d05431a1ef
6270 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
78dcf73421 |
Merge branch 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull ->s_options removal from Al Viro: "Preparations for fsmount/fsopen stuff (coming next cycle). Everything gets moved to explicit ->show_options(), killing ->s_options off + some cosmetic bits around fs/namespace.c and friends. Basically, the stuff needed to work with fsmount series with minimum of conflicts with other work. It's not strictly required for this merge window, but it would reduce the PITA during the coming cycle, so it would be nice to have those bits and pieces out of the way" * 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: isofs: Fix isofs_show_options() VFS: Kill off s_options and helpers orangefs: Implement show_options 9p: Implement show_options isofs: Implement show_options afs: Implement show_options affs: Implement show_options befs: Implement show_options spufs: Implement show_options bpf: Implement show_options ramfs: Implement show_options pstore: Implement show_options omfs: Implement show_options hugetlbfs: Implement show_options VFS: Don't use save/replace_mount_options if not using generic_show_options VFS: Provide empty name qstr VFS: Make get_filesystem() return the affected filesystem VFS: Clean up whitespace in fs/namespace.c and fs/super.c Provide a function to create a NUL-terminated string from unterminated data |
||
Linus Torvalds
|
bc243704fb |
Merge branch 'for-4.13-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba: "We've identified and fixed a silent corruption (introduced by code in the first pull), a fixup after the blk_status_t merge and two fixes to incremental send that Filipe has been hunting for some time" * 'for-4.13-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: Btrfs: fix unexpected return value of bio_readpage_error btrfs: btrfs_create_repair_bio never fails, skip error handling btrfs: cloned bios must not be iterated by bio_for_each_segment_all Btrfs: fix write corruption due to bio cloning on raid5/6 Btrfs: incremental send, fix invalid memory access Btrfs: incremental send, fix invalid path for link commands |
||
Liu Bo
|
c3cfb65630 |
Btrfs: fix unexpected return value of bio_readpage_error
With blk_status_t conversion (that are now present in master), bio_readpage_error() may return 1 as now ->submit_bio_hook() may not set %ret if it runs without problems. This fixes that unexpected return value by changing btrfs_check_repairable() to return a bool instead of updating %ret, and patch is applicable to both codebases with and without blk_status_t. Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
e8f5b395d5 |
btrfs: btrfs_create_repair_bio never fails, skip error handling
As the function uses the non-failing bio allocation, we can remove error handling from the callers as well. Signed-off-by: David Sterba <dsterba@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
c09abff87f |
btrfs: cloned bios must not be iterated by bio_for_each_segment_all
We've started using cloned bios more in 4.13, there are some specifics regarding the iteration. Filipe found [1] that the raid56 iterated a cloned bio using bio_for_each_segment_all, which is incorrect. The cloned bios have wrong bi_vcnt and this could lead to silent corruptions. This patch adds assertions to all remaining bio_for_each_segment_all cases. [1] https://patchwork.kernel.org/patch/9838535/ Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
6592e58c6b |
Btrfs: fix write corruption due to bio cloning on raid5/6
The recent changes to make bio cloning faster (added in the 4.13 merge window) by using the bio_clone_fast() API introduced a regression on raid5/6 modes, because cloned bios have an invalid bi_vcnt field (therefore it can not be used) and the raid5/6 code uses the bio_for_each_segment_all() API to iterate the segments of a bio, and this API uses a bio's bi_vcnt field. The issue is very simple to trigger by doing for example a direct IO write against a raid5 or raid6 filesystem and then attempting to read what we wrote before: $ mkfs.btrfs -m raid5 -d raid5 -f /dev/sdc /dev/sdd /dev/sde /dev/sdf $ mount /dev/sdc /mnt $ xfs_io -f -d -c "pwrite -S 0xab 0 1M" /mnt/foobar $ od -t x1 /mnt/foobar od: /mnt/foobar: read error: Input/output error For that example, the following is also reported in dmesg/syslog: [18274.985557] btrfs_print_data_csum_error: 18 callbacks suppressed [18274.995277] BTRFS warning (device sdf): csum failed root 5 ino 257 off 0 csum 0x98f94189 expected csum 0x94374193 mirror 1 [18274.997205] BTRFS warning (device sdf): csum failed root 5 ino 257 off 4096 csum 0x98f94189 expected csum 0x94374193 mirror 1 [18275.025221] BTRFS warning (device sdf): csum failed root 5 ino 257 off 8192 csum 0x98f94189 expected csum 0x94374193 mirror 1 [18275.047422] BTRFS warning (device sdf): csum failed root 5 ino 257 off 12288 csum 0x98f94189 expected csum 0x94374193 mirror 1 [18275.054818] BTRFS warning (device sdf): csum failed root 5 ino 257 off 4096 csum 0x98f94189 expected csum 0x94374193 mirror 1 [18275.054834] BTRFS warning (device sdf): csum failed root 5 ino 257 off 8192 csum 0x98f94189 expected csum 0x94374193 mirror 1 [18275.054943] BTRFS warning (device sdf): csum failed root 5 ino 257 off 8192 csum 0x98f94189 expected csum 0x94374193 mirror 2 [18275.055207] BTRFS warning (device sdf): csum failed root 5 ino 257 off 8192 csum 0x98f94189 expected csum 0x94374193 mirror 3 [18275.055571] BTRFS warning (device sdf): csum failed root 5 ino 257 off 0 csum 0x98f94189 expected csum 0x94374193 mirror 1 [18275.062171] BTRFS warning (device sdf): csum failed root 5 ino 257 off 12288 csum 0x98f94189 expected csum 0x94374193 mirror 1 A scrub will also fail correcting bad copies, mentioning the following in dmesg/syslog: [18276.128696] scrub_handle_errored_block: 498 callbacks suppressed [18276.129617] BTRFS warning (device sdf): checksum error at logical 2186346496 on dev /dev/sde, sector 2116608, root 5, inode 257, offset 65536, length 4096, links $ [18276.149235] btrfs_dev_stat_print_on_error: 498 callbacks suppressed [18276.157897] BTRFS error (device sdf): bdev /dev/sde errs: wr 0, rd 0, flush 0, corrupt 1, gen 0 [18276.206059] BTRFS warning (device sdf): checksum error at logical 2186477568 on dev /dev/sdd, sector 2116736, root 5, inode 257, offset 196608, length 4096, links$ [18276.206059] BTRFS error (device sdf): bdev /dev/sdd errs: wr 0, rd 0, flush 0, corrupt 1, gen 0 [18276.306552] BTRFS warning (device sdf): checksum error at logical 2186543104 on dev /dev/sdd, sector 2116864, root 5, inode 257, offset 262144, length 4096, links$ [18276.319152] BTRFS error (device sdf): bdev /dev/sdd errs: wr 0, rd 0, flush 0, corrupt 2, gen 0 [18276.394316] BTRFS warning (device sdf): checksum error at logical 2186739712 on dev /dev/sdf, sector 2116992, root 5, inode 257, offset 458752, length 4096, links$ [18276.396348] BTRFS error (device sdf): bdev /dev/sdf errs: wr 0, rd 0, flush 0, corrupt 1, gen 0 [18276.434127] BTRFS warning (device sdf): checksum error at logical 2186870784 on dev /dev/sde, sector 2117120, root 5, inode 257, offset 589824, length 4096, links$ [18276.434127] BTRFS error (device sdf): bdev /dev/sde errs: wr 0, rd 0, flush 0, corrupt 2, gen 0 [18276.500504] BTRFS error (device sdf): unable to fixup (regular) error at logical 2186477568 on dev /dev/sdd [18276.538400] BTRFS warning (device sdf): checksum error at logical 2186481664 on dev /dev/sdd, sector 2116744, root 5, inode 257, offset 200704, length 4096, links$ [18276.540452] BTRFS error (device sdf): bdev /dev/sdd errs: wr 0, rd 0, flush 0, corrupt 3, gen 0 [18276.542012] BTRFS error (device sdf): unable to fixup (regular) error at logical 2186481664 on dev /dev/sdd [18276.585030] BTRFS error (device sdf): unable to fixup (regular) error at logical 2186346496 on dev /dev/sde [18276.598306] BTRFS warning (device sdf): checksum error at logical 2186412032 on dev /dev/sde, sector 2116736, root 5, inode 257, offset 131072, length 4096, links$ [18276.598310] BTRFS error (device sdf): bdev /dev/sde errs: wr 0, rd 0, flush 0, corrupt 3, gen 0 [18276.598582] BTRFS error (device sdf): unable to fixup (regular) error at logical 2186350592 on dev /dev/sde [18276.603455] BTRFS error (device sdf): bdev /dev/sde errs: wr 0, rd 0, flush 0, corrupt 4, gen 0 [18276.638362] BTRFS warning (device sdf): checksum error at logical 2186354688 on dev /dev/sde, sector 2116624, root 5, inode 257, offset 73728, length 4096, links $ [18276.640445] BTRFS error (device sdf): bdev /dev/sde errs: wr 0, rd 0, flush 0, corrupt 5, gen 0 [18276.645942] BTRFS error (device sdf): unable to fixup (regular) error at logical 2186354688 on dev /dev/sde [18276.657204] BTRFS error (device sdf): unable to fixup (regular) error at logical 2186412032 on dev /dev/sde [18276.660563] BTRFS warning (device sdf): checksum error at logical 2186416128 on dev /dev/sde, sector 2116744, root 5, inode 257, offset 135168, length 4096, links$ [18276.664609] BTRFS error (device sdf): bdev /dev/sde errs: wr 0, rd 0, flush 0, corrupt 6, gen 0 [18276.664609] BTRFS error (device sdf): unable to fixup (regular) error at logical 2186358784 on dev /dev/sde So fix this by using the bio_for_each_segment() API and setting before the bio's bi_iter field to the value of the corresponding btrfs bio container's saved iterator if we are processing a cloned bio in the raid5/6 code (the same code processes both cloned and non-cloned bios). This incorrect iteration of cloned bios was also causing some occasional BUG_ONs when running fstest btrfs/064, which have a trace like the following: [ 6674.416156] ------------[ cut here ]------------ [ 6674.416157] kernel BUG at fs/btrfs/raid56.c:1897! [ 6674.416159] invalid opcode: 0000 [#1] PREEMPT SMP [ 6674.416160] Modules linked in: dm_flakey dm_mod dax ppdev tpm_tis parport_pc tpm_tis_core evdev tpm psmouse sg i2c_piix4 pcspkr parport i2c_core serio_raw button s [ 6674.416184] CPU: 3 PID: 19236 Comm: kworker/u32:10 Not tainted 4.12.0-rc6-btrfs-next-44+ #1 [ 6674.416185] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014 [ 6674.416210] Workqueue: btrfs-endio btrfs_endio_helper [btrfs] [ 6674.416211] task: ffff880147f6c740 task.stack: ffffc90001fb8000 [ 6674.416229] RIP: 0010:__raid_recover_end_io+0x1ac/0x370 [btrfs] [ 6674.416230] RSP: 0018:ffffc90001fbbb90 EFLAGS: 00010217 [ 6674.416231] RAX: ffff8801ff4b4f00 RBX: 0000000000000002 RCX: 0000000000000001 [ 6674.416232] RDX: ffff880099b045d8 RSI: ffffffff81a5f6e0 RDI: 0000000000000004 [ 6674.416232] RBP: ffffc90001fbbbc8 R08: 0000000000000001 R09: 0000000000000001 [ 6674.416233] R10: ffffc90001fbbac8 R11: 0000000000001000 R12: 0000000000000002 [ 6674.416234] R13: ffff880099b045c0 R14: 0000000000000004 R15: ffff88012bff2000 [ 6674.416235] FS: 0000000000000000(0000) GS:ffff88023f2c0000(0000) knlGS:0000000000000000 [ 6674.416235] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 6674.416236] CR2: 00007f28cf282000 CR3: 00000001000c6000 CR4: 00000000000006e0 [ 6674.416239] Call Trace: [ 6674.416259] __raid56_parity_recover+0xfc/0x16e [btrfs] [ 6674.416276] raid56_parity_recover+0x157/0x16b [btrfs] [ 6674.416293] btrfs_map_bio+0xe0/0x259 [btrfs] [ 6674.416310] btrfs_submit_bio_hook+0xbf/0x147 [btrfs] [ 6674.416327] end_bio_extent_readpage+0x27b/0x4a0 [btrfs] [ 6674.416331] bio_endio+0x17d/0x1b3 [ 6674.416346] end_workqueue_fn+0x3c/0x3f [btrfs] [ 6674.416362] btrfs_scrubparity_helper+0x1aa/0x3b8 [btrfs] [ 6674.416379] btrfs_endio_helper+0xe/0x10 [btrfs] [ 6674.416381] process_one_work+0x276/0x4b6 [ 6674.416384] worker_thread+0x1ac/0x266 [ 6674.416386] ? rescuer_thread+0x278/0x278 [ 6674.416387] kthread+0x106/0x10e [ 6674.416389] ? __list_del_entry+0x22/0x22 [ 6674.416391] ret_from_fork+0x27/0x40 [ 6674.416395] Code: 44 89 e2 be 00 10 00 00 ff 15 b0 ab ef ff eb 72 4d 89 e8 89 d9 44 89 e2 be 00 10 00 00 ff 15 a3 ab ef ff eb 5d 41 83 fc ff 74 02 <0f> 0b 49 63 97 [ 6674.416432] RIP: __raid_recover_end_io+0x1ac/0x370 [btrfs] RSP: ffffc90001fbbb90 [ 6674.416434] ---[ end trace 74d56ebe7489dd6a ]--- Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> |
||
Linus Torvalds
|
6618a24ab2 |
Merge branch 'nowait-aio-btrfs-fixup' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fix from David Sterba: "This fixes a user-visible bug introduced by the nowait-aio patches merged in this cycle" * 'nowait-aio-btrfs-fixup' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: nowait aio: Correct assignment of pos |
||
Goldwyn Rodrigues
|
ff0fa73247 |
btrfs: nowait aio: Correct assignment of pos
Assigning pos for usage early messes up in append mode, where the pos is
re-assigned in generic_write_checks(). Assign pos later to get the
correct position to write from iocb->ki_pos.
Since check_can_nocow also uses the value of pos, we shift
generic_write_checks() before check_can_nocow(). Checks with IOCB_DIRECT
are present in generic_write_checks(), so checking for IOCB_NOWAIT is
enough.
Also, put locking sequence in the fast path.
This fixes a user visible bug, as reported:
"apparently breaks several shell related features on my system.
In zsh history stopped working, because no new entries are added
anymore.
I fist noticed the issue when I tried to build mplayer. It uses a shell
script to generate a help_mp.h file:
[...]
Here is a simple testcase:
% echo "foo" >> test
% echo "foo" >> test
% cat test
foo
%
"
Fixes:
|
||
Linus Torvalds
|
088737f44b |
Writeback error handling fixes (pile #2)
-----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJZXhmCAAoJEAAOaEEZVoIVpRkP/1qlYn3pq6d5Kuz84pejOmlL 5jbkS/cOmeTxeUU4+B1xG8Lx7bAk8PfSXQOADbSJGiZd0ug95tJxplFYIGJzR/tG aNMHeu/BVKKhUKORGuKR9rJKtwC839L/qao+yPBo5U3mU4L73rFWX8fxFuhSJ8HR hvkgBu3Hx6GY59CzxJ8iJzj+B+uPSFrNweAk0+0UeWkBgTzEdiGqaXBX4cHIkq/5 hMoCG+xnmwHKbCBsQ5js+YJT+HedZ4lvfjOqGxgElUyjJ7Bkt/IFYOp8TUiu193T tA4UinDjN8A7FImmIBIftrECmrAC9HIGhGZroYkMKbb8ReDR2ikE5FhKEpuAGU3a BXBgX2mPQuArvZWM7qeJCkxV9QJ0u/8Ykbyzo30iPrICyrzbEvIubeB/mDA034+Z Z0/z8C3v7826F3zP/NyaQEojUgRq30McMOIS8GMnx15HJwRsRKlzjfy9Wm4tWhl0 t3nH1jMqAZ7068s6rfh/oCwdgGOwr5o4hW/bnlITzxbjWQUOnZIe7KBxIezZJ2rv OcIwd5qE8PNtpagGj5oUbnjGOTkERAgsMfvPk5tjUNt28/qUlVs2V0aeo47dlcsh oYr8WMOIzw98Rl7Bo70mplLrqLD6nGl0LfXOyUlT4STgLWW4ksmLVuJjWIUxcO/0 yKWjj9wfYRQ0vSUqhsI5 =3Z93 -----END PGP SIGNATURE----- Merge tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux Pull Writeback error handling updates from Jeff Layton: "This pile represents the bulk of the writeback error handling fixes that I have for this cycle. Some of the earlier patches in this pile may look trivial but they are prerequisites for later patches in the series. The aim of this set is to improve how we track and report writeback errors to userland. Most applications that care about data integrity will periodically call fsync/fdatasync/msync to ensure that their writes have made it to the backing store. For a very long time, we have tracked writeback errors using two flags in the address_space: AS_EIO and AS_ENOSPC. Those flags are set when a writeback error occurs (via mapping_set_error) and are cleared as a side-effect of filemap_check_errors (as you noted yesterday). This model really sucks for userland. Only the first task to call fsync (or msync or fdatasync) will see the error. Any subsequent task calling fsync on a file will get back 0 (unless another writeback error occurs in the interim). If I have several tasks writing to a file and calling fsync to ensure that their writes got stored, then I need to have them coordinate with one another. That's difficult enough, but in a world of containerized setups that coordination may even not be possible. But wait...it gets worse! The calls to filemap_check_errors can be buried pretty far down in the call stack, and there are internal callers of filemap_write_and_wait and the like that also end up clearing those errors. Many of those callers ignore the error return from that function or return it to userland at nonsensical times (e.g. truncate() or stat()). If I get back -EIO on a truncate, there is no reason to think that it was because some previous writeback failed, and a subsequent fsync() will (incorrectly) return 0. This pile aims to do three things: 1) ensure that when a writeback error occurs that that error will be reported to userland on a subsequent fsync/fdatasync/msync call, regardless of what internal callers are doing 2) report writeback errors on all file descriptions that were open at the time that the error occurred. This is a user-visible change, but I think most applications are written to assume this behavior anyway. Those that aren't are unlikely to be hurt by it. 3) document what filesystems should do when there is a writeback error. Today, there is very little consistency between them, and a lot of cargo-cult copying. We need to make it very clear what filesystems should do in this situation. To achieve this, the set adds a new data type (errseq_t) and then builds new writeback error tracking infrastructure around that. Once all of that is in place, we change the filesystems to use the new infrastructure for reporting wb errors to userland. Note that this is just the initial foray into cleaning up this mess. There is a lot of work remaining here: 1) convert the rest of the filesystems in a similar fashion. Once the initial set is in, then I think most other fs' will be fairly simple to convert. Hopefully most of those can in via individual filesystem trees. 2) convert internal waiters on writeback to use errseq_t for detecting errors instead of relying on the AS_* flags. I have some draft patches for this for ext4, but they are not quite ready for prime time yet. This was a discussion topic this year at LSF/MM too. If you're interested in the gory details, LWN has some good articles about this: https://lwn.net/Articles/718734/ https://lwn.net/Articles/724307/" * tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux: btrfs: minimal conversion to errseq_t writeback error reporting on fsync xfs: minimal conversion to errseq_t writeback error reporting ext4: use errseq_t based error handling for reporting data writeback errors fs: convert __generic_file_fsync to use errseq_t based reporting block: convert to errseq_t based writeback error tracking dax: set errors in mapping when writeback fails Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error fs: new infrastructure for writeback error handling and reporting lib: add errseq_t type and infrastructure for handling it mm: don't TestClearPageError in __filemap_fdatawait_range mm: clear AS_EIO/AS_ENOSPC when writeback initiation fails jbd2: don't clear and reset errors after waiting on writeback buffer: set errors in mapping at the time that the error occurs fs: check for writeback errors after syncing out buffers in generic_file_fsync buffer: use mapping_set_error instead of setting the flag mm: fix mapping_set_error call in me_pagecache_dirty |
||
Filipe Manana
|
24e52b11e0 |
Btrfs: incremental send, fix invalid memory access
When doing an incremental send, while processing an extent that changed
between the parent and send snapshots and that extent was an inline extent
in the parent snapshot, it's possible to access a memory region beyond
the end of leaf if the inline extent is very small and it is the first
item in a leaf.
An example scenario is described below.
The send snapshot has the following leaf:
leaf 33865728 items 33 free space 773 generation 46 owner 5
fs uuid ab7090d8-dafd-4fb9-9246-723b6d2e2fb7
chunk uuid 2d16478c-c704-4ab9-b574-68bff2281b1f
(...)
item 14 key (335 EXTENT_DATA 0) itemoff 3052 itemsize 53
generation 36 type 1 (regular)
extent data disk byte 12791808 nr 4096
extent data offset 0 nr 4096 ram 4096
extent compression 0 (none)
item 15 key (335 EXTENT_DATA 8192) itemoff 2999 itemsize 53
generation 36 type 1 (regular)
extent data disk byte 138170368 nr 225280
extent data offset 0 nr 225280 ram 225280
extent compression 0 (none)
(...)
And the parent snapshot has the following leaf:
leaf 31272960 items 17 free space 17 generation 31 owner 5
fs uuid ab7090d8-dafd-4fb9-9246-723b6d2e2fb7
chunk uuid 2d16478c-c704-4ab9-b574-68bff2281b1f
item 0 key (335 EXTENT_DATA 0) itemoff 3951 itemsize 44
generation 31 type 0 (inline)
inline extent data size 23 ram_bytes 613 compression 1 (zlib)
(...)
When computing the send stream, it is detected that the extent of inode
335, at file offset 0, and at fs/btrfs/send.c:is_extent_unchanged() we
grab the leaf from the parent snapshot and access the inline extent item.
However, before jumping to the 'out' label, we access the 'offset' and
'disk_bytenr' fields of the extent item, which should not be done for
inline extents since the inlined data starts at the offset of the
'disk_bytenr' field and can be very small. For example accessing the
'offset' field of the file extent item results in the following trace:
[ 599.705368] general protection fault: 0000 [#1] PREEMPT SMP
[ 599.706296] Modules linked in: btrfs psmouse i2c_piix4 ppdev acpi_cpufreq serio_raw parport_pc i2c_core evdev tpm_tis tpm_tis_core sg pcspkr parport tpm button su$
[ 599.709340] CPU: 7 PID: 5283 Comm: btrfs Not tainted 4.10.0-rc8-btrfs-next-46+ #1
[ 599.709340] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 599.709340] task: ffff88023eedd040 task.stack: ffffc90006658000
[ 599.709340] RIP: 0010:read_extent_buffer+0xdb/0xf4 [btrfs]
[ 599.709340] RSP: 0018:ffffc9000665ba00 EFLAGS: 00010286
[ 599.709340] RAX: db73880000000000 RBX: 0000000000000000 RCX: 0000000000000001
[ 599.709340] RDX: ffffc9000665ba60 RSI: db73880000000000 RDI: ffffc9000665ba5f
[ 599.709340] RBP: ffffc9000665ba30 R08: 0000000000000001 R09: ffff88020dc5e098
[ 599.709340] R10: 0000000000001000 R11: 0000160000000000 R12: 6db6db6db6db6db7
[ 599.709340] R13: ffff880000000000 R14: 0000000000000000 R15: ffff88020dc5e088
[ 599.709340] FS: 00007f519555a8c0(0000) GS:ffff88023f3c0000(0000) knlGS:0000000000000000
[ 599.709340] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 599.709340] CR2: 00007f1411afd000 CR3: 0000000235f8e000 CR4: 00000000000006e0
[ 599.709340] Call Trace:
[ 599.709340] btrfs_get_token_64+0x93/0xce [btrfs]
[ 599.709340] ? printk+0x48/0x50
[ 599.709340] btrfs_get_64+0xb/0xd [btrfs]
[ 599.709340] process_extent+0x3a1/0x1106 [btrfs]
[ 599.709340] ? btree_read_extent_buffer_pages+0x5/0xef [btrfs]
[ 599.709340] changed_cb+0xb03/0xb3d [btrfs]
[ 599.709340] ? btrfs_get_token_32+0x7a/0xcc [btrfs]
[ 599.709340] btrfs_compare_trees+0x432/0x53d [btrfs]
[ 599.709340] ? process_extent+0x1106/0x1106 [btrfs]
[ 599.709340] btrfs_ioctl_send+0x960/0xe26 [btrfs]
[ 599.709340] btrfs_ioctl+0x181b/0x1fed [btrfs]
[ 599.709340] ? trace_hardirqs_on_caller+0x150/0x1ac
[ 599.709340] vfs_ioctl+0x21/0x38
[ 599.709340] ? vfs_ioctl+0x21/0x38
[ 599.709340] do_vfs_ioctl+0x611/0x645
[ 599.709340] ? rcu_read_unlock+0x5b/0x5d
[ 599.709340] ? __fget+0x6d/0x79
[ 599.709340] SyS_ioctl+0x57/0x7b
[ 599.709340] entry_SYSCALL_64_fastpath+0x18/0xad
[ 599.709340] RIP: 0033:0x7f51945eec47
[ 599.709340] RSP: 002b:00007ffc21c13e98 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[ 599.709340] RAX: ffffffffffffffda RBX: ffffffff81096459 RCX: 00007f51945eec47
[ 599.709340] RDX: 00007ffc21c13f20 RSI: 0000000040489426 RDI: 0000000000000004
[ 599.709340] RBP: ffffc9000665bf98 R08: 00007f519450d700 R09: 00007f519450d700
[ 599.709340] R10: 00007f519450d9d0 R11: 0000000000000202 R12: 0000000000000046
[ 599.709340] R13: ffffc9000665bf78 R14: 0000000000000000 R15: 00007f5195574040
[ 599.709340] ? trace_hardirqs_off_caller+0x43/0xb1
[ 599.709340] Code: 29 f0 49 39 d8 4c 0f 47 c3 49 03 81 58 01 00 00 44 89 c1 4c 01 c2 4c 29 c3 48 c1 f8 03 49 0f af c4 48 c1 e0 0c 4c 01 e8 48 01 c6 <f3> a4 31 f6 4$
[ 599.709340] RIP: read_extent_buffer+0xdb/0xf4 [btrfs] RSP: ffffc9000665ba00
[ 599.762057] ---[ end trace fe00d7af61b9f49e ]---
This is because the 'offset' field starts at an offset of 37 bytes
(offsetof(struct btrfs_file_extent_item, offset)), has a length of 8
bytes and therefore attemping to read it causes a 1 byte access beyond
the end of the leaf, as the first item's content in a leaf is located
at the tail of the leaf, the item size is 44 bytes and the offset of
that field plus its length (37 + 8 = 45) goes beyond the item's size
by 1 byte.
So fix this by accessing the 'offset' and 'disk_bytenr' fields after
jumping to the 'out' label if we are processing an inline extent. We
move the reading operation of the 'disk_bytenr' field too because we
have the same problem as for the 'offset' field explained above when
the inline data is less then 8 bytes. The access to the 'generation'
field is also moved but just for the sake of grouping access to all
the fields.
Fixes:
|
||
Filipe Manana
|
f59627810e |
Btrfs: incremental send, fix invalid path for link commands
In some scenarios an incremental send stream can contain link commands with an invalid target path. Such scenarios happen after moving some directory inode A, renaming a regular file inode B into the old name of inode A and finally creating a new hard link for inode B at directory inode A. Consider the following example scenario where this issue happens. Parent snapshot: . (ino 256) | |--- dir1/ (ino 257) | |--- dir2/ (ino 258) | |--- dir3/ (ino 259) | |--- file1 (ino 261) | |--- dir4/ (ino 262) | |--- dir5/ (ino 260) Send snapshot: . (ino 256) | |--- dir1/ (ino 257) |--- dir2/ (ino 258) | |--- dir3/ (ino 259) | |--- dir4 (ino 261) | |--- dir6/ (ino 263) |--- dir44/ (ino 262) |--- file11 (ino 261) |--- dir55/ (ino 260) When attempting to apply the corresponding incremental send stream, a link command contains an invalid target path which makes the receiver fail. The following is the verbose output of the btrfs receive command: receiving snapshot mysnap2 uuid=90076fe6-5ba6-e64a-9321-9279670ed16b (...) utimes utimes dir1 utimes dir1/dir2/dir3 utimes rename dir1/dir2/dir3/dir4 -> o262-7-0 link dir1/dir2/dir3/dir4 -> dir1/dir2/dir3/file1 link dir1/dir2/dir3/dir4/file11 -> dir1/dir2/dir3/file1 ERROR: link dir1/dir2/dir3/dir4/file11 -> dir1/dir2/dir3/file1 failed: Not a directory The following steps happen during the computation of the incremental send stream the lead to this issue: 1) When processing inode 261, we orphanize inode 262 due to a name/location collision with one of the new hard links for inode 261 (created in the second step below). 2) We create one of the 2 new hard links for inode 261, the one whose location is at "dir1/dir2/dir3/dir4". 3) We then attempt to create the other new hard link for inode 261, which has inode 262 as its parent directory. Because the path for this new hard link was computed before we started processing the new references (hard links), it reflects the old name/location of inode 262, that is, it does not account for the orphanization step that happened when we started processing the new references for inode 261, whence it is no longer valid, causing the receiver to fail. So fix this issue by recomputing the full path of new references if we ended up orphanizing other inodes which are directories. A test case for fstests follows soon. Signed-off-by: Filipe Manana <fdmanana@suse.com> |
||
Linus Torvalds
|
a4c20b9a57 |
Merge branch 'for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu updates from Tejun Heo: "These are the percpu changes for the v4.13-rc1 merge window. There are a couple visibility related changes - tracepoints and allocator stats through debugfs, along with __ro_after_init markings and a cosmetic rename in percpu_counter. Please note that the simple O(#elements_in_the_chunk) area allocator used by percpu allocator is again showing scalability issues, primarily with bpf allocating and freeing large number of counters. Dennis is working on the replacement allocator and the percpu allocator will be seeing increased churns in the coming cycles" * 'for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: percpu: fix static checker warnings in pcpu_destroy_chunk percpu: fix early calls for spinlock in pcpu_stats percpu: resolve err may not be initialized in pcpu_alloc percpu_counter: Rename __percpu_counter_add to percpu_counter_add_batch percpu: add tracepoint support for percpu memory percpu: expose statistics about percpu memory via debugfs percpu: migrate percpu data structures to internal header percpu: add missing lockdep_assert_held to func pcpu_free_area mark most percpu globals as __ro_after_init |
||
Jeff Layton
|
333427a505 |
btrfs: minimal conversion to errseq_t writeback error reporting on fsync
Just check and advance the errseq_t in the file before returning, and use an errseq_t based check for writeback errors. Other internal callers of filemap_* functions are left as-is. Signed-off-by: Jeff Layton <jlayton@redhat.com> |
||
David Howells
|
c3d98ea082 |
VFS: Don't use save/replace_mount_options if not using generic_show_options
btrfs, debugfs, reiserfs and tracefs call save_mount_options() and reiserfs calls replace_mount_options(), but they then implement their own ->show_options() methods and don't touch s_options, rendering the saved options unnecessary. I'm trying to eliminate s_options to make it easier to implement a context-based mount where the mount options can be passed individually over a file descriptor. Remove the calls to save/replace_mount_options() call in these cases. Signed-off-by: David Howells <dhowells@redhat.com> cc: Chris Mason <clm@fb.com> cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> cc: Steven Rostedt <rostedt@goodmis.org> cc: linux-btrfs@vger.kernel.org cc: reiserfs-devel@vger.kernel.org Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Linus Torvalds
|
8c27cb3566 |
Merge branch 'for-4.13-part1' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba: "The core updates improve error handling (mostly related to bios), with the usual incremental work on the GFP_NOFS (mis)use removal, refactoring or cleanups. Except the two top patches, all have been in for-next for an extensive amount of time. User visible changes: - statx support - quota override tunable - improved compression thresholds - obsoleted mount option alloc_start Core updates: - bio-related updates: - faster bio cloning - no allocation failures - preallocated flush bios - more kvzalloc use, memalloc_nofs protections, GFP_NOFS updates - prep work for btree_inode removal - dir-item validation - qgoup fixes and updates - cleanups: - removed unused struct members, unused code, refactoring - argument refactoring (fs_info/root, caller -> callee sink) - SEARCH_TREE ioctl docs" * 'for-4.13-part1' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (115 commits) btrfs: Remove false alert when fiemap range is smaller than on-disk extent btrfs: Don't clear SGID when inheriting ACLs btrfs: fix integer overflow in calc_reclaim_items_nr btrfs: scrub: fix target device intialization while setting up scrub context btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges btrfs: qgroup: Introduce extent changeset for qgroup reserve functions btrfs: qgroup: Fix qgroup reserved space underflow caused by buffered write and quotas being enabled btrfs: qgroup: Return actually freed bytes for qgroup release or free data btrfs: qgroup: Cleanup btrfs_qgroup_prepare_account_extents function btrfs: qgroup: Add quick exit for non-fs extents Btrfs: rework delayed ref total_bytes_pinned accounting Btrfs: return old and new total ref mods when adding delayed refs Btrfs: always account pinned bytes when dropping a tree block ref Btrfs: update total_bytes_pinned when pinning down extents Btrfs: make BUG_ON() in add_pinned_bytes() an ASSERT() Btrfs: make add_pinned_bytes() take an s64 num_bytes instead of u64 btrfs: fix validation of XATTR_ITEM dir items btrfs: Verify dir_item in iterate_object_props btrfs: Check name_len before in btrfs_del_root_ref btrfs: Check name_len before reading btrfs_get_name ... |
||
Linus Torvalds
|
c6b1e36c8f |
Merge branch 'for-4.13/block' of git://git.kernel.dk/linux-block
Pull core block/IO updates from Jens Axboe: "This is the main pull request for the block layer for 4.13. Not a huge round in terms of features, but there's a lot of churn related to some core cleanups. Note this depends on the UUID tree pull request, that Christoph already sent out. This pull request contains: - A series from Christoph, unifying the error/stats codes in the block layer. We now use blk_status_t everywhere, instead of using different schemes for different places. - Also from Christoph, some cleanups around request allocation and IO scheduler interactions in blk-mq. - And yet another series from Christoph, cleaning up how we handle and do bounce buffering in the block layer. - A blk-mq debugfs series from Bart, further improving on the support we have for exporting internal information to aid debugging IO hangs or stalls. - Also from Bart, a series that cleans up the request initialization differences across types of devices. - A series from Goldwyn Rodrigues, allowing the block layer to return failure if we will block and the user asked for non-blocking. - Patch from Hannes for supporting setting loop devices block size to that of the underlying device. - Two series of patches from Javier, fixing various issues with lightnvm, particular around pblk. - A series from me, adding support for write hints. This comes with NVMe support as well, so applications can help guide data placement on flash to improve performance, latencies, and write amplification. - A series from Ming, improving and hardening blk-mq support for stopping/starting and quiescing hardware queues. - Two pull requests for NVMe updates. Nothing major on the feature side, but lots of cleanups and bug fixes. From the usual crew. - A series from Neil Brown, greatly improving the bio rescue set support. Most notably, this kills the bio rescue work queues, if we don't really need them. - Lots of other little bug fixes that are all over the place" * 'for-4.13/block' of git://git.kernel.dk/linux-block: (217 commits) lightnvm: pblk: set line bitmap check under debug lightnvm: pblk: verify that cache read is still valid lightnvm: pblk: add initialization check lightnvm: pblk: remove target using async. I/Os lightnvm: pblk: use vmalloc for GC data buffer lightnvm: pblk: use right metadata buffer for recovery lightnvm: pblk: schedule if data is not ready lightnvm: pblk: remove unused return variable lightnvm: pblk: fix double-free on pblk init lightnvm: pblk: fix bad le64 assignations nvme: Makefile: remove dead build rule blk-mq: map all HWQ also in hyperthreaded system nvmet-rdma: register ib_client to not deadlock in device removal nvme_fc: fix error recovery on link down. nvmet_fc: fix crashes on bad opcodes nvme_fc: Fix crash when nvme controller connection fails. nvme_fc: replace ioabort msleep loop with completion nvme_fc: fix double calls to nvme_cleanup_cmd() nvme-fabrics: verify that a controller returns the correct NQN nvme: simplify nvme_dev_attrs_are_visible ... |
||
Qu Wenruo
|
848c23b78f |
btrfs: Remove false alert when fiemap range is smaller than on-disk extent
Commit |
||
Jan Kara
|
b7f8a09f80 |
btrfs: Don't clear SGID when inheriting ACLs
When new directory 'DIR1' is created in a directory 'DIR0' with SGID bit
set, DIR1 is expected to have SGID bit set (and owning group equal to
the owning group of 'DIR0'). However when 'DIR0' also has some default
ACLs that 'DIR1' inherits, setting these ACLs will result in SGID bit on
'DIR1' to get cleared if user is not member of the owning group.
Fix the problem by moving posix_acl_update_mode() out of
__btrfs_set_acl() into btrfs_set_acl(). That way the function will not be
called when inheriting ACLs which is what we want as it prevents SGID
bit clearing and the mode has been properly set by posix_acl_create()
anyway.
Fixes:
|
||
Chris Mason
|
6374e57ad8 |
btrfs: fix integer overflow in calc_reclaim_items_nr
Dave Jones hit a WARN_ON(nr < 0) in btrfs_wait_ordered_roots() with v4.12-rc6. This was because commit |
||
David Sterba
|
ded56184a5 |
btrfs: scrub: fix target device intialization while setting up scrub context
The commit "btrfs: scrub: inline helper scrub_setup_wr_ctx" inlined a helper but wrongly sets up the target device. Incidentally there's a local variable with the same name as a parameter in the previous function, so this got caught during runtime as crash in test btrfs/027. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
bc42bda223 |
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges
[BUG] For the following case, btrfs can underflow qgroup reserved space at an error path: (Page size 4K, function name without "btrfs_" prefix) Task A | Task B ---------------------------------------------------------------------- Buffered_write [0, 2K) | |- check_data_free_space() | | |- qgroup_reserve_data() | | Range aligned to page | | range [0, 4K) <<< | | 4K bytes reserved <<< | |- copy pages to page cache | | Buffered_write [2K, 4K) | |- check_data_free_space() | | |- qgroup_reserved_data() | | Range alinged to page | | range [0, 4K) | | Already reserved by A <<< | | 0 bytes reserved <<< | |- delalloc_reserve_metadata() | | And it *FAILED* (Maybe EQUOTA) | |- free_reserved_data_space() |- qgroup_free_data() Range aligned to page range [0, 4K) Freeing 4K (Special thanks to Chandan for the detailed report and analyse) [CAUSE] Above Task B is freeing reserved data range [0, 4K) which is actually reserved by Task A. And at writeback time, page dirty by Task A will go through writeback routine, which will free 4K reserved data space at file extent insert time, causing the qgroup underflow. [FIX] For btrfs_qgroup_free_data(), add @reserved parameter to only free data ranges reserved by previous btrfs_qgroup_reserve_data(). So in above case, Task B will try to free 0 byte, so no underflow. Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
364ecf3651 |
btrfs: qgroup: Introduce extent changeset for qgroup reserve functions
Introduce a new parameter, struct extent_changeset for btrfs_qgroup_reserved_data() and its callers. Such extent_changeset was used in btrfs_qgroup_reserve_data() to record which range it reserved in current reserve, so it can free it in error paths. The reason we need to export it to callers is, at buffered write error path, without knowing what exactly which range we reserved in current allocation, we can free space which is not reserved by us. This will lead to qgroup reserved space underflow. Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
a12b877b55 |
btrfs: qgroup: Fix qgroup reserved space underflow caused by buffered write and quotas being enabled
[BUG] Under the following case, we can underflow qgroup reserved space. Task A | Task B --------------------------------------------------------------- Quota disabled | Buffered write | |- btrfs_check_data_free_space() | | *NO* qgroup space is reserved | | since quota is *DISABLED* | |- All pages are copied to page | cache | | Enable quota | Quota scan finished | | Sync_fs | |- run_delalloc_range | |- Write pages | |- btrfs_finish_ordered_io | |- insert_reserved_file_extent | |- btrfs_qgroup_release_data() | Since no qgroup space is reserved in Task A, we underflow qgroup reserved space This can be detected by fstest btrfs/104. [CAUSE] In insert_reserved_file_extent() we tell qgroup to release the @ram_bytes size of qgroup reserved_space in all cases. And btrfs_qgroup_release_data() will check if quotas are enabled. However in the above case, the buffered write happens before quota is enabled, so we don't have the reserved space for that range. [FIX] In insert_reserved_file_extent(), we tell qgroup to release the acctual byte number it released. In the above case, since we don't have the reserved space, we tell qgroups to release 0 byte, so the problem can be fixed. And thanks to the @reserved parameter introduced by the qgroup rework, and previous patch to return released bytes, the fix can be as small as 10 lines. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> [ changelog updates ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
7bc329c183 |
btrfs: qgroup: Return actually freed bytes for qgroup release or free data
btrfs_qgroup_release/free_data() only returns 0 or a negative error number (ENOMEM is the only possible error). This is normally good enough, but sometimes we need the exact byte count it freed/released. Change it to return actually released/freed bytenr number instead of 0 for success. And slightly modify related extent_changeset structure, since in btrfs one no-hole data extent won't be larger than 128M, so "unsigned int" is large enough for the use case. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
d1b8b94a2b |
btrfs: qgroup: Cleanup btrfs_qgroup_prepare_account_extents function
Quite a lot of qgroup corruption happens due to wrong time of calling btrfs_qgroup_prepare_account_extents(). Since the safest time is to call it just before btrfs_qgroup_account_extents(), there is no need to separate these 2 functions. Merging them will make code cleaner and less bug prone. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> [ changelog and comment adjustments ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Qu Wenruo
|
5edfd9fdc6 |
btrfs: qgroup: Add quick exit for non-fs extents
Modify btrfs_qgroup_account_extent() to exit quicker for non-fs extents. The quick exit condition is: 1) The extent belongs to a non-fs tree Only fs-tree extents can affect qgroup numbers and is the only case where extent can be shared between different trees. Although strictly speaking extent in data-reloc or tree-reloc tree can be shared, data/tree-reloc root won't appear in the result of btrfs_find_all_roots(), so we can ignore such case. So we can check the first root in old_roots/new_roots ulist. - if we find the 1st root is a not a fs/subvol root, then we can skip the extent - if we find the 1st root is a fs/subvol root, then we must continue calculation OR 2) both 'nr_old_roots' and 'nr_new_roots' are 0 This means either such extent got allocated then freed in current transaction or it's a new reloc tree extent, whose nr_new_roots is 0. Either way it won't affect qgroup accounting and can be skipped safely. Such quick exit can make trace output more quite and less confusing: (example with fs uuid and time stamp removed) Before: ------ add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0 btrfs_qgroup_account_extent: bytenr=29556736 num_bytes=16384 nr_old_roots=0 nr_new_roots=1 ------ Extent tree block will trigger btrfs_qgroup_account_extent() trace point while no qgroup number is changed, as extent tree won't affect qgroup accounting. After: ------ add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0 ------ Now such unrelated extent won't trigger btrfs_qgroup_account_extent() trace point, making the trace less noisy. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> [ changelog and comment adjustments ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Omar Sandoval
|
d7eae3403f |
Btrfs: rework delayed ref total_bytes_pinned accounting
The total_bytes_pinned counter is completely broken when accounting delayed refs: - If two drops for the same extent are merged, we will decrement total_bytes_pinned twice but only increment it once. - If an add is merged into a drop or vice versa, we will decrement the total_bytes_pinned counter but never increment it. - If multiple references to an extent are dropped, we will account it multiple times, potentially vastly over-estimating the number of bytes that will be freed by a commit and doing unnecessary work when we're close to ENOSPC. The last issue is relatively minor, but the first two make the total_bytes_pinned counter leak or underflow very often. These accounting issues were introduced in |
||
Omar Sandoval
|
7be07912b3 |
Btrfs: return old and new total ref mods when adding delayed refs
We need this to decide when to account pinned bytes. Signed-off-by: Omar Sandoval <osandov@fb.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Omar Sandoval
|
0a16c7d7ae |
Btrfs: always account pinned bytes when dropping a tree block ref
Currently, we only increment total_bytes_pinned in btrfs_free_tree_block() when dropping the last reference on the block. However, when the delayed ref is run later, we will decrement total_bytes_pinned regardless of whether it was the last reference or not. This causes the counter to underflow when the reference we dropped was not the last reference. Fix it by incrementing the counter unconditionally, which is what btrfs_free_extent() does. This makes total_bytes_pinned an overestimate when references to shared extents are dropped, but in the worst case this will just make us try to commit the transaction to try to free up space and find we didn't free enough. Signed-off-by: Omar Sandoval <osandov@fb.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Omar Sandoval
|
4da8b76d34 |
Btrfs: update total_bytes_pinned when pinning down extents
The extents marked in pin_down_extent() will be unpinned later in unpin_extent_range(), which decrements total_bytes_pinned. pin_down_extent() must increment the counter to avoid underflowing it. Also adjust btrfs_free_tree_block() to avoid accounting for the same extent twice. Signed-off-by: Omar Sandoval <osandov@fb.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Omar Sandoval
|
55e8196a57 |
Btrfs: make BUG_ON() in add_pinned_bytes() an ASSERT()
The value of flags is one of DATA/METADATA/SYSTEM, they must exist at when add_pinned_bytes is called. Signed-off-by: Omar Sandoval <osandov@fb.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Reviewed-by: David Sterba <dsterba@suse.com> [ added changelog ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Omar Sandoval
|
0d9f824df3 |
Btrfs: make add_pinned_bytes() take an s64 num_bytes instead of u64
There are a few places where we pass in a negative num_bytes, so make it signed for clarity. Also move it up in the file since later patches will need it there. Signed-off-by: Omar Sandoval <osandov@fb.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
1164a9fb9c |
btrfs: fix validation of XATTR_ITEM dir items
The XATTR_ITEM is a type of a directory item so we use the common validator helper. Unlike other dir items, it can have data. The way the name len validation is currently implemented does not reflect that. We'd have to adjust by the data_len when comparing the read and item limits. However, this will not work for multi-item xattr dir items. Example from tree dump of generic/337: item 7 key (257 XATTR_ITEM 751495445) itemoff 15667 itemsize 147 location key (0 UNKNOWN.0 0) type XATTR transid 8 data_len 3 name_len 11 name: user.foobar data 123 location key (0 UNKNOWN.0 0) type XATTR transid 8 data_len 6 name_len 13 name: user.WvG1c1Td data qwerty location key (0 UNKNOWN.0 0) type XATTR transid 8 data_len 5 name_len 19 name: user.J3__T_Km3dVsW_ data hello At the point of btrfs_is_name_len_valid call we don't have access to the data_len value of the 2nd and 3rd sub-item. So simple btrfs_dir_data_len(leaf, di) would always return 3, although we'd need to get 6 and 5 respectively to get the claculations right. (read_end + name_len + data_len vs item_end) We'd have to also pass data_len externally, which is not point of the name validation. The last check is supposed to test if there's at least one dir item space after the one we're processing. I don't think this is particularly useful, validation of the next item would catch that too. So the check is removed and we don't weaken the validation. Now tests btrfs/048, btrfs/053, generic/273 and generic/337 pass. Signed-off-by: David Sterba <dsterba@suse.com> |
||
Jens Axboe
|
e6959b9350 |
btrfs: add support for passing in write hints for buffered writes
Reviewed-by: Andreas Dilger <adilger@dilger.ca> Signed-off-by: Chris Mason <clm@fb.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Su Yue
|
fbc326159a |
btrfs: Verify dir_item in iterate_object_props
Call verify_dir_item before memcmp_extent_buffer reading name from dir_item. Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Su Yue
|
64c7b01446 |
btrfs: Check name_len before in btrfs_del_root_ref
btrfs_del_root_ref calls btrfs_search_slot and reads name from root_ref. Call btrfs_is_name_len_valid before memcmp. Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Su Yue
|
488d7c4566 |
btrfs: Check name_len before reading btrfs_get_name
In btrfs_get_name, there's btrfs_search_slot and reads name from inode_ref/root_ref. Call btrfs_is_name_len_valid in btrfs_get_name. Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Su Yue
|
59b0a7f2c7 |
btrfs: Check name_len before read in iterate_dir_item
Since iterate_dir_item checks name_len in its own way, so use btrfs_is_name_len_valid not 'verify_dir_item' to make more strict name_len check. Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> [ switched ENAMETOOLONG to EIO ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Su Yue
|
3c1d418448 |
btrfs: Check name_len in btrfs_check_ref_name_override
In btrfs_log_inode, btrfs_search_forward gets the buffer and then btrfs_check_ref_name_override will read name from ref/extref for the first time. Call btrfs_is_name_len_valid before reading name. Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Su Yue
|
8ee8c2d62d |
btrfs: Verify dir_item in replay_xattr_deletes
replay_xattr_deletes calls btrfs_search_slot to get buffer and reads name. Call verify_dir_item to check name_len in replay_xattr_deletes to avoid reading out of boundary. Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Su Yue
|
26a836cec2 |
btrfs: Check name_len on add_inode_ref call path
replay_one_buffer first reads buffers and dispatches items accroding to the item type. In this patch, add_inode_ref handles inode_ref and inode_extref. Then add_inode_ref calls ref_get_fields and extref_get_fields to read ref/extref name for the first time. So checking name_len before reading those two is fine. add_inode_ref also calls inode_in_dir to match ref/extref in parent_dir. The call graph includes btrfs_match_dir_item_name to read dir_item name in the parent dir. Checking first dir_item is not enough. Change it to verify every dir_item while doing matches. Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Su Yue
|
e79a33270d |
btrfs: Check name_len with boundary in verify dir_item
Originally, verify_dir_item verifies name_len of dir_item with fixed values but not item boundary. If corrupted name_len was not bigger than the fixed value, for example 255, the function will think the dir_item is fine. And then reading beyond boundary will cause crash. Example: 1. Corrupt one dir_item name_len to be 255. 2. Run 'ls -lar /mnt/test/ > /dev/null' dmesg: [ 48.451449] BTRFS info (device vdb1): disk space caching is enabled [ 48.451453] BTRFS info (device vdb1): has skinny extents [ 48.489420] general protection fault: 0000 [#1] SMP [ 48.489571] Modules linked in: ext4 jbd2 mbcache btrfs xor raid6_pq [ 48.489716] CPU: 1 PID: 2710 Comm: ls Not tainted 4.10.0-rc1 #5 [ 48.489853] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-20170228_101828-anatol 04/01/2014 [ 48.490008] task: ffff880035df1bc0 task.stack: ffffc90004800000 [ 48.490008] RIP: 0010:read_extent_buffer+0xd2/0x190 [btrfs] [ 48.490008] RSP: 0018:ffffc90004803d98 EFLAGS: 00010202 [ 48.490008] RAX: 000000000000001b RBX: 000000000000001b RCX: 0000000000000000 [ 48.490008] RDX: ffff880079dbf36c RSI: 0005080000000000 RDI: ffff880079dbf368 [ 48.490008] RBP: ffffc90004803dc8 R08: ffff880078e8cc48 R09: ffff880000000000 [ 48.490008] R10: 0000160000000000 R11: 0000000000001000 R12: ffff880079dbf288 [ 48.490008] R13: ffff880078e8ca88 R14: 0000000000000003 R15: ffffc90004803e20 [ 48.490008] FS: 00007fef50c60800(0000) GS:ffff88007d400000(0000) knlGS:0000000000000000 [ 48.490008] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 48.490008] CR2: 000055f335ac2ff8 CR3: 000000007356d000 CR4: 00000000001406e0 [ 48.490008] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 48.490008] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 48.490008] Call Trace: [ 48.490008] btrfs_real_readdir+0x3b7/0x4a0 [btrfs] [ 48.490008] iterate_dir+0x181/0x1b0 [ 48.490008] SyS_getdents+0xa7/0x150 [ 48.490008] ? fillonedir+0x150/0x150 [ 48.490008] entry_SYSCALL_64_fastpath+0x18/0xad [ 48.490008] RIP: 0033:0x7fef5032546b [ 48.490008] RSP: 002b:00007ffeafcdb830 EFLAGS: 00000206 ORIG_RAX: 000000000000004e [ 48.490008] RAX: ffffffffffffffda RBX: 00007fef5061db38 RCX: 00007fef5032546b [ 48.490008] RDX: 0000000000008000 RSI: 000055f335abaff0 RDI: 0000000000000003 [ 48.490008] RBP: 00007fef5061dae0 R08: 00007fef5061db48 R09: 0000000000000000 [ 48.490008] R10: 000055f335abafc0 R11: 0000000000000206 R12: 00007fef5061db38 [ 48.490008] R13: 0000000000008040 R14: 00007fef5061db38 R15: 000000000000270e [ 48.490008] RIP: read_extent_buffer+0xd2/0x190 [btrfs] RSP: ffffc90004803d98 [ 48.499455] ---[ end trace 321920d8e8339505 ]--- Fix it by adding a parameter @slot and check name_len with item boundary by calling btrfs_is_name_len_valid. Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com> rev Signed-off-by: David Sterba <dsterba@suse.com> |
||
Su Yue
|
19c6dcbfa7 |
btrfs: Introduce btrfs_is_name_len_valid to avoid reading beyond boundary
Introduce function btrfs_is_name_len_valid. The function compares parameter @name_len with item boundary then returns true if name_len is valid. Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> [ s/btrfs_leaf_data/BTRFS_LEAF_DATA_OFFSET/ ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
66b4993e95 |
btrfs: move dev stats accounting out of wait_dev_flush
We should really just wait in wait_dev_flush and let the caller decide what to do with the error value. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
2980d5745f |
btrfs: account as waiting for IO, while waiting fot the flush bio completion
Similar to what submit_bio_wait does, we should account for IO while waiting for a bio completion. This has marginal visible effects, flush bio is short-lived. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
David Sterba
|
e0ae999414 |
btrfs: preallocate device flush bio
For devices that support flushing, we allocate a bio, submit, wait for it and then free it. The bio allocation does not fail so ENOMEM is not a problem but we still may unnecessarily stress the allocation subsystem. Instead, we can allocate the bio at the same time we allocate the device and reuse it each time we need to flush the barriers. The bio is reset before each use. Reference counting is simplified to just device allocation (get) and freeing (put). The bio used to be submitted through the integrity checker which will find out that bio has no data attached and call submit_bio. Status of the bio in flight needs to be tracked separately in case the device caches get switched off between write and wait. Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
fdb1388994 |
Btrfs: incremental send, fix invalid path for unlink commands
An incremental send can contain unlink operations with an invalid target path when we rename some directory inode A, then rename some file inode B to the old name of inode A and directory inode A is an ancestor of inode B in the parent snapshot (but not anymore in the send snapshot). Consider the following example scenario where this issue happens. Parent snapshot: . (ino 256) | |--- dir1/ (ino 257) |--- dir2/ (ino 258) | |--- file1 (ino 259) | |--- file3 (ino 261) | |--- dir3/ (ino 262) |--- file22 (ino 260) |--- dir4/ (ino 263) Send snapshot: . (ino 256) | |--- dir1/ (ino 257) |--- dir2/ (ino 258) |--- dir3 (ino 260) |--- file3/ (ino 262) |--- dir4/ (ino 263) |--- file11 (ino 269) |--- file33 (ino 261) When attempting to apply the corresponding incremental send stream, an unlink operation contains an invalid path which makes the receiver fail. The following is verbose output of the btrfs receive command: receiving snapshot snap2 uuid=7d5450da-a573-e043-a451-ec85f4879f0f (...) utimes utimes dir1 utimes dir1/dir2 link dir1/dir3/dir4/file11 -> dir1/dir2/file1 unlink dir1/dir2/file1 utimes dir1/dir2 truncate dir1/dir3/dir4/file11 size=0 utimes dir1/dir3/dir4/file11 rename dir1/dir3 -> o262-7-0 link dir1/dir3 -> o262-7-0/file22 unlink dir1/dir3/file22 ERROR: unlink dir1/dir3/file22 failed. Not a directory The following steps happen during the computation of the incremental send stream the lead to this issue: 1) Before we start processing the new and deleted references for inode 260, we compute the full path of the deleted reference ("dir1/dir3/file22") and cache it in the list of deleted references for our inode. 2) We then start processing the new references for inode 260, for which there is only one new, located at "dir1/dir3". When processing this new reference, we check that inode 262, which was not yet processed, collides with the new reference and because of that we orphanize inode 262 so its new full path becomes "o262-7-0". 3) After the orphanization of inode 262, we create the new reference for inode 260 by issuing a link command with a target path of "dir1/dir3" and a source path of "o262-7-0/file22". 4) We then start processing the deleted references for inode 260, for which there is only one with the base name of "file22", and issue an unlink operation containing the target path computed at step 1, which is wrong because that path no longer exists and should be replaced with "o262-7-0/file22". So fix this issue by recomputing the full path of deleted references if when we processed the new references for an inode we ended up orphanizing any other inode that is an ancestor of our inode in the parent snapshot. A test case for fstests follows soon. Signed-off-by: Filipe Manana <fdmanana@suse.com> [ adjusted after prev patch removed fs_path::dir_path and dir_path_len ] Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
72c3668fed |
Btrfs: send, fix invalid path after renaming and linking file
Currently an incremental snapshot can generate link operations which contain an invalid target path. Such case happens when in the send snapshot a file was renamed, a new hard link added for it and some other inode (with a lower number) got renamed to the former name of that file. Example: Parent snapshot . (ino 256) | |--- f1 (ino 257) |--- f2 (ino 258) |--- f3 (ino 259) Send snapshot . (ino 256) | |--- f2 (ino 257) |--- f3 (ino 258) |--- f4 (ino 259) |--- f5 (ino 258) The following steps happen when computing the incremental send stream: 1) When processing inode 257, inode 258 is orphanized (renamed to "o258-7-0"), because its current reference has the same name as the new reference for inode 257; 2) When processing inode 258, we iterate over all its new references, which have the names "f3" and "f5". The first iteration sees name "f5" and renames the inode from its orphan name ("o258-7-0") to "f5", while the second iteration sees the name "f3" and, incorrectly, issues a link operation with a target name matching the orphan name, which no longer exists. The first iteration had reset the current valid path of the inode to "f5", but in the second iteration we lost it because we found another inode, with a higher number of 259, which has a reference named "f3" as well, so we orphanized inode 259 and recomputed the current valid path of inode 258 to its old orphan name because inode 259 could be an ancestor of inode 258 and therefore the current valid path could contain the pre-orphanization name of inode 259. However in this case inode 259 is not an ancestor of inode 258 so the current valid path should not be recomputed. This makes the receiver fail with the following error: ERROR: link f3 -> o258-7-0 failed: No such file or directory So fix this by not recomputing the current valid path for an inode whenever we find a colliding reference from some not yet processed inode (inode number higher then the one currently being processed), unless that other inode is an ancestor of the one we are currently processing. A test case for fstests will follow soon. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
Filipe Manana
|
609805d809 |
Btrfs: fix invalid extent maps due to hole punching
While punching a hole in a range that is not aligned with the sector size (currently the same as the page size) we can end up leaving an extent map in memory with a length that is smaller then the sector size or with a start offset that is not aligned to the sector size. Both cases are not expected and can lead to problems. This issue is easily detected after the patch from commit |
||
Jeff Mahoney
|
cddf3b2cb3 |
btrfs: add cond_resched to btrfs_qgroup_trace_leaf_items
On an uncontended system, we can end up hitting soft lockups while doing replace_path. At the core, and frequently called is btrfs_qgroup_trace_leaf_items, so it makes sense to add a cond_resched there. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |