SSEUs are a GT capability, so track them under gt_info.
Signed-off-by: Venkata Sandeep Dhanalakota <venkata.s.dhanalakota@intel.com>
Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Andi Shyti <andi.shyti@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20200708003952.21831-8-daniele.ceraolospurio@intel.com
Since the engines belong to the GT, move the runtime-updated list of
available engines to the intel_gt struct. The original mask has been
renamed to indicate it contains the maximum engine list that can be
found on a matching device.
In preparation for other info being moved to the gt in follow up patches
(sseu), introduce an intel_gt_info structure to group all gt-related
runtime info.
v2: s/max_engine_mask/platform_engine_mask (tvrtko), fix selftest
Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Andi Shyti <andi.shyti@intel.com>
Cc: Venkata Sandeep Dhanalakota <venkata.s.dhanalakota@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> #v1
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20200708003952.21831-5-daniele.ceraolospurio@intel.com
All the info we read in intel_device_info_init_mmio are engine-related
and since we already have an engine_init_mmio function we can just
perform the operations from there.
v2: clarify comment about forcewake requirements and pruning (Chris)
Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Andi Shyti <andi.shyti@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> #v1
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20200708003952.21831-4-daniele.ceraolospurio@intel.com
A follow up patch will move the engine mask under the gt structure,
so get ready for that.
v2: switch the remaining gvt case using dev_priv->gt to gvt->gt (Chris)
Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Andi Shyti <andi.shyti@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> #v1
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20200708003952.21831-3-daniele.ceraolospurio@intel.com
Return the monotonic timestamp (ktime_get()) at the time of sampling the
busy-time. This is used in preference to taking ktime_get() separately
before or after the read seqlock as there can be some large variance in
reported timestamps. For selftests trying to ascertain that we are
reporting accurate to within a few microseconds, even a small delay
leads to the test failing.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200617130916.15261-2-chris@chris-wilson.co.uk
Just in case everything fails (like for example "missed interrupt
syndrome" on Sandybridge), always flush the submission tasklet from the
heartbeat. This papers over such issues, but will still appear as a
second long glitch, and prevents us from detecting it unless we happen
to be performing a timed test.
v2: We rely on flush_submission() synchronizing with the tasklet on
another CPU.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200615165013.22973-3-chris@chris-wilson.co.uk
In commit 5ba32c7be8 ("drm/i915/execlists: Always force a context
reload when rewinding RING_TAIL"), we placed the check for rewinding a
context on actually submitting the next request in that context. This
was so that we only had to check once, and could do so with precision
avoiding as many forced restores as possible. For example, to ensure
that we can resubmit the same request a couple of times, we include a
small wa_tail such that on the next submission, the ring->tail will
appear to move forwards when resubmitting the same request. This is very
common as it will happen for every lite-restore to fill the second port
after a context switch.
However, intel_ring_direction() is limited in precision to movements of
upto half the ring size. The consequence being that if we tried to
unwind many requests, we could exceed half the ring and flip the sense
of the direction, so missing a force restore. As no request can be
greater than half the ring (i.e. 2048 bytes in the smallest case), we
can check for rollback incrementally. As we check against the tail that
would be submitted, we do not lose any sensitivity and allow lite
restores for the simple case. We still need to double check upon
submitting the context, to allow for multiple preemptions and
resubmissions.
Fixes: 5ba32c7be8 ("drm/i915/execlists: Always force a context reload when rewinding RING_TAIL")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: <stable@vger.kernel.org> # v5.4+
Reviewed-by: Bruce Chang <yu.bruce.chang@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200609151723.12971-1-chris@chris-wilson.co.uk
Add engine->fw_domain/active to the pretty printer for debug dumps and
debugfs.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Venkata Sandeep Dhanalakota <venkata.s.dhanalakota@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200605144705.31127-1-chris@chris-wilson.co.uk
We infrequently use the direct i915 backpointer from the i915_request,
so do we really need to waste the space in the struct for it? 8 bytes
from the most frequently allocated struct vs an 3 bytes and pointer
chasing in using rq->engine->i915?
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Akeem G Abodunrin <akeem.g.abodunrin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200602220953.21178-1-chris@chris-wilson.co.uk
By providing the default values configured into the kernel via sysfs, it
is much more convenient for userspace to restore those sane defaults, or
at least know what are considered good baseline. This is useful, for
example, to cleanup after any failed userspace prior to commencing new
jobs.
/sys/class/drm/card0/engine/rcs0/
├── capabilities
├── class
├── .defaults
│ ├── heartbeat_interval_ms
│ ├── max_busywait_duration_ns
│ ├── preempt_timeout_ms
│ ├── stop_timeout_ms
│ └── timeslice_duration_ms
├── heartbeat_interval_ms
├── instance
├── known_capabilities
├── max_busywait_duration_ns
├── mmio_base
├── name
├── preempt_timeout_ms
├── stop_timeout_ms
└── timeslice_duration_ms
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Maciej Patelczyk <maciej.patelczyk@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200514062905.28668-1-chris@chris-wilson.co.uk
Since the introduction of 'soft-rc6', we aim to park the device quickly
and that results in frequent idling of the whole device. Currently upon
idling we free the batch buffer pool, and so this renders the cache
ineffective for many workloads. If we want to have an effective cache of
recently allocated buffers available for reuse, we need to decouple that
cache from the engine powermanagement and make it timer based. As there
is no reason then to keep it within the engine (where it once made
retirement order easier to track), we can move it up the hierarchy to the
owner of the memory allocations.
v2: Hook up to debugfs/drop_caches to clear the cache on demand.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200430111819.10262-2-chris@chris-wilson.co.uk
In the near future, we will utilize the busy-stats on each engine to
approximate the C0 cycles of each, and use that as an input to a manual
RPS mechanism. That entails having busy-stats always enabled and so we
can remove the enable/disable routines and simplify the pmu setup. As a
consequence of always having the stats enabled, we can also show the
current active time via sysfs/engine/xcs/active_time_ns.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200429205446.3259-1-chris@chris-wilson.co.uk
We need to keep the default context state around to instantiate new
contexts (aka golden rendercontext), and we also keep it pinned while
the engine is active so that we can quickly reset a hanging context.
However, the default contexts are large enough to merit keeping in
swappable memory as opposed to kernel memory, so we store them inside
shmemfs. Currently, we use the normal GEM objects to create the default
context image, but we can throw away all but the shmemfs file.
This greatly simplifies the tricky power management code which wants to
run underneath the normal GT locking, and we definitely do not want to
use any high level objects that may appear to recurse back into the GT.
Though perhaps the primary advantage of the complex GEM object is that
we aggressively cache the mapping, but here we are recreating the
vm_area everytime time we unpark. At the worst, we add a lightweight
cache, but first find a microbenchmark that is impacted.
Having started to create some utility functions to make working with
shmemfs objects easier, we can start putting them to wider use, where
GEM objects are overkill, such as storing persistent error state.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Ramalingam C <ramalingam.c@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200429172429.6054-1-chris@chris-wilson.co.uk
The bspec is confusing on the nature of the upper 32bits of the LRC
descriptor. Once upon a time, it said that it uses the upper 32b to
decide if it should perform a lite-restore, and so we must ensure that
each unique context submitted to HW is given a unique CCID [for the
duration of it being on the HW]. Currently, this is achieved by using
a small circular tag, and assigning every context submitted to HW a
new id. However, this tag is being cleared on repinning an inflight
context such that we end up re-using the 0 tag for multiple contexts.
To avoid accidentally clearing the CCID in the upper 32bits of the LRC
descriptor, split the descriptor into two dwords so we can update the
GGTT address separately from the CCID.
Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/1796
Fixes: 2935ed5339 ("drm/i915: Remove logical HW ID")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: <stable@vger.kernel.org> # v5.5+
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200428184751.11257-1-chris@chris-wilson.co.uk
If we find ourselves waiting on a MI_SEMAPHORE_WAIT, either within the
user batch or in our own preamble, the engine raises a
GT_WAIT_ON_SEMAPHORE interrupt. We can unmask that interrupt and so
respond to a semaphore wait by yielding the timeslice, if we have
another context to yield to!
The only real complication is that the interrupt is only generated for
the start of the semaphore wait, and is asynchronous to our
process_csb() -- that is, we may not have registered the timeslice before
we see the interrupt. To ensure we don't miss a potential semaphore
blocking forward progress (e.g. selftests/live_timeslice_preempt) we mark
the interrupt and apply it to the next timeslice regardless of whether it
was active at the time.
v2: We use semaphores in preempt-to-busy, within the timeslicing
implementation itself! Ergo, when we do insert a preemption due to an
expired timeslice, the new context may start with the missed semaphore
flagged by the retired context and be yielded, ad infinitum. To avoid
this, read the context id at the time of the semaphore interrupt and
only yield if that context is still active.
Fixes: 8ee36e048c ("drm/i915/execlists: Minimalistic timeslicing")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200407130811.17321-1-chris@chris-wilson.co.uk
While extremely unlikely to be populated, we could capture a request on
the virtual engine which we should free along with the virtual engine.
Fixes: 43acd6516c ("drm/i915: Keep a per-engine request pool")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Janusz Krzysztofik <janusz.krzysztofik@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200403203303.10903-1-chris@chris-wilson.co.uk
Add a tiny per-engine request mempool so that we should always have a
request available for powermanagement allocations from tricky
contexts. This reserve is expected to be only used for kernel
contexts when barriers must be emitted [almost] without fail.
The main consumer for this reserved request is expected to be engine-pm,
for which we know that there will always be at least the previous pm
request that we can reuse under mempressure (so there should always be
a spare request for engine_park()).
This is an alternative to using a comparatively bulky mempool, which
requires custom handling for both our reserved allocation requirement
and to protect our TYPESAFE_BY_RCU slab cache. The advantage of mempool
would be that it would allow us to keep a larger per-engine request
pool. However, converting over to mempool is straightforward should the
need arise.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Janusz Krzysztofik <janusz.krzysztofik@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-and-tested-by: Janusz Krzysztofik <janusz.krzysztofik@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200402184037.21630-1-chris@chris-wilson.co.uk
We've migrated all the heavy users over to the intel_gt, and can finally
drop the last few users and with that the mirror in dev_priv->engine[].
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Andi Shyti <andi.shyti@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200325234803.6175-1-chris@chris-wilson.co.uk
Allow super long OpenCL workloads which cannot be preempted within
the default timeout to run out of the box.
v2:
* Make it stick out more and apply only to RCS. (Chris)
v3:
* Mention platform override in kconfig. (Joonas)
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Michal Mrozek <michal.mrozek@intel.com>
Cc: <stable@vger.kernel.org> # v5.6+
Acked-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Michal Mrozek <Michal.mrozek@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200312115748.29970-1-tvrtko.ursulin@linux.intel.com
Since snprintf() returns the would-be-output size instead of the
actual output size, the succeeding calls may go beyond the given
buffer limit. Fix it by replacing with scnprintf().
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20200311073256.6535-1-tiwai@suse.de
We busywait on an inflight request (one that is currently executing on
HW, and so might complete quickly) prior to setting up an interrupt and
sleeping. The trade off is that we keep an expensive CPU core busy in
order to avoid wake up latency: where that trade off should lie is best
left to the sysadmin.
The busywait mechanism can be compiled out with
./scripts/config --set-val DRM_I915_SPIN_REQUEST 0
The maximum busywait duration can be adjusted per-engine using,
/sys/class/drm/card?/engine/*/ms_busywait_duration_ns
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Reviewed-by: Steve Carbonari <steven.carbonari@intel.com>
Tested-by: Steve Carbonari <steven.carbonari@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200228131716.3243616-4-chris@chris-wilson.co.uk
Variable dw is being initialized with a value that is never read,
it is assigned a new value later on. The assignment is redundant
and can be removed.
Addresses-Coverity: ("Unused value")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20200222134755.134209-1-colin.king@canonical.com
We set up a dummy ring in order to measure the size we require for our
breadcrumb emission, so that we don't have to manually count dwords! We
can pass in the kernel_context to use for this so that if required it is
known for the breadcrumb emitter, and we can reuse some details from the
kernel_context to reduce the number of temporaries we have to mock.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200207125827.2787472-1-chris@chris-wilson.co.uk
The workarounds are a common "feature" across gens and submission
mechanisms and we already call the other WA related functions from
common engine ones (<setup/cleanup>_common), so it makes sense to
do the same with WA application. Medium-term, This will help us
reduce the duplication once the GuC resume function is added, but short
term it will also allow us to use the workaround lists for pre-gen8
engine workarounds.
Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Matthew Brost <matthew.brost@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20200131075716.2212299-2-chris@chris-wilson.co.uk
On Braswell and Broxton (also known as Valleyview and Apollolake), we
need to serialise updates of the GGTT using the big stop_machine()
hammer. This has the side effect of appearing to lockdep as a possible
reclaim (since it uses the cpuhp mutex and that is tainted by per-cpu
allocations). However, we want to use vm->mutex (including ggtt->mutex)
from within the shrinker and so must avoid such possible taints. For this
purpose, we introduced the asynchronous vma binding and we can apply it
to the PIN_GLOBAL so long as take care to add the necessary waits for
the worker afterwards.
Closes: https://gitlab.freedesktop.org/drm/intel/issues/211
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200130181710.2030251-3-chris@chris-wilson.co.uk
Now that we have offline error capture and can reset an engine from
inside an atomic context while also preserving the GPU state for
post-mortem analysis, it is time to handle error interrupts thrown by
the command parser.
This provides a much, much faster mechanism for us to detect known
problems than using heartbeats/hangchecks, and also provides a mechanism
for when those are disabled. However, it is limited to problems the HW
can detect in the CS and so not a complete solution for detecting lockups.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200128204318.4182039-2-chris@chris-wilson.co.uk
Due to the asynchronous nature of releasing our wakerefs, we can signal
the main GT wakeref as complete before the individual engines have
cleared their own wakerefs. During shutdown we assert that the engines
are indeed parked before we release them, but for this to be always true
we need to flush their workers as well.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200124143339.140988-1-chris@chris-wilson.co.uk
Since commit 22b7a426bb ("drm/i915/execlists: Preempt-to-busy"), we
prune the engine->active.requests list prior to preemption, thus
removing the trace of the currently executing request. If that request
hangs rather than be preempted, we conclude that no active request was
on the GPU. Fortunately, this only impacts our debugging, and not our
means of hang detection or recovery.
v2: Use from to check the current iterator before continuing, and report
active as NULL if the current request is already completed.
References: 22b7a426bb ("drm/i915/execlists: Preempt-to-busy")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200117113259.3023890-1-chris@chris-wilson.co.uk
In order to support out-of-line error capture, we need to remove the
active request from HW and put it to one side while a worker compresses
and stores all the details associated with that request. (As that
compression may take an arbitrary user-controlled amount of time, we
want to let the engine continue running on other workloads while the
hanging request is dumped.) Not only do we need to remove the active
request, but we also have to remove its context and all requests that
were dependent on it (both in flight, queued and future submission).
Finally once the capture is complete, we need to be able to resubmit the
request and its dependents and allow them to execute.
v2: Replace stack recursion with a simple list.
v3: Check all the parents, not just the first, when searching for a
stuck ancestor!
References: https://gitlab.freedesktop.org/drm/intel/issues/738
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200116184754.2860848-2-chris@chris-wilson.co.uk
In the near future, we will want to start a GPU error capture from a new
context, from inside the softirq region of a forced preemption. To do
so requires us to break up the monolithic error capture to provide new
entry points with finer control; in particular focusing on one
engine/gt, and being able to compose an error state from little pieces
of HW capture.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Acked-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200110123059.1348712-1-chris@chris-wilson.co.uk
Our goal in wait_for_idle (intel_gt_retire_requests) is to the current
workload *and* their idle barriers. This requires us to notice the late
arrival of those, which is done by inspecting the list of active
timelines. However, if a concurrent retirer is running that new timeline
may not be added until after we drop the lock -- so flush concurrent
retirers before we take the lock and inspect the list.
Closes: https://gitlab.freedesktop.org/drm/intel/issues/878
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191223211008.2371613-1-chris@chris-wilson.co.uk
Begin pulling the GT setup underneath a single GT umbrella; let intel_gt
take ownership of its engines! As hinted, the complication is the
lifetime of the probed engine versus the active lifetime of the GT
backends. We need to detect the engine layout early and keep it until
the end so that we can sanitize state on takeover and release.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Acked-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191222120752.1368352-1-chris@chris-wilson.co.uk
Since we may retire timelines from secondary workers,
intel_gt_retire_requests() is not always a reliable indicator that all
pending retirements are complete. If we do detect secondary workers are
in progress, recommend intel_gt_wait_for_idle() to repeat the retirement
check.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191221180204.1201217-1-chris@chris-wilson.co.uk
Allocate only an internal intel_context for the kernel_context, forgoing
a global GEM context for internal use as we only require a separate
address space (for our own protection).
Now having weaned GT from requiring ce->gem_context, we can stop
referencing it entirely. This also means we no longer have to create random
and unnecessary GEM contexts for internal use.
GEM contexts are now entirely for tracking GEM clients, and intel_context
the execution environment on the GPU.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Acked-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191221160324.1073045-1-chris@chris-wilson.co.uk
Keep the intel_context as being the primary state for i915_request, with
the GEM context a backpointer from the low level state for the rarer
cases we need client information. Our goal is to remove such references
to clients from the backend, and leave the HW submission agnostic to
client interfaces and self-contained.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Reviewed-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191220101230.256839-1-chris@chris-wilson.co.uk
Knowing the round trip time of an engine is useful for tracking the
health of the system as well as providing a metric for the baseline
responsiveness of the engine. We can use the latter metric for
automatically tuning our waits in selftests and when idling so we don't
confuse a slower system with a dead one.
Upon idling the engine, we send one last pulse to switch the context
away from precious user state to the volatile kernel context. We know
the engine is idle at this point, and the pulse is non-preemptible, so
this provides us with a good measurement of the round trip time. It also
provides us with faster engine parking for ringbuffer submission, which
is a welcome bonus (e.g. softer-rc6).
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Stuart Summers <stuart.summers@intel.com>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191219105043.4169050-1-chris@chris-wilson.co.uk
Link: https://patchwork.freedesktop.org/patch/msgid/20191219124353.8607-2-chris@chris-wilson.co.uk
New macros ENGINE_TRACE(), CE_TRACE(), RQ_TRACE() and
GT_TRACE() are introduce to tag device name and engine
name with contexts and requests tracing in i915.
Cc: Sudeep Dutt <sudeep.dutt@intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Jani Nikula <jani.nikula@intel.com>
Signed-off-by: Venkata Sandeep Dhanalakota <venkata.s.dhanalakota@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191213155152.69182-2-venkata.s.dhanalakota@intel.com
Get rid of the last remaining I915_READ in gt/ and make gt-land
the first I915_READ-free happy island.
Suggested-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Andi Shyti <andi.shyti@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191205164422.727968-1-chris@chris-wilson.co.uk