Commit Graph

873808 Commits

Author SHA1 Message Date
Nikolay Borisov
e678934cbe btrfs: Remove unnecessary check from join_running_log_trans
join_running_log_trans checks btrfs_root::log_root outside of
btrfs_root::log_mutex to avoid contention on the mutex. Turns out this
check is not necessary because the two callers of join_running_log_trans
(both of which deal with removing entries from the tree-log during
unlink) explicitly check whether the respective inode has been logged in
the current transaction.

If it hasn't then it won't have any items in the tree-log and call path
will return before calling join_running_log_trans. If the check passes,
however, then it's guaranteed that btrfs_root::log_root is set because
the inode is logged.

Those guarantees allows us to remove the speculative as well as the
implicity and tricky memory barrier.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:02 +02:00
Filipe Manana
32e534402a Btrfs: wake up inode cache waiters sooner to reduce waiting time
If we need to start an inode caching thread, because none currently exists
on disk, we can wake up all waiters as soon as we mark the range starting
at root's highest objectid + 1 and ending at BTRFS_LAST_FREE_OBJECTID as
free, so that they don't need to wait for the caching thread to start and
do some progress. We follow the same approach within the caching thread,
since as soon as it finds a free range and marks it as free space in the
cache, it wakes up all waiters. So improve this by adding such a wakeup
call after marking that initial range as free space.

Fixes: a47d6b70e2 ("Btrfs: setup free ino caching in a more asynchronous way")
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:02 +02:00
Filipe Manana
9d123a35d7 Btrfs: fix inode cache waiters hanging on path allocation failure
If the caching thread fails to allocate a path, it returns without waking
up any cache waiters, leaving them hang forever. Fix this by following the
same approach as when we fail to start the caching thread: print an error
message, disable inode caching and make the wakers fallback to non-caching
mode behaviour (calling btrfs_find_free_objectid()).

Fixes: 581bb05094 ("Btrfs: Cache free inode numbers in memory")
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:02 +02:00
Filipe Manana
a68ebe0790 Btrfs: fix inode cache waiters hanging on failure to start caching thread
If we fail to start the inode caching thread, we print an error message
and disable the inode cache, however we never wake up any waiters, so they
hang forever waiting for the caching to finish. Fix this by waking them
up and have them fallback to a call to btrfs_find_free_objectid().

Fixes: e60efa8425 ("Btrfs: avoid triggering bug_on() when we fail to start inode caching task")
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:01 +02:00
Filipe Manana
29d47d00e0 Btrfs: fix inode cache block reserve leak on failure to allocate data space
If we failed to allocate the data extent(s) for the inode space cache, we
were bailing out without releasing the previously reserved metadata. This
was triggering the following warnings when unmounting a filesystem:

  $ cat -n fs/btrfs/inode.c
  (...)
  9268  void btrfs_destroy_inode(struct inode *inode)
  9269  {
  (...)
  9276          WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
  9277          WARN_ON(BTRFS_I(inode)->block_rsv.size);
  (...)
  9281          WARN_ON(BTRFS_I(inode)->csum_bytes);
  9282          WARN_ON(BTRFS_I(inode)->defrag_bytes);
  (...)

Several fstests test cases triggered this often, such as generic/083,
generic/102, generic/172, generic/269 and generic/300 at least, producing
stack traces like the following in dmesg/syslog:

  [82039.079546] WARNING: CPU: 2 PID: 13167 at fs/btrfs/inode.c:9276 btrfs_destroy_inode+0x203/0x270 [btrfs]
  (...)
  [82039.081543] CPU: 2 PID: 13167 Comm: umount Tainted: G        W         5.2.0-rc4-btrfs-next-50 #1
  [82039.081912] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
  [82039.082673] RIP: 0010:btrfs_destroy_inode+0x203/0x270 [btrfs]
  (...)
  [82039.083913] RSP: 0018:ffffac0b426a7d30 EFLAGS: 00010206
  [82039.084320] RAX: ffff8ddf77691158 RBX: ffff8dde29b34660 RCX: 0000000000000002
  [82039.084736] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8dde29b34660
  [82039.085156] RBP: ffff8ddf5fbec000 R08: 0000000000000000 R09: 0000000000000000
  [82039.085578] R10: ffffac0b426a7c90 R11: ffffffffb9aad768 R12: ffffac0b426a7db0
  [82039.086000] R13: ffff8ddf5fbec0a0 R14: dead000000000100 R15: 0000000000000000
  [82039.086416] FS:  00007f8db96d12c0(0000) GS:ffff8de036b00000(0000) knlGS:0000000000000000
  [82039.086837] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [82039.087253] CR2: 0000000001416108 CR3: 00000002315cc001 CR4: 00000000003606e0
  [82039.087672] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [82039.088089] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [82039.088504] Call Trace:
  [82039.088918]  destroy_inode+0x3b/0x70
  [82039.089340]  btrfs_free_fs_root+0x16/0xa0 [btrfs]
  [82039.089768]  btrfs_free_fs_roots+0xd8/0x160 [btrfs]
  [82039.090183]  ? wait_for_completion+0x65/0x1a0
  [82039.090607]  close_ctree+0x172/0x370 [btrfs]
  [82039.091021]  generic_shutdown_super+0x6c/0x110
  [82039.091427]  kill_anon_super+0xe/0x30
  [82039.091832]  btrfs_kill_super+0x12/0xa0 [btrfs]
  [82039.092233]  deactivate_locked_super+0x3a/0x70
  [82039.092636]  cleanup_mnt+0x3b/0x80
  [82039.093039]  task_work_run+0x93/0xc0
  [82039.093457]  exit_to_usermode_loop+0xfa/0x100
  [82039.093856]  do_syscall_64+0x162/0x1d0
  [82039.094244]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [82039.094634] RIP: 0033:0x7f8db8fbab37
  (...)
  [82039.095876] RSP: 002b:00007ffdce35b468 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
  [82039.096290] RAX: 0000000000000000 RBX: 0000560d20b00060 RCX: 00007f8db8fbab37
  [82039.096700] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000560d20b00240
  [82039.097110] RBP: 0000560d20b00240 R08: 0000560d20b00270 R09: 0000000000000015
  [82039.097522] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f8db94bce64
  [82039.097937] R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffdce35b6f0
  [82039.098350] irq event stamp: 0
  [82039.098750] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
  [82039.099150] hardirqs last disabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00
  [82039.099545] softirqs last  enabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00
  [82039.099925] softirqs last disabled at (0): [<0000000000000000>] 0x0
  [82039.100292] ---[ end trace f2521afa616ddccc ]---
  [82039.100707] WARNING: CPU: 2 PID: 13167 at fs/btrfs/inode.c:9277 btrfs_destroy_inode+0x1ac/0x270 [btrfs]
  (...)
  [82039.103050] CPU: 2 PID: 13167 Comm: umount Tainted: G        W         5.2.0-rc4-btrfs-next-50 #1
  [82039.103428] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
  [82039.104203] RIP: 0010:btrfs_destroy_inode+0x1ac/0x270 [btrfs]
  (...)
  [82039.105461] RSP: 0018:ffffac0b426a7d30 EFLAGS: 00010206
  [82039.105866] RAX: ffff8ddf77691158 RBX: ffff8dde29b34660 RCX: 0000000000000002
  [82039.106270] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8dde29b34660
  [82039.106673] RBP: ffff8ddf5fbec000 R08: 0000000000000000 R09: 0000000000000000
  [82039.107078] R10: ffffac0b426a7c90 R11: ffffffffb9aad768 R12: ffffac0b426a7db0
  [82039.107487] R13: ffff8ddf5fbec0a0 R14: dead000000000100 R15: 0000000000000000
  [82039.107894] FS:  00007f8db96d12c0(0000) GS:ffff8de036b00000(0000) knlGS:0000000000000000
  [82039.108309] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [82039.108723] CR2: 0000000001416108 CR3: 00000002315cc001 CR4: 00000000003606e0
  [82039.109146] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [82039.109567] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [82039.109989] Call Trace:
  [82039.110405]  destroy_inode+0x3b/0x70
  [82039.110830]  btrfs_free_fs_root+0x16/0xa0 [btrfs]
  [82039.111257]  btrfs_free_fs_roots+0xd8/0x160 [btrfs]
  [82039.111675]  ? wait_for_completion+0x65/0x1a0
  [82039.112101]  close_ctree+0x172/0x370 [btrfs]
  [82039.112519]  generic_shutdown_super+0x6c/0x110
  [82039.112988]  kill_anon_super+0xe/0x30
  [82039.113439]  btrfs_kill_super+0x12/0xa0 [btrfs]
  [82039.113861]  deactivate_locked_super+0x3a/0x70
  [82039.114278]  cleanup_mnt+0x3b/0x80
  [82039.114685]  task_work_run+0x93/0xc0
  [82039.115083]  exit_to_usermode_loop+0xfa/0x100
  [82039.115476]  do_syscall_64+0x162/0x1d0
  [82039.115863]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [82039.116254] RIP: 0033:0x7f8db8fbab37
  (...)
  [82039.117463] RSP: 002b:00007ffdce35b468 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
  [82039.117882] RAX: 0000000000000000 RBX: 0000560d20b00060 RCX: 00007f8db8fbab37
  [82039.118330] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000560d20b00240
  [82039.118743] RBP: 0000560d20b00240 R08: 0000560d20b00270 R09: 0000000000000015
  [82039.119159] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f8db94bce64
  [82039.119574] R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffdce35b6f0
  [82039.119987] irq event stamp: 0
  [82039.120387] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
  [82039.120787] hardirqs last disabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00
  [82039.121182] softirqs last  enabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00
  [82039.121563] softirqs last disabled at (0): [<0000000000000000>] 0x0
  [82039.121933] ---[ end trace f2521afa616ddccd ]---
  [82039.122353] WARNING: CPU: 2 PID: 13167 at fs/btrfs/inode.c:9278 btrfs_destroy_inode+0x1bc/0x270 [btrfs]
  (...)
  [82039.124606] CPU: 2 PID: 13167 Comm: umount Tainted: G        W         5.2.0-rc4-btrfs-next-50 #1
  [82039.125008] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
  [82039.125801] RIP: 0010:btrfs_destroy_inode+0x1bc/0x270 [btrfs]
  (...)
  [82039.126998] RSP: 0018:ffffac0b426a7d30 EFLAGS: 00010202
  [82039.127399] RAX: ffff8ddf77691158 RBX: ffff8dde29b34660 RCX: 0000000000000002
  [82039.127803] RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff8dde29b34660
  [82039.128206] RBP: ffff8ddf5fbec000 R08: 0000000000000000 R09: 0000000000000000
  [82039.128611] R10: ffffac0b426a7c90 R11: ffffffffb9aad768 R12: ffffac0b426a7db0
  [82039.129020] R13: ffff8ddf5fbec0a0 R14: dead000000000100 R15: 0000000000000000
  [82039.129428] FS:  00007f8db96d12c0(0000) GS:ffff8de036b00000(0000) knlGS:0000000000000000
  [82039.129846] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [82039.130261] CR2: 0000000001416108 CR3: 00000002315cc001 CR4: 00000000003606e0
  [82039.130684] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [82039.131142] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [82039.131561] Call Trace:
  [82039.131990]  destroy_inode+0x3b/0x70
  [82039.132417]  btrfs_free_fs_root+0x16/0xa0 [btrfs]
  [82039.132844]  btrfs_free_fs_roots+0xd8/0x160 [btrfs]
  [82039.133262]  ? wait_for_completion+0x65/0x1a0
  [82039.133688]  close_ctree+0x172/0x370 [btrfs]
  [82039.134157]  generic_shutdown_super+0x6c/0x110
  [82039.134575]  kill_anon_super+0xe/0x30
  [82039.134997]  btrfs_kill_super+0x12/0xa0 [btrfs]
  [82039.135415]  deactivate_locked_super+0x3a/0x70
  [82039.135832]  cleanup_mnt+0x3b/0x80
  [82039.136239]  task_work_run+0x93/0xc0
  [82039.136637]  exit_to_usermode_loop+0xfa/0x100
  [82039.137029]  do_syscall_64+0x162/0x1d0
  [82039.137418]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [82039.137812] RIP: 0033:0x7f8db8fbab37
  (...)
  [82039.139059] RSP: 002b:00007ffdce35b468 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
  [82039.139475] RAX: 0000000000000000 RBX: 0000560d20b00060 RCX: 00007f8db8fbab37
  [82039.139890] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000560d20b00240
  [82039.140302] RBP: 0000560d20b00240 R08: 0000560d20b00270 R09: 0000000000000015
  [82039.140719] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f8db94bce64
  [82039.141138] R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffdce35b6f0
  [82039.141597] irq event stamp: 0
  [82039.142043] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
  [82039.142443] hardirqs last disabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00
  [82039.142839] softirqs last  enabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00
  [82039.143220] softirqs last disabled at (0): [<0000000000000000>] 0x0
  [82039.143588] ---[ end trace f2521afa616ddcce ]---
  [82039.167472] WARNING: CPU: 3 PID: 13167 at fs/btrfs/extent-tree.c:10120 btrfs_free_block_groups+0x30d/0x460 [btrfs]
  (...)
  [82039.173800] CPU: 3 PID: 13167 Comm: umount Tainted: G        W         5.2.0-rc4-btrfs-next-50 #1
  [82039.174847] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014
  [82039.177031] RIP: 0010:btrfs_free_block_groups+0x30d/0x460 [btrfs]
  (...)
  [82039.180397] RSP: 0018:ffffac0b426a7dd8 EFLAGS: 00010206
  [82039.181574] RAX: ffff8de010a1db40 RBX: ffff8de010a1db40 RCX: 0000000000170014
  [82039.182711] RDX: ffff8ddff4380040 RSI: ffff8de010a1da58 RDI: 0000000000000246
  [82039.183817] RBP: ffff8ddf5fbec000 R08: 0000000000000000 R09: 0000000000000000
  [82039.184925] R10: ffff8de036404380 R11: ffffffffb8a5ea00 R12: ffff8de010a1b2b8
  [82039.186090] R13: ffff8de010a1b2b8 R14: 0000000000000000 R15: dead000000000100
  [82039.187208] FS:  00007f8db96d12c0(0000) GS:ffff8de036b80000(0000) knlGS:0000000000000000
  [82039.188345] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [82039.189481] CR2: 00007fb044005170 CR3: 00000002315cc006 CR4: 00000000003606e0
  [82039.190674] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [82039.191829] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [82039.192978] Call Trace:
  [82039.194160]  close_ctree+0x19a/0x370 [btrfs]
  [82039.195315]  generic_shutdown_super+0x6c/0x110
  [82039.196486]  kill_anon_super+0xe/0x30
  [82039.197645]  btrfs_kill_super+0x12/0xa0 [btrfs]
  [82039.198696]  deactivate_locked_super+0x3a/0x70
  [82039.199619]  cleanup_mnt+0x3b/0x80
  [82039.200559]  task_work_run+0x93/0xc0
  [82039.201505]  exit_to_usermode_loop+0xfa/0x100
  [82039.202436]  do_syscall_64+0x162/0x1d0
  [82039.203339]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
  [82039.204091] RIP: 0033:0x7f8db8fbab37
  (...)
  [82039.206360] RSP: 002b:00007ffdce35b468 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
  [82039.207132] RAX: 0000000000000000 RBX: 0000560d20b00060 RCX: 00007f8db8fbab37
  [82039.207906] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000560d20b00240
  [82039.208621] RBP: 0000560d20b00240 R08: 0000560d20b00270 R09: 0000000000000015
  [82039.209285] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f8db94bce64
  [82039.209984] R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffdce35b6f0
  [82039.210642] irq event stamp: 0
  [82039.211306] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
  [82039.211971] hardirqs last disabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00
  [82039.212643] softirqs last  enabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00
  [82039.213304] softirqs last disabled at (0): [<0000000000000000>] 0x0
  [82039.213875] ---[ end trace f2521afa616ddccf ]---

Fix this by releasing the reserved metadata on failure to allocate data
extent(s) for the inode cache.

Fixes: 69fe2d75dd ("btrfs: make the delalloc block rsv per inode")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:01 +02:00
Filipe Manana
7764d56baa Btrfs: fix hang when loading existing inode cache off disk
If we are able to load an existing inode cache off disk, we set the state
of the cache to BTRFS_CACHE_FINISHED, but we don't wake up any one waiting
for the cache to be available. This means that anyone waiting for the
cache to be available, waiting on the condition that either its state is
BTRFS_CACHE_FINISHED or its available free space is greather than zero,
can hang forever.

This could be observed running fstests with MOUNT_OPTIONS="-o inode_cache",
in particular test case generic/161 triggered it very frequently for me,
producing a trace like the following:

  [63795.739712] BTRFS info (device sdc): enabling inode map caching
  [63795.739714] BTRFS info (device sdc): disk space caching is enabled
  [63795.739716] BTRFS info (device sdc): has skinny extents
  [64036.653886] INFO: task btrfs-transacti:3917 blocked for more than 120 seconds.
  [64036.654079]       Not tainted 5.2.0-rc4-btrfs-next-50 #1
  [64036.654143] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [64036.654232] btrfs-transacti D    0  3917      2 0x80004000
  [64036.654239] Call Trace:
  [64036.654258]  ? __schedule+0x3ae/0x7b0
  [64036.654271]  schedule+0x3a/0xb0
  [64036.654325]  btrfs_commit_transaction+0x978/0xae0 [btrfs]
  [64036.654339]  ? remove_wait_queue+0x60/0x60
  [64036.654395]  transaction_kthread+0x146/0x180 [btrfs]
  [64036.654450]  ? btrfs_cleanup_transaction+0x620/0x620 [btrfs]
  [64036.654456]  kthread+0x103/0x140
  [64036.654464]  ? kthread_create_worker_on_cpu+0x70/0x70
  [64036.654476]  ret_from_fork+0x3a/0x50
  [64036.654504] INFO: task xfs_io:3919 blocked for more than 120 seconds.
  [64036.654568]       Not tainted 5.2.0-rc4-btrfs-next-50 #1
  [64036.654617] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [64036.654685] xfs_io          D    0  3919   3633 0x00000000
  [64036.654691] Call Trace:
  [64036.654703]  ? __schedule+0x3ae/0x7b0
  [64036.654716]  schedule+0x3a/0xb0
  [64036.654756]  btrfs_find_free_ino+0xa9/0x120 [btrfs]
  [64036.654764]  ? remove_wait_queue+0x60/0x60
  [64036.654809]  btrfs_create+0x72/0x1f0 [btrfs]
  [64036.654822]  lookup_open+0x6bc/0x790
  [64036.654849]  path_openat+0x3bc/0xc00
  [64036.654854]  ? __lock_acquire+0x331/0x1cb0
  [64036.654869]  do_filp_open+0x99/0x110
  [64036.654884]  ? __alloc_fd+0xee/0x200
  [64036.654895]  ? do_raw_spin_unlock+0x49/0xc0
  [64036.654909]  ? do_sys_open+0x132/0x220
  [64036.654913]  do_sys_open+0x132/0x220
  [64036.654926]  do_syscall_64+0x60/0x1d0
  [64036.654933]  entry_SYSCALL_64_after_hwframe+0x49/0xbe

Fix this by adding a wake_up() call right after setting the cache state to
BTRFS_CACHE_FINISHED, at start_caching(), when we are able to load the
cache from disk.

Fixes: 82d5902d9c ("Btrfs: Support reading/writing on disk free ino cache")
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:01 +02:00
Qu Wenruo
259ee7754b btrfs: tree-checker: Add ROOT_ITEM check
This patch will introduce ROOT_ITEM check, which includes:
- Key->objectid and key->offset check
  Currently only some easy check, e.g. 0 as rootid is invalid.

- Item size check
  Root item size is fixed.

- Generation checks
  Generation, generation_v2 and last_snapshot should not be greater than
  super generation + 1

- Level and alignment check
  Level should be in [0, 7], and bytenr must be aligned to sector size.

- Flags check

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203261
Reported-by: Jungyeon Yoon <jungyeon.yoon@gmail.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:01 +02:00
Qu Wenruo
2a28468e52 btrfs: extent-tree: Make sure we only allocate extents from block groups with the same type
[BUG]
With fuzzed image and MIXED_GROUPS super flag, we can hit the following
BUG_ON():

  kernel BUG at fs/btrfs/delayed-ref.c:491!
  invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
  CPU: 0 PID: 1849 Comm: sync Tainted: G           O      5.2.0-custom #27
  RIP: 0010:update_existing_head_ref.cold+0x44/0x46 [btrfs]
  Call Trace:
   add_delayed_ref_head+0x20c/0x2d0 [btrfs]
   btrfs_add_delayed_tree_ref+0x1fc/0x490 [btrfs]
   btrfs_free_tree_block+0x123/0x380 [btrfs]
   __btrfs_cow_block+0x435/0x500 [btrfs]
   btrfs_cow_block+0x110/0x240 [btrfs]
   btrfs_search_slot+0x230/0xa00 [btrfs]
   ? __lock_acquire+0x105e/0x1e20
   btrfs_insert_empty_items+0x67/0xc0 [btrfs]
   alloc_reserved_file_extent+0x9e/0x340 [btrfs]
   __btrfs_run_delayed_refs+0x78e/0x1240 [btrfs]
   ? kvm_clock_read+0x18/0x30
   ? __sched_clock_gtod_offset+0x21/0x50
   btrfs_run_delayed_refs.part.0+0x4e/0x180 [btrfs]
   btrfs_run_delayed_refs+0x23/0x30 [btrfs]
   btrfs_commit_transaction+0x53/0x9f0 [btrfs]
   btrfs_sync_fs+0x7c/0x1c0 [btrfs]
   ? __ia32_sys_fdatasync+0x20/0x20
   sync_fs_one_sb+0x23/0x30
   iterate_supers+0x95/0x100
   ksys_sync+0x62/0xb0
   __ia32_sys_sync+0xe/0x20
   do_syscall_64+0x65/0x240
   entry_SYSCALL_64_after_hwframe+0x49/0xbe

[CAUSE]
This situation is caused by several factors:
- Fuzzed image
  The extent tree of this fs missed one backref for extent tree root.
  So we can allocated space from that slot.

- MIXED_BG feature
  Super block has MIXED_BG flag.

- No mixed block groups exists
  All block groups are just regular ones.

This makes data space_info->block_groups[] contains metadata block
groups.  And when we reserve space for data, we can use space in
metadata block group.

Then we hit the following file operations:

- fallocate
  We need to allocate data extents.
  find_free_extent() choose to use the metadata block to allocate space
  from, and choose the space of extent tree root, since its backref is
  missing.

  This generate one delayed ref head with is_data = 1.

- extent tree update
  We need to update extent tree at run_delayed_ref time.

  This generate one delayed ref head with is_data = 0, for the same
  bytenr of old extent tree root.

Then we trigger the BUG_ON().

[FIX]
The quick fix here is to check block_group->flags before using it.

The problem can only happen for MIXED_GROUPS fs. Regular filesystems
won't have space_info with DATA|METADATA flag, and no way to hit the
bug.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203255
Reported-by: Jungyeon Yoon <jungyeon.yoon@gmail.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:01 +02:00
Qu Wenruo
933c22a751 btrfs: delayed-inode: Kill the BUG_ON() in btrfs_delete_delayed_dir_index()
There is one report of fuzzed image which leads to BUG_ON() in
btrfs_delete_delayed_dir_index().

Although that fuzzed image can already be addressed by enhanced
extent-tree error handler, it's still better to hunt down more BUG_ON().

This patch will hunt down two BUG_ON()s in
btrfs_delete_delayed_dir_index():
- One for error from btrfs_delayed_item_reserve_metadata()
  Instead of BUG_ON(), we output an error message and free the item.
  And return the error.
  All callers of this function handles the error by aborting current
  trasaction.

- One for possible EEXIST from __btrfs_add_delayed_deletion_item()
  That function can return -EEXIST.
  We already have a good enough error message for that, only need to
  clean up the reserved metadata space and allocated item.

To help above cleanup, also modifiy __btrfs_remove_delayed_item() called
in btrfs_release_delayed_item(), to skip unassociated item.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203253
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:01 +02:00
Qu Wenruo
112974d406 btrfs: volumes: Remove ENOSPC-prone btrfs_can_relocate()
[BUG]
Test case btrfs/156 fails since commit 302167c50b ("btrfs: don't end
the transaction for delayed refs in throttle") with ENOSPC.

[CAUSE]
The ENOSPC is reported from btrfs_can_relocate().

This function will check:
- If this block group is empty, we can relocate
- If we can enough free space, we can relocate

Above checks are valid but the following check is vague due to its
implementation:
- If and only if we can allocated a new block group to contain all the
  used space, we can relocate

This design itself is OK, but the way to determine if we can allocate a
new block group is problematic.

btrfs_can_relocate() uses find_free_dev_extent() to find free space on a
device.
However find_free_dev_extent() only searches commit root and excludes
dev extents allocated in current trans, this makes it unable to use dev
extent just freed in current transaction.

So for the following example, btrfs_can_relocate() will report ENOSPC:
The example block group layout:
1M      129M        257M       385M      513M       550M
|///////|///////////|//////////|         |          |
// = Used bg, consider all bg is 100% used for easy calculation.
And all block groups are SINGLE, on-disk bytenr is the same as the
logical bytenr.

1) Bg in [129M, 257M) get relocated to [385M, 513M), transid=100
1M      129M        257M       385M      513M       550M
|///////|           |//////////|/////////|
In transid 100, bg in [129M, 257M) get relocated to [385M, 513M)

However transid 100 is not committed yet, so in dev commit tree, we
still have the old dev extents layout:
1M      129M        257M       385M      513M       550M
|///////|///////////|//////////|         |          |

2) Try to relocate bg [257M, 385M)
We goes into btrfs_can_relocate(), no free space in current bgs, so we
check if we can find large enough free dev extents.

The first slot is [385M, 513M), but that is already used by new bg at
[385M, 513M), so we continue search.

The remaining slot is [512M, 550M), smaller than the bg's length 128M.
So btrfs_can_relocate report ENOSPC.

However this is over killed, in fact if we just skip btrfs_can_relocate()
check, and go into regular relocation routine, at extent reservation time,
if we can't find free extent, then we fallback to commit transaction,
which will free up the dev extents and allow new block group to be created.

[FIX]
The fix here is to remove btrfs_can_relocate() completely.

If we hit the false ENOSPC case just like btrfs/156, extent allocator
will push harder by committing transaction and we will have space for
new block group, avoiding the false ENOSPC.

If we really ran out of space, we will hit ENOSPC at
relocate_block_group(), and btrfs will just reports the ENOSPC error as
usual.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:01 +02:00
Qu Wenruo
e91381421f btrfs: extent-tree: Add comment for inc_block_group_ro()
inc_block_group_ro() is only designed to mark one block group read-only,
it doesn't really care if other block groups have enough free space to
contain the used space in the block group.

However due to the close connection between this function and
relocation, sometimes we can be confused and think this function is
responsible for balance space reservation, which is not true.

Add some comment to make the functionality clear.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:00 +02:00
Qu Wenruo
135da9766e btrfs: volumes: Add comment for find_free_dev_extent_start()
Since commit 6df9a95e63 ("Btrfs: make the chunk allocator completely
tree lockless") we search commit root of device tree to avoid deadlock.

This introduced a safety feature, find_free_dev_extent_start() won't
use dev extents which just get freed in current transaction.

This safety feature makes sure we won't allocate new block group using
just freed dev extents to break CoW.

However, this feature also makes find_free_dev_extent_start() not
reliable reporting free device space.  Just add such comment to make
later viewer careful about this behavior.

This behavior makes one caller, btrfs_can_relocate() unreliable
determining the device free space.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:00 +02:00
Qu Wenruo
9e3246a5f6 btrfs: volumes: Unexport find_free_dev_extent_start()
This function is only used locally in find_free_dev_extent(), no
external callers.

So unexport it.

Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:00 +02:00
David Sterba
73e82fe409 btrfs: assert tree mod log lock in __tree_mod_log_insert
The tree is going to be modified so it must be the exclusive lock.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:00 +02:00
David Sterba
d23ea3fa7d btrfs: assert extent map tree lock in add_extent_mapping
As add_extent_mapping is called from several functions, let's add the
lock annotation. The tree is going to be modified so it must be the
exclusive lock.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:00 +02:00
Jia-Ju Bai
982f1f5d16 btrfs: Add an assertion to warn incorrect case in insert_inline_extent()
In insert_inline_extent(), the case that checks compressed_size > 0
and compressed_pages = NULL cannot occur, otherwise a null-pointer
dereference may occur on line 215:

     cpage = compressed_pages[i];

To catch this incorrect case, an assertion is added.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:00 +02:00
Nikolay Borisov
330a582790 btrfs: Remove leftover of in-band dedupe
It's unlikely in-band dedupe is going to land so just remove any
leftovers - dedupe.h header as well as the 'dedupe' parameter to
btrfs_set_extent_delalloc.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:59 +02:00
Nikolay Borisov
74e9194afb btrfs: Remove delalloc_end argument from extent_clear_unlock_delalloc
It was added in ba8b04c1d4 ("btrfs: extend btrfs_set_extent_delalloc
and its friends to support in-band dedupe and subpage size patchset") as
a preparatory patch for in-band and subapge block size patchsets.
However neither of those are likely to be merged anytime soon and the
code has diverged significantly from the last public post of either
of those patchsets.

It's unlikely either of the patchests are going to use those preparatory
steps so just remove the variables. Since cow_file_range also took
delalloc_end to pass it to extent_clear_unlock_delalloc remove the
parameter from that function as well.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:59 +02:00
Nikolay Borisov
cecc8d9038 btrfs: Move free_pages_out label in inline extent handling branch in compress_file_range
This label is only executed if compress_file_range fails to create an
inline extent. So move its code in the semantically related inline
extent handling branch. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:59 +02:00
Nikolay Borisov
ac3e99334d btrfs: Return number of compressed extents directly in compress_file_range
compress_file_range returns a void, yet uses a function parameter as a
return value. Make that more idiomatic by simply returning the number
of compressed extents directly. Also track such extents in more aptly
named variables. No functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:59 +02:00
Eric Sandeen
40cf931fa8 btrfs: use common vfs LABEL ioctl definitions
I lifted the btrfs label get/set ioctls to the vfs some time ago, but
never followed up to use those common definitions directly in btrfs.

This patch does that.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:59 +02:00
Nikolay Borisov
5044ed4f39 btrfs: Remove unused locking functions
Those were split out of btrfs_clear_lock_blocking_rw by
aa12c02778 ("btrfs: split btrfs_clear_lock_blocking_rw to read and write helpers")
however at that time this function was unused due to commit
5239834016 ("Btrfs: kill btrfs_clear_path_blocking"). Put the final
nail in the coffin of those 2 functions.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:59 +02:00
Arnd Bergmann
8ddc319706 btrfs: reduce stack usage for btrfsic_process_written_block
btrfsic_process_written_block() cals btrfsic_process_metablock(),
which has a fairly large stack usage due to the btrfsic_stack_frame
variable. It also calls btrfsic_test_for_metadata(), which now
needs several hundreds of bytes for its SHASH_DESC_ON_STACK().

In some configurations, we end up with both functions on the
same stack, and gcc warns about the excessive stack usage that
might cause the available stack space to run out:

fs/btrfs/check-integrity.c:1743:13: error: stack frame size of 1152 bytes in function 'btrfsic_process_written_block' [-Werror,-Wframe-larger-than=]

Marking both child functions as noinline_for_stack helps because
this guarantees that the large variables are not on the same
stack frame.

Fixes: d5178578bc ("btrfs: directly call into crypto framework for checksumming")
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:58 +02:00
YueHaibing
99fccf33c2 btrfs: remove set but not used variable 'offset'
Fixes gcc '-Wunused-but-set-variable' warning:

fs/btrfs/volumes.c: In function __btrfs_map_block:
fs/btrfs/volumes.c:6023:6: warning:
 variable offset set but not used [-Wunused-but-set-variable]

It is not used any more since commit 343abd1c0ca9 ("btrfs: Use
btrfs_get_io_geometry appropriately")

Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:58 +02:00
Filipe Manana
690a5dbfc5 Btrfs: fix ENOSPC errors, leading to transaction aborts, when cloning extents
When cloning extents (or deduplicating) we create a transaction with a
space reservation that considers we will drop or update a single file
extent item of the destination inode (that we modify a single leaf). That
is fine for the vast majority of scenarios, however it might happen that
we need to drop many file extent items, and adjust at most two file extent
items, in the destination root, which can span multiple leafs. This will
lead to either the call to btrfs_drop_extents() to fail with ENOSPC or
the subsequent calls to btrfs_insert_empty_item() or btrfs_update_inode()
(called through clone_finish_inode_update()) to fail with ENOSPC. Such
failure results in a transaction abort, leaving the filesystem in a
read-only mode.

In order to fix this we need to follow the same approach as the hole
punching code, where we create a local reservation with 1 unit and keep
ending and starting transactions, after balancing the btree inode,
when __btrfs_drop_extents() returns ENOSPC. So fix this by making the
extent cloning call calls the recently added btrfs_punch_hole_range()
helper, which is what does the mentioned work for hole punching, and
make sure whenever we drop extent items in a transaction, we also add a
replacing file extent item, to avoid corruption (a hole) if after ending
a transaction and before starting a new one, the old transaction gets
committed and a power failure happens before we finish cloning.

A test case for fstests follows soon.

Reported-by: David Goodwin <david@codepoets.co.uk>
Link: https://lore.kernel.org/linux-btrfs/a4a4cf31-9cf4-e52c-1f86-c62d336c9cd1@codepoets.co.uk/
Reported-by: Sam Tygier <sam@tygier.co.uk>
Link: https://lore.kernel.org/linux-btrfs/82aace9f-a1e3-1f0b-055f-3ea75f7a41a0@tygier.co.uk/
Fixes: b6f3409b21 ("Btrfs: reserve sufficient space for ioctl clone")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:58 +02:00
Filipe Manana
9cba40a693 Btrfs: factor out extent dropping code from hole punch handler
Move the code that is responsible for dropping extents in a range out of
btrfs_punch_hole() into a new helper function, btrfs_punch_hole_range(),
so that later it can be used by the reflinking (extent cloning and dedup)
code to fix a ENOSPC bug.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:58:58 +02:00
Axel Lin
6cadd8ae21 regulator: lp87565: Simplify lp87565_buck_set_ramp_delay
Use rdev->regmap/&rdev->dev instead of lp87565->regmap/lp87565->dev.
In additional, the lp87565->dev actually is the parent mfd device,
so the dev_err message is misleading here with lp87565->dev.

Signed-off-by: Axel Lin <axel.lin@ingics.com>
Link: https://lore.kernel.org/r/20190908035720.17748-1-axel.lin@ingics.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 13:22:49 +01:00
Ben Zhang
dfe58f2011 ASoC: rt5677: keep analog power register at SND_SOC_BIAS_OFF
Instead of clearing RT5677_PWR_ANLG2 (MX-64h) to 0 at SND_SOC_BIAS_OFF,
we only clear the RT5677_PWR_CORE bit which is set at SND_SOC_BIAS_PREPARE.
MICBIAS control bits are left unchanged.

This fixed the bug where if MICBIAS1 widget is forced on, MICBIAS
control bits will be cleared at suspend and never turned back on again,
since DAPM thinks the widget is always on.

Signed-off-by: Ben Zhang <benzh@chromium.org>
Signed-off-by: Curtis Malainey <cujomalainey@chromium.org>
Link: https://lore.kernel.org/r/20190906194636.217881-3-cujomalainey@chromium.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 13:22:07 +01:00
Sahitya Tummala
957fa47823 f2fs: Fix indefinite loop in f2fs_gc()
Policy - foreground GC, LFS mode and greedy GC mode.

Under this policy, f2fs_gc() loops forever to GC as it doesn't have
enough free segements to proceed and thus it keeps calling gc_more
for the same victim segment.  This can happen if the selected victim
segment could not be GC'd due to failed blkaddr validity check i.e.
is_alive() returns false for the blocks set in current validity map.

Fix this by not resetting the sbi->cur_victim_sec to NULL_SEGNO, when
the segment selected could not be GC'd. This helps to select another
segment for GC and thus helps to proceed forward with GC.

[Note]
This can happen due to is_alive as well as atomic_file which skipps
GC.

Signed-off-by: Sahitya Tummala <stummala@codeaurora.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-09-09 13:06:11 +01:00
Vinod Koul
2243fd4186 clk: qcom: clk-rpmh: Add support for SM8150
Add support for rpmh clocks found in SM8150

Signed-off-by: Vinod Koul <vkoul@kernel.org>
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Link: https://lkml.kernel.org/r/20190826173120.2971-5-vkoul@kernel.org
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2019-09-09 04:40:10 -07:00
Vinod Koul
51ffc35d68 dt-bindings: clock: Document SM8150 rpmh-clock compatible
Document the SM8150 rpmh-clock compatible for rpmh clock controller
found on SM8150 platforms.

Signed-off-by: Vinod Koul <vkoul@kernel.org>
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Link: https://lkml.kernel.org/r/20190826173120.2971-4-vkoul@kernel.org
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2019-09-09 04:40:10 -07:00
Vinod Koul
a64a9e5172 clk: qcom: clk-rpmh: Convert to parent data scheme
Convert the rpmh clock driver to use the new parent data scheme by
specifying the parent data for board clock.

Signed-off-by: Vinod Koul <vkoul@kernel.org>
Link: https://lkml.kernel.org/r/20190826173120.2971-3-vkoul@kernel.org
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2019-09-09 04:40:10 -07:00
Vinod Koul
8c758d6675 dt-bindings: clock: Document the parent clocks
With clock parent data scheme we must specify the parent clocks for the
rpmhcc nodes. So describe the parent clock for rpmhcc in the bindings.

Signed-off-by: Vinod Koul <vkoul@kernel.org>
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Link: https://lkml.kernel.org/r/20190826173120.2971-2-vkoul@kernel.org
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2019-09-09 04:40:10 -07:00
Taniya Das
3f905469c8 clk: qcom: gcc: Use floor ops for SDCC clocks
Update global clock controller SDCC2/4 clocks to use the floor rcg ops,
so as to use the rounded down clock rates for these clocks.

Signed-off-by: Taniya Das <tdas@codeaurora.org>
Link: https://lkml.kernel.org/r/20190909074410.18977-1-tdas@codeaurora.org
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2019-09-09 04:39:12 -07:00
Vinod Koul
593020811c clk: qcom: gcc-qcs404: Use floor ops for sdcc clks
Update the gcc qcs404 clock driver to use floor ops for sdcc clocks. As
disuccsed in [1] it is good idea to use floor ops for sdcc clocks as we
dont want the clock rates to do round up.

[1]: https://lore.kernel.org/linux-arm-msm/20190830195142.103564-1-swboyd@chromium.org/

Signed-off-by: Vinod Koul <vkoul@kernel.org>
Link: https://lkml.kernel.org/r/20190906045659.20621-1-vkoul@kernel.org
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2019-09-09 04:38:22 -07:00
Stephen Boyd
5e4b7e82d4 clk: qcom: gcc-sdm845: Use floor ops for sdcc clks
Some MMC cards fail to enumerate properly when inserted into an MMC slot
on sdm845 devices. This is because the clk ops for qcom clks round the
frequency up to the nearest rate instead of down to the nearest rate.
For example, the MMC driver requests a frequency of 52MHz from
clk_set_rate() but the qcom implementation for these clks rounds 52MHz
up to the next supported frequency of 100MHz. The MMC driver could be
modified to request clk rate ranges but for now we can fix this in the
clk driver by changing the rounding policy for this clk to be round down
instead of round up.

Fixes: 06391eddb6 ("clk: qcom: Add Global Clock controller (GCC) driver for SDM845")
Reported-by: Douglas Anderson <dianders@chromium.org>
Cc: Taniya Das <tdas@codeaurora.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lkml.kernel.org/r/20190830195142.103564-1-swboyd@chromium.org
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2019-09-09 04:38:20 -07:00
Marc Zyngier
92f35b751c KVM: arm/arm64: vgic: Allow more than 256 vcpus for KVM_IRQ_LINE
While parts of the VGIC support a large number of vcpus (we
bravely allow up to 512), other parts are more limited.

One of these limits is visible in the KVM_IRQ_LINE ioctl, which
only allows 256 vcpus to be signalled when using the CPU or PPI
types. Unfortunately, we've cornered ourselves badly by allocating
all the bits in the irq field.

Since the irq_type subfield (8 bit wide) is currently only taking
the values 0, 1 and 2 (and we have been careful not to allow anything
else), let's reduce this field to only 4 bits, and allocate the
remaining 4 bits to a vcpu2_index, which acts as a multiplier:

  vcpu_id = 256 * vcpu2_index + vcpu_index

With that, and a new capability (KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)
allowing this to be discovered, it becomes possible to inject
PPIs to up to 4096 vcpus. But please just don't.

Whilst we're there, add a clarification about the use of KVM_IRQ_LINE
on arm, which is not completely conditionned by KVM_CAP_IRQCHIP.

Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
2019-09-09 12:29:09 +01:00
Srinivas Pandruvada
1233c7b95c tools/power/x86/intel-speed-select: Display core count for bucket
Read the bucket and core count relationship via MSR and display
when displaying turbo ratio limits.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
2019-09-09 13:19:35 +03:00
Srinivas Pandruvada
92e0e87d0b platform/x86: ISST: Allow additional TRL MSRs
Additional Turbo Ratio Limit (TRL) MSRs are required to get bucket vs core
count relationship. So add them to the list of allowed MSRs.

Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
2019-09-09 13:19:35 +03:00
Arnd Bergmann
55dac43747 pinctrl: intel: mark intel_pin_to_gpio __maybe_unused
The intel_pin_to_gpio() function is only called by the
PM support functions and causes a warning when those are disabled:

drivers/pinctrl/intel/pinctrl-intel.c:841:12: error: unused function 'intel_pin_to_gpio' [-Werror,-Wunused-function]

Mark it __maybe_unused to suppress the warning.

Suggested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Chris Chiu <chiu@endlessm.com>
Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
2019-09-09 13:11:42 +03:00
Markus Elfring
8995673e6f spi-gpio: Use PTR_ERR_OR_ZERO() in spi_gpio_request()
Simplify this function implementation by using a known function.

Generated by: scripts/coccinelle/api/ptr_ret.cocci

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://lore.kernel.org/r/b2dd074a-1693-3aea-42b4-da1f5ec155c4@web.de
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 11:05:39 +01:00
Curtis Malainey
33b773dc92 ASoC: rt5677: Remove magic number register writes
In order to simplify understanding what register values are being
written to the codec for debugging more advanced features (such as
hotwording) it is best to remove magic numbers

Signed-off-by: Curtis Malainey <cujomalainey@chromium.org>
Link: https://lore.kernel.org/r/20190906194636.217881-2-cujomalainey@chromium.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 11:04:31 +01:00
Kuninori Morimoto
e8fbd25052 ASoC: soc-core: self contained soc_unbind_aux_dev()
Current soc_unbind_aux_dev() implementation is very half,
thus it is very unreadable.

	for_each_comp_order(order) {
		for_each_card_auxs_safe(card, comp, _comp) {

(1)			if (comp->driver->remove_order == order) {
				...
=>				soc_unbind_aux_dev(comp);
			}
	}

soc_unbind_aux_dev() itself is not related to remove_order (1).
And, it is called from soc_remove_aux_devices(), even though
its paired function soc_bind_aux_dev() is called from
snd_soc_instantiate_card().
It is very unbalance, and very difficult to understand.

This patch do
1) update soc_bind_aux_dev() to self contained
2) call it from soc_cleanup_card_resources() to make up balance

Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Link: https://lore.kernel.org/r/87r24wor0z.wl-kuninori.morimoto.gx@renesas.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 11:04:15 +01:00
Kuninori Morimoto
4893a2eb34 ASoC: soc-core: add soc_unbind_aux_dev()
It is easy to read code if it is cleanly using paired function/naming,
like start <-> stop, register <-> unregister, etc, etc.
But, current ALSA SoC code is very random, unbalance, not paired, etc.
It is easy to create bug at the such code, and it will be difficult to
debug.

soc-core.c has soc_bind_aux_dev(), but, there is no its paired
soc_unbind_aux_dev().
This patch adds soc_unbind_aux_dev().

Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Link: https://lore.kernel.org/r/87sgpcor14.wl-kuninori.morimoto.gx@renesas.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 11:03:59 +01:00
Kuninori Morimoto
bee886f1ea ASoC: soc-core: self contained soc_bind_aux_dev()
Current soc_bind_aux_dev() implementation is very half,
thus it is very unreadable.

	for_each_card_pre_auxs(xxx) {
=>		ret = soc_bind_aux_dev(xxx);
		...
	}

This patch does all for_each_xxx() under soc_bind_aux_dev(),
and makes it to self contained.

Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Link: https://lore.kernel.org/r/87tv9sor1b.wl-kuninori.morimoto.gx@renesas.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 11:03:44 +01:00
Kuninori Morimoto
bc7c16c226 ASoC: soc-core: move soc_probe_link_dais() next to soc_remove_link_dais()
It is easy to read code if it is cleanly using paired function/naming,
like start <-> stop, register <-> unregister, etc, etc.
But, current ALSA SoC code is very random, unbalance, not paired, etc.
It is easy to create bug at the such code, and it will be difficult to
debug.

This patch moves soc_probe_link_dais() next to soc_remove_link_dais()
which is paired function.

Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Link: https://lore.kernel.org/r/87v9u8or1g.wl-kuninori.morimoto.gx@renesas.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 11:03:28 +01:00
Kuninori Morimoto
c7e73774f2 ASoC: soc-core: self contained soc_probe_link_dais()
Current soc_probe_link_dais() implementation is very half,
thus it is very difficult to read.

	for_each_comp_order(xxx) {
		for_each_card_rtds(xxx)
=>			soc_probe_link_dais(xxx);
	}

This patch does all for_each_xxx() under soc_probe_link_dais(),
and makes it to self contained.

Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Link: https://lore.kernel.org/r/87woeoor1m.wl-kuninori.morimoto.gx@renesas.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 11:03:13 +01:00
Kuninori Morimoto
c4b4698291 ASoC: soc-core: add new soc_link_init()
Current soc_probe_link_dais() (1) is called under probe_order (2),
and it will initialize dai_link related settings at *Last* turn (3)(B).
It is very complex code.

	static int soc_probe_link_dais(..., order)
	{
(A)		/* probe DAIs here */
		...

(3)		if (order != SND_SOC_COMP_ORDER_LAST)
			return 0;

(B)		/* initialize dai_link related settings */
		...
	}

	static int snd_soc_instantiate_card(...)
	{
		...
(2)		for_each_comp_order(order) {
			for_each_card_rtds(...) {
(1)				ret = soc_probe_link_dais(..., order);
			}
		}
	}

This patch separes soc_probe_link_dais() into "DAI probe" portion (A),
and dai_link settings portion (B).
The later is named as soc_link_init() by this patch.

Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Link: https://lore.kernel.org/r/87y2z4or1r.wl-kuninori.morimoto.gx@renesas.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 11:02:57 +01:00
Kuninori Morimoto
a7d44f7806 ASoC: soc-core: move soc_probe_dai() next to soc_remove_dai()
It is easy to read code if it is cleanly using paired function/naming,
like start <-> stop, register <-> unregister, etc, etc.
But, current ALSA SoC code is very random, unbalance, not paired, etc.
It is easy to create bug at the such code, and it will be difficult to
debug.

This patch moves soc_probe_dai() next to soc_remove_dai() which is
paired function.

Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Link: https://lore.kernel.org/r/87zhjkor1x.wl-kuninori.morimoto.gx@renesas.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 11:02:41 +01:00
Kuninori Morimoto
4ca47d21bf ASoC: soc-core: self contained soc_remove_link_dais()
Current soc_remove_link_dais() implementation is very half,
thus it is very difficult to read.

	for_each_comp_order(xxx) {
		for_each_card_rtds(xxx)
=>			soc_remove_link_dais(xxx);
	}

This patch does all for_each_xxx() under soc_remove_link_dais(),
and makes it to self contained.

Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Link: https://lore.kernel.org/r/871rwwq5mm.wl-kuninori.morimoto.gx@renesas.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-09-09 11:02:23 +01:00