secure - Enable extended algorithms on newer HW
crypto: inside-secure: Corrected configuration of EIP96_TOKEN_CTRL
crypto: inside-secure - Add EIP97/EIP197 and endianness detection
padata: remove cpu_index from the parallel_queue
padata: unbind parallel jobs from specific CPUs
padata: use separate workqueues for parallel and serial work
padata, pcrypt: take CPU hotplug lock internally in padata_alloc_possible
crypto: pcrypt - remove padata cpumask notifier
padata: make padata_do_parallel find alternate callback CPU
workqueue: require CPU hotplug read exclusion for apply_workqueue_attrs
workqueue: unconfine alloc/apply/free_workqueue_attrs()
padata: allocate workqueue internally
arm64: dts: imx8mq: Add CAAM node
random: Use wait_event_freezable() in add_hwgenerator_randomness()
crypto: ux500 - Fix COMPILE_TEST warnings
...
Sebastian reports that after commit ff296293b3 ("random: Support freezable
kthreads in add_hwgenerator_randomness()") we can call might_sleep() when the
task state is TASK_INTERRUPTIBLE (state=1). This leads to the following warning.
do not call blocking ops when !TASK_RUNNING; state=1 set at [<00000000349d1489>] prepare_to_wait_event+0x5a/0x180
WARNING: CPU: 0 PID: 828 at kernel/sched/core.c:6741 __might_sleep+0x6f/0x80
Modules linked in:
CPU: 0 PID: 828 Comm: hwrng Not tainted 5.3.0-rc7-next-20190903+ #46
RIP: 0010:__might_sleep+0x6f/0x80
Call Trace:
kthread_freezable_should_stop+0x1b/0x60
add_hwgenerator_randomness+0xdd/0x130
hwrng_fillfn+0xbf/0x120
kthread+0x10c/0x140
ret_from_fork+0x27/0x50
We shouldn't call kthread_freezable_should_stop() from deep within the
wait_event code because the task state is still set as
TASK_INTERRUPTIBLE instead of TASK_RUNNING and
kthread_freezable_should_stop() will try to call into the freezer with
the task in the wrong state. Use wait_event_freezable() instead so that
it calls schedule() in the right place and tries to enter the freezer
when the task state is TASK_RUNNING instead.
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Keerthy <j-keerthy@ti.com>
Fixes: ff296293b3 ("random: Support freezable kthreads in add_hwgenerator_randomness()")
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Introducing a chosen node, rng-seed, which is an entropy that can be
passed to kernel called very early to increase initial device
randomness. Bootloader should provide this entropy and the value is
read from /chosen/rng-seed in DT.
Obtain of_fdt_crc32 for CRC check after early_init_dt_scan_nodes(),
since early_init_dt_scan_chosen() would modify fdt to erase rng-seed.
Add a new interface add_bootloader_randomness() for rng-seed use case.
Depends on whether the seed is trustworthy, rng seed would be passed to
add_hwgenerator_randomness(). Otherwise it would be passed to
add_device_randomness(). Decision is controlled by kernel config
RANDOM_TRUST_BOOTLOADER.
Signed-off-by: Hsin-Yi Wang <hsinyi@chromium.org>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Reviewed-by: Theodore Ts'o <tytso@mit.edu> # drivers/char/random.c
Signed-off-by: Will Deacon <will@kernel.org>
The kthread calling this function is freezable after commit 03a3bb7ae6
("hwrng: core - Freeze khwrng thread during suspend") is applied.
Unfortunately, this function uses wait_event_interruptible() but doesn't
check for the kthread being woken up by the fake freezer signal. When a
user suspends the system, this kthread will wake up and if it fails the
entropy size check it will immediately go back to sleep and not go into
the freezer. Eventually, suspend will fail because the task never froze
and a warning message like this may appear:
PM: suspend entry (deep)
Filesystems sync: 0.000 seconds
Freezing user space processes ... (elapsed 0.001 seconds) done.
OOM killer disabled.
Freezing remaining freezable tasks ...
Freezing of tasks failed after 20.003 seconds (1 tasks refusing to freeze, wq_busy=0):
hwrng R running task 0 289 2 0x00000020
[<c08c64c4>] (__schedule) from [<c08c6a10>] (schedule+0x3c/0xc0)
[<c08c6a10>] (schedule) from [<c05dbd8c>] (add_hwgenerator_randomness+0xb0/0x100)
[<c05dbd8c>] (add_hwgenerator_randomness) from [<bf1803c8>] (hwrng_fillfn+0xc0/0x14c [rng_core])
[<bf1803c8>] (hwrng_fillfn [rng_core]) from [<c015abec>] (kthread+0x134/0x148)
[<c015abec>] (kthread) from [<c01010e8>] (ret_from_fork+0x14/0x2c)
Check for a freezer signal here and skip adding any randomness if the
task wakes up because it was frozen. This should make the kthread freeze
properly and suspend work again.
Fixes: 03a3bb7ae6 ("hwrng: core - Freeze khwrng thread during suspend")
Reported-by: Keerthy <j-keerthy@ti.com>
Tested-by: Keerthy <j-keerthy@ti.com>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Fixes: eb9d1bf079: "random: only read from /dev/random after its pool has received 128 bits"
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The per-CPU variable batched_entropy_uXX is protected by get_cpu_var().
This is just a preempt_disable() which ensures that the variable is only
from the local CPU. It does not protect against users on the same CPU
from another context. It is possible that a preemptible context reads
slot 0 and then an interrupt occurs and the same value is read again.
The above scenario is confirmed by lockdep if we add a spinlock:
| ================================
| WARNING: inconsistent lock state
| 5.1.0-rc3+ #42 Not tainted
| --------------------------------
| inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
| ksoftirqd/9/56 [HC0[0]:SC1[1]:HE0:SE0] takes:
| (____ptrval____) (batched_entropy_u32.lock){+.?.}, at: get_random_u32+0x3e/0xe0
| {SOFTIRQ-ON-W} state was registered at:
| _raw_spin_lock+0x2a/0x40
| get_random_u32+0x3e/0xe0
| new_slab+0x15c/0x7b0
| ___slab_alloc+0x492/0x620
| __slab_alloc.isra.73+0x53/0xa0
| kmem_cache_alloc_node+0xaf/0x2a0
| copy_process.part.41+0x1e1/0x2370
| _do_fork+0xdb/0x6d0
| kernel_thread+0x20/0x30
| kthreadd+0x1ba/0x220
| ret_from_fork+0x3a/0x50
…
| other info that might help us debug this:
| Possible unsafe locking scenario:
|
| CPU0
| ----
| lock(batched_entropy_u32.lock);
| <Interrupt>
| lock(batched_entropy_u32.lock);
|
| *** DEADLOCK ***
|
| stack backtrace:
| Call Trace:
…
| kmem_cache_alloc_trace+0x20e/0x270
| ipmi_alloc_recv_msg+0x16/0x40
…
| __do_softirq+0xec/0x48d
| run_ksoftirqd+0x37/0x60
| smpboot_thread_fn+0x191/0x290
| kthread+0xfe/0x130
| ret_from_fork+0x3a/0x50
Add a spinlock_t to the batched_entropy data structure and acquire the
lock while accessing it. Acquire the lock with disabled interrupts
because this function may be used from interrupt context.
Remove the batched_entropy_reset_lock lock. Now that we have a lock for
the data scructure, we can access it from a remote CPU.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Explain what these functions are for and when they offer
an advantage over get_random_bytes().
(We still need documentation on rng_is_initialized(), the
random_ready_callback system, and early boot in general.)
Signed-off-by: George Spelvin <lkml@sdf.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When the system boots with random.trust_cpu=1 it doesn't initialize the
per-NUMA CRNGs because it skips the rest of the CRNG startup code. This
means that the code from 1e7f583af6 ("random: make /dev/urandom scalable
for silly userspace programs") is not used when random.trust_cpu=1.
crash> dmesg | grep random:
[ 0.000000] random: get_random_bytes called from start_kernel+0x94/0x530 with crng_init=0
[ 0.314029] random: crng done (trusting CPU's manufacturer)
crash> print crng_node_pool
$6 = (struct crng_state **) 0x0
After adding the missing call to numa_crng_init() the per-NUMA CRNGs are
initialized again:
crash> dmesg | grep random:
[ 0.000000] random: get_random_bytes called from start_kernel+0x94/0x530 with crng_init=0
[ 0.314031] random: crng done (trusting CPU's manufacturer)
crash> print crng_node_pool
$1 = (struct crng_state **) 0xffff9a915f4014a0
The call to invalidate_batched_entropy() was also missing. This is
important for architectures like PPC and S390 which only have the
arch_get_random_seed_* functions.
Fixes: 39a8883a2b ("random: add a config option to trust the CPU's hwrng")
Signed-off-by: Jon DeVree <nuxi@vault24.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Right now rand_initialize() is run as an early_initcall(), but it only
depends on timekeeping_init() (for mixing ktime_get_real() into the
pools). However, the call to boot_init_stack_canary() for stack canary
initialization runs earlier, which triggers a warning at boot:
random: get_random_bytes called from start_kernel+0x357/0x548 with crng_init=0
Instead, this moves rand_initialize() to after timekeeping_init(), and moves
canary initialization here as well.
Note that this warning may still remain for machines that do not have
UEFI RNG support (which initializes the RNG pools during setup_arch()),
or for x86 machines without RDRAND (or booting without "random.trust=on"
or CONFIG_RANDOM_TRUST_CPU=y).
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Immediately after boot, we allow reads from /dev/random before its
entropy pool has been fully initialized. Fix this so that we don't
allow this until the blocking pool has received 128 bits.
We do this by repurposing the initialized flag in the entropy pool
struct, and use the initialized flag in the blocking pool to indicate
whether it is safe to pull from the blocking pool.
To do this, we needed to rework when we decide to push entropy from the
input pool to the blocking pool, since the initialized flag for the
input pool was used for this purpose. To simplify things, we no
longer use the initialized flag for that purpose, nor do we use the
entropy_total field any more.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Since the definition of struct crng_state is private to random.c, and
primary_crng is neither declared or used elsewhere, there's no reason
for that symbol to have external linkage.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This field is never used, might as well remove it.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Never modified, might as well be put in .rodata.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In commit 9f480faec5 ("crypto: chacha20 - Fix keystream alignment for
chacha20_block()"), I had missed that chacha20_block() can be called
directly on the buffer passed to get_random_bytes(), which can have any
alignment. So, while my commit didn't break anything, it didn't fully
solve the alignment problems.
Revert my solution and just update chacha20_block() to use
put_unaligned_le32(), so the output buffer need not be aligned.
This is simpler, and on many CPUs it's the same speed.
But, I kept the 'tmp' buffers in extract_crng_user() and
_get_random_bytes() 4-byte aligned, since that alignment is actually
needed for _crng_backtrack_protect() too.
Reported-by: Stephan Müller <smueller@chronox.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of forcing a distro or other system builder to choose
at build time whether the CPU is trusted for CRNG seeding via
CONFIG_RANDOM_TRUST_CPU, provide a boot-time parameter for end users to
control the choice. The CONFIG will set the default state instead.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
It is very useful to be able to know whether or not get_random_bytes_wait
/ wait_for_random_bytes is going to block or not, or whether plain
get_random_bytes is going to return good randomness or bad randomness.
The particular use case is for mitigating certain attacks in WireGuard.
A handshake packet arrives and is queued up. Elsewhere a worker thread
takes items from the queue and processes them. In replying to these
items, it needs to use some random data, and it has to be good random
data. If we simply block until we can have good randomness, then it's
possible for an attacker to fill the queue up with packets waiting to be
processed. Upon realizing the queue is full, WireGuard will detect that
it's under a denial of service attack, and behave accordingly. A better
approach is just to drop incoming handshake packets if the crng is not
yet initialized.
This patch, therefore, makes that information directly accessible.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
No need to keep preemption disabled across the whole function.
mix_pool_bytes() uses a spin_lock() to protect the pool and there are
other places like write_pool() whhich invoke mix_pool_bytes() without
disabling preemption.
credit_entropy_bits() is invoked from other places like
add_hwgenerator_randomness() without disabling preemption.
Before commit 95b709b6be ("random: drop trickle mode") the function
used __this_cpu_inc_return() which would require disabled preemption.
The preempt_disable() section was added in commit 43d5d3018c37 ("[PATCH]
random driver preempt robustness", history tree). It was claimed that
the code relied on "vt_ioctl() being called under BKL".
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bigeasy: enhance the commit message]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This gives the user building their own kernel (or a Linux
distribution) the option of deciding whether or not to trust the CPU's
hardware random number generator (e.g., RDRAND for x86 CPU's) as being
correctly implemented and not having a back door introduced (perhaps
courtesy of a Nation State's law enforcement or intelligence
agencies).
This will prevent getrandom(2) from blocking, if there is a
willingness to trust the CPU manufacturer.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Currently the function get_random_bytes_arch() has return value 'void'.
If the hw RNG fails we currently fall back to using get_random_bytes().
This defeats the purpose of requesting random material from the hw RNG
in the first place.
There are currently no intree users of get_random_bytes_arch().
Only get random bytes from the hw RNG, make function return the number
of bytes retrieved from the hw RNG.
Acked-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Tobin C. Harding <me@tobin.cc>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
There are a couple of whitespace issues around the function
get_random_bytes_arch(). In preparation for patching this function
let's clean them up.
Acked-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Tobin C. Harding <me@tobin.cc>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Fedora has integrated the jitter entropy daemon to work around slow
boot problems, especially on VM's that don't support virtio-rng:
https://bugzilla.redhat.com/show_bug.cgi?id=1572944
It's understandable why they did this, but the Jitter entropy daemon
works fundamentally on the principle: "the CPU microarchitecture is
**so** complicated and we can't figure it out, so it *must* be
random". Yes, it uses statistical tests to "prove" it is secure, but
AES_ENCRYPT(NSA_KEY, COUNTER++) will also pass statistical tests with
flying colors.
So if RDRAND is available, mix it into entropy submitted from
userspace. It can't hurt, and if you believe the NSA has backdoored
RDRAND, then they probably have enough details about the Intel
microarchitecture that they can reverse engineer how the Jitter
entropy daemon affects the microarchitecture, and attack its output
stream. And if RDRAND is in fact an honest DRNG, it will immeasurably
improve on what the Jitter entropy daemon might produce.
This also provides some protection against someone who is able to read
or set the entropy seed file.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Cc: Arnd Bergmann <arnd@arndb.de>
The poll() changes were not well thought out, and completely
unexplained. They also caused a huge performance regression, because
"->poll()" was no longer a trivial file operation that just called down
to the underlying file operations, but instead did at least two indirect
calls.
Indirect calls are sadly slow now with the Spectre mitigation, but the
performance problem could at least be largely mitigated by changing the
"->get_poll_head()" operation to just have a per-file-descriptor pointer
to the poll head instead. That gets rid of one of the new indirections.
But that doesn't fix the new complexity that is completely unwarranted
for the regular case. The (undocumented) reason for the poll() changes
was some alleged AIO poll race fixing, but we don't make the common case
slower and more complex for some uncommon special case, so this all
really needs way more explanations and most likely a fundamental
redesign.
[ This revert is a revert of about 30 different commits, not reverted
individually because that would just be unnecessarily messy - Linus ]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The big change is that random_read_wait and random_write_wait are merged
into a single waitqueue that uses keyed wakeups. Because wait_event_*
doesn't know about that this will lead to occassional spurious wakeups
in _random_read and add_hwgenerator_randomness, but wait_event_* is
designed to handle these and were are not in a a hot path there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We can do a sleeping allocation from an irq context when CONFIG_NUMA
is enabled. Fix this by initializing the NUMA crng instances in a
workqueue.
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: syzbot+9de458f6a5e713ee8c1a@syzkaller.appspotmail.com
Fixes: 8ef35c866f ("random: set up the NUMA crng instances...")
Cc: stable@vger.kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Until the primary_crng is fully initialized, don't initialize the NUMA
crng nodes. Otherwise users of /dev/urandom on NUMA systems before
the CRNG is fully initialized can get very bad quality randomness. Of
course everyone should move to getrandom(2) where this won't be an
issue, but there's a lot of legacy code out there. This related to
CVE-2018-1108.
Reported-by: Jann Horn <jannh@google.com>
Fixes: 1e7f583af6 ("random: make /dev/urandom scalable for silly...")
Cc: stable@kernel.org # 4.8+
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
add_device_randomness() use of crng_fast_load() was highly
problematic. Some callers of add_device_randomness() can pass in a
large amount of static information. This would immediately promote
the crng_init state from 0 to 1, without really doing much to
initialize the primary_crng's internal state with something even
vaguely unpredictable.
Since we don't have the speed constraints of add_interrupt_randomness(),
we can do a better job mixing in the what unpredictability a device
driver or architecture maintainer might see fit to give us, and do it
in a way which does not bump the crng_init_cnt variable.
Also, since add_device_randomness() doesn't bump any entropy
accounting in crng_init state 0, mix the device randomness into the
input_pool entropy pool as well. This is related to CVE-2018-1108.
Reported-by: Jann Horn <jannh@google.com>
Fixes: ee7998c50c ("random: do not ignore early device randomness")
Cc: stable@kernel.org # 4.13+
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The crng_init variable has three states:
0: The CRNG is not initialized at all
1: The CRNG has a small amount of entropy, hopefully good enough for
early-boot, non-cryptographical use cases
2: The CRNG is fully initialized and we are sure it is safe for
cryptographic use cases.
The crng_ready() function should only return true once we are in the
last state. This addresses CVE-2018-1108.
Reported-by: Jann Horn <jannh@google.com>
Fixes: e192be9d9a ("random: replace non-blocking pool...")
Cc: stable@kernel.org # 4.8+
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Jann Horn <jannh@google.com>
add_interrupt_randomess always wakes up
code blocking on /dev/random. This wake up is done
unconditionally. Unfortunately this means all interrupts
take the wait queue spinlock, which can be rather expensive
on large systems processing lots of interrupts.
We saw 1% cpu time spinning on this on a large macro workload
running on a large system.
I believe it's a recent regression (?)
Always check if there is a waiter on the wait queue
before waking up. This check can be done without
taking a spinlock.
1.06% 10460 [kernel.vmlinux] [k] native_queued_spin_lock_slowpath
|
---native_queued_spin_lock_slowpath
|
--0.57%--_raw_spin_lock_irqsave
|
--0.56%--__wake_up_common_lock
credit_entropy_bits
add_interrupt_randomness
handle_irq_event_percpu
handle_irq_event
handle_edge_irq
handle_irq
do_IRQ
common_interrupt
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This fixes a harmless UBSAN where root could potentially end up
causing an overflow while bumping the entropy_total field (which is
ignored once the entropy pool has been initialized, and this generally
is completed during the boot sequence).
This is marginal for the stable kernel series, but it's a really
trivial patch, and it fixes UBSAN warning that might cause security
folks to get overly excited for no reason.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reported-by: Chen Feng <puck.chen@hisilicon.com>
Cc: stable@vger.kernel.org
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:
for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
done
with de-mangling cleanups yet to come.
NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do. But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.
The next patch from Al will sort out the final differences, and we
should be all done.
Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull crypto updates from Herbert Xu:
"API:
- Enforce the setting of keys for keyed aead/hash/skcipher
algorithms.
- Add multibuf speed tests in tcrypt.
Algorithms:
- Improve performance of sha3-generic.
- Add native sha512 support on arm64.
- Add v8.2 Crypto Extentions version of sha3/sm3 on arm64.
- Avoid hmac nesting by requiring underlying algorithm to be unkeyed.
- Add cryptd_max_cpu_qlen module parameter to cryptd.
Drivers:
- Add support for EIP97 engine in inside-secure.
- Add inline IPsec support to chelsio.
- Add RevB core support to crypto4xx.
- Fix AEAD ICV check in crypto4xx.
- Add stm32 crypto driver.
- Add support for BCM63xx platforms in bcm2835 and remove bcm63xx.
- Add Derived Key Protocol (DKP) support in caam.
- Add Samsung Exynos True RNG driver.
- Add support for Exynos5250+ SoCs in exynos PRNG driver"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (166 commits)
crypto: picoxcell - Fix error handling in spacc_probe()
crypto: arm64/sha512 - fix/improve new v8.2 Crypto Extensions code
crypto: arm64/sm3 - new v8.2 Crypto Extensions implementation
crypto: arm64/sha3 - new v8.2 Crypto Extensions implementation
crypto: testmgr - add new testcases for sha3
crypto: sha3-generic - export init/update/final routines
crypto: sha3-generic - simplify code
crypto: sha3-generic - rewrite KECCAK transform to help the compiler optimize
crypto: sha3-generic - fixes for alignment and big endian operation
crypto: aesni - handle zero length dst buffer
crypto: artpec6 - remove select on non-existing CRYPTO_SHA384
hwrng: bcm2835 - Remove redundant dev_err call in bcm2835_rng_probe()
crypto: stm32 - remove redundant dev_err call in stm32_cryp_probe()
crypto: axis - remove unnecessary platform_get_resource() error check
crypto: testmgr - test misuse of result in ahash
crypto: inside-secure - make function safexcel_try_push_requests static
crypto: aes-generic - fix aes-generic regression on powerpc
crypto: chelsio - Fix indentation warning
crypto: arm64/sha1-ce - get rid of literal pool
crypto: arm64/sha2-ce - move the round constant table to .rodata section
...
When chacha20_block() outputs the keystream block, it uses 'u32' stores
directly. However, the callers (crypto/chacha20_generic.c and
drivers/char/random.c) declare the keystream buffer as a 'u8' array,
which is not guaranteed to have the needed alignment.
Fix it by having both callers declare the keystream as a 'u32' array.
For now this is preferable to switching over to the unaligned access
macros because chacha20_block() is only being used in cases where we can
easily control the alignment (stack buffers).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Patch series "kmemcheck: kill kmemcheck", v2.
As discussed at LSF/MM, kill kmemcheck.
KASan is a replacement that is able to work without the limitation of
kmemcheck (single CPU, slow). KASan is already upstream.
We are also not aware of any users of kmemcheck (or users who don't
consider KASan as a suitable replacement).
The only objection was that since KASAN wasn't supported by all GCC
versions provided by distros at that time we should hold off for 2
years, and try again.
Now that 2 years have passed, and all distros provide gcc that supports
KASAN, kill kmemcheck again for the very same reasons.
This patch (of 4):
Remove kmemcheck annotations, and calls to kmemcheck from the kernel.
[alexander.levin@verizon.com: correctly remove kmemcheck call from dma_map_sg_attrs]
Link: http://lkml.kernel.org/r/20171012192151.26531-1-alexander.levin@verizon.com
Link: http://lkml.kernel.org/r/20171007030159.22241-2-alexander.levin@verizon.com
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tim Hansen <devtimhansen@gmail.com>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix the warning message on the parisc and IA64 architectures to show the
correct function name of the caller by using %pS instead of %pF. The
message is printed with the value of _RET_IP_ which calls
__builtin_return_address(0) and as such returns the IP address caller
instead of pointer to a function descriptor of the caller.
The effect of this patch is visible on the parisc and ia64 architectures
only since those are the ones which use function descriptors while on
all others %pS and %pF will behave the same.
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Helge Deller <deller@gmx.de>
Fixes: eecabf5674 ("random: suppress spammy warnings about unseeded randomness")
Fixes: d06bfd1989 ("random: warn when kernel uses unseeded randomness")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
callers can more safely get random bytes if they can block until the
CRNG is initialized.
Also print a warning if get_random_*() is called before the CRNG is
initialized. By default, only one single-line warning will be printed
per boot. If CONFIG_WARN_ALL_UNSEEDED_RANDOM is defined, then a
warning will be printed for each function which tries to get random
bytes before the CRNG is initialized. This can get spammy for certain
architecture types, so it is not enabled by default.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAllqXNUACgkQ8vlZVpUN
gaPtAgf/aUbXZuWYsDQzslHsbzEWi+qz4QgL885/w4L00pEImTTp91Q06SDxWhtB
KPvGnZHS3IofxBh2DC+6AwN6dPMoWDCfYhhO6po3FSz0DiPRIQCTuvOb8fhKY1X7
rTdDq2xtDxPGxJ25bMJtlrgzH2XlXPpVyPUeoc9uh87zUK5aesXpUn9kBniRexoz
ume+M/cDzPKkwNQpbLq8vzhNjoWMVv0FeW2akVvrjkkWko8nZLZ0R/kIyKQlRPdG
LZDXcz0oTHpDS6+ufEo292ZuWm2IGer2YtwHsKyCAsyEWsUqBz2yurtkSj3mAVyC
hHafyS+5WNaGdgBmg0zJxxwn5qxxLg==
=ua7p
-----END PGP SIGNATURE-----
Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random
Pull random updates from Ted Ts'o:
"Add wait_for_random_bytes() and get_random_*_wait() functions so that
callers can more safely get random bytes if they can block until the
CRNG is initialized.
Also print a warning if get_random_*() is called before the CRNG is
initialized. By default, only one single-line warning will be printed
per boot. If CONFIG_WARN_ALL_UNSEEDED_RANDOM is defined, then a
warning will be printed for each function which tries to get random
bytes before the CRNG is initialized. This can get spammy for certain
architecture types, so it is not enabled by default"
* tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random:
random: reorder READ_ONCE() in get_random_uXX
random: suppress spammy warnings about unseeded randomness
random: warn when kernel uses unseeded randomness
net/route: use get_random_int for random counter
net/neighbor: use get_random_u32 for 32-bit hash random
rhashtable: use get_random_u32 for hash_rnd
ceph: ensure RNG is seeded before using
iscsi: ensure RNG is seeded before use
cifs: use get_random_u32 for 32-bit lock random
random: add get_random_{bytes,u32,u64,int,long,once}_wait family
random: add wait_for_random_bytes() API
Avoid the READ_ONCE in commit 4a072c71f4 ("random: silence compiler
warnings and fix race") if we can leave the function after
arch_get_random_XXX().
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Unfortunately, on some models of some architectures getting a fully
seeded CRNG is extremely difficult, and so this can result in dmesg
getting spammed for a surprisingly long time. This is really bad from
a security perspective, and so architecture maintainers really need to
do what they can to get the CRNG seeded sooner after the system is
booted. However, users can't do anything actionble to address this,
and spamming the kernel messages log will only just annoy people.
For developers who want to work on improving this situation,
CONFIG_WARN_UNSEEDED_RANDOM has been renamed to
CONFIG_WARN_ALL_UNSEEDED_RANDOM. By default the kernel will always
print the first use of unseeded randomness. This way, hopefully the
security obsessed will be happy that there is _some_ indication when
the kernel boots there may be a potential issue with that architecture
or subarchitecture. To see all uses of unseeded randomness,
developers can enable CONFIG_WARN_ALL_UNSEEDED_RANDOM.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
The add_device_randomness() function would ignore incoming bytes if the
crng wasn't ready. This additionally makes sure to make an early enough
call to add_latent_entropy() to influence the initial stack canary,
which is especially important on non-x86 systems where it stays the same
through the life of the boot.
Link: http://lkml.kernel.org/r/20170626233038.GA48751@beast
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jessica Yu <jeyu@redhat.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Lokesh Vutla <lokeshvutla@ti.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This enables an important dmesg notification about when drivers have
used the crng without it being seeded first. Prior, these errors would
occur silently, and so there hasn't been a great way of diagnosing these
types of bugs for obscure setups. By adding this as a config option, we
can leave it on by default, so that we learn where these issues happen,
in the field, will still allowing some people to turn it off, if they
really know what they're doing and do not want the log entries.
However, we don't leave it _completely_ by default. An earlier version
of this patch simply had `default y`. I'd really love that, but it turns
out, this problem with unseeded randomness being used is really quite
present and is going to take a long time to fix. Thus, as a compromise
between log-messages-for-all and nobody-knows, this is `default y`,
except it is also `depends on DEBUG_KERNEL`. This will ensure that the
curious see the messages while others don't have to.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
This enables users of get_random_{bytes,u32,u64,int,long} to wait until
the pool is ready before using this function, in case they actually want
to have reliable randomness.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>