This implements a bit of rework for the PMB code, which permits us to
kill off the legacy PMB mode completely. Rather than trusting the boot
loader to do the right thing, we do a quick verification of the PMB
contents to determine whether to have the kernel setup the initial
mappings or whether it needs to mangle them later on instead.
If we're booting from legacy mappings, the kernel will now take control
of them and make them match the kernel's initial mapping configuration.
This is accomplished by breaking the initialization phase out in to
multiple steps: synchronization, merging, and resizing. With the recent
rework, the synchronization code establishes page links for compound
mappings already, so we build on top of this for promoting mappings and
reclaiming unused slots.
At the same time, the changes introduced for the uncached helpers also
permit us to dynamically resize the uncached mapping without any
particular headaches. The smallest page size is more than sufficient for
mapping all of kernel text, and as we're careful not to jump to any far
off locations in the setup code the mapping can safely be resized
regardless of whether we are executing from it or not.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
There are lots of registers that can only be updated from the uncached
mapping, so we add some helpers for those cases in order to make it
easier to ensure that we only make the jump when it's absolutely
necessary.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This implements some locking for the PMB code. A high level rwlock is
added for dealing with rw accesses on the entry map while a per-entry
data structure spinlock is added to deal with the PMB entry changing out
from underneath us.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This plugs in entry sizing support for existing mappings and then builds
on top of that for linking together entries that are mapping contiguous
areas. This will ultimately permit us to coalesce mappings and promote
head pages while reclaiming PMB slots for dynamic remapping.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This adds some helper routines for uncached mapping support. This
simplifies some of the cases where we need to check the uncached mapping
boundaries in addition to giving us a centralized location for building
more complex manipulation on top of.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Some overdue cleanup of the PMB code, killing off unused functionality
and duplication sprinkled about the tree.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Both the store queue API and the PMB remapping take unsigned long for
their pgprot flags, which cuts off the extended protection bits. In the
case of the PMB this isn't really a problem since the cache attribute
bits that we care about are all in the lower 32-bits, but we do it just
to be safe. The store queue remapping on the other hand depends on the
extended prot bits for enabling userspace access to the mappings.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The __va()/__pa() offsets and the boot memory offsets are consistent for
all PMB users, so there is no need to special case these for legacy PMB.
Kill the special casing off and depend on CONFIG_PMB across the board.
This also fixes up yet another addressing bug for sh64.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This merges the code for iterating over the legacy PMB mappings and the
code for synchronizing software state with the hardware mappings. There's
really no reason to do the same iteration twice, and this also buys us
the legacy entry logging facility for the dynamic PMB case.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The linker script offsets were broken by the recent 29/32-bit
integration, so this fixes it up for sh64.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This splits out the uncached mapping support under its own config option,
presently only used by 29-bit mode and 32-bit + PMB. This will make it
possible to optionally add an uncached mapping on sh64 as well as booting
without an uncached mapping for 32-bit.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Now that the DWARF unwinder is being used to provide perf callstacks
unwinding speed is an issue. It is no longer being used in exceptional
circumstances where we don't care about runtime performance, e.g. when
panicing, so it makes sense improve performance is possible.
With this patch I saw a 42% improvement in unwind time when calling
return_address(1). Greater improvements will be seen as the number of
levels unwound increases as each unwind is now cheaper.
Note that insertion time has doubled but that's just the price we pay
for keeping the trees balanced. However, this is a one-time cost for
kernel boot/module load and so the improvements in lookup time dominate
the extra time we spend keeping the trees balanced.
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Tested to work with a SIU ASoC driver on sh7722 (migor).
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Both the original arch/sh/drivers/dma/dma-sh.c and the new SH dmaengine drivers
do not take into account bits 3:2 of the Transfer Size field in the CHCR
register, besides, bit-field defines set bit 2, but the mask only passes bits
1:0 through. TS_16BLK and TS_32BLK macros are bogus too. This patch fixes all
these issues for sh7722 and sh7724, other CPUs stay unchanged and might need to
be fixed too.
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This adds support for handling early PERR/SERR triggering in between
controller registration and the initial bus scan. Buggy cards end up
asserting these as soon as the M66EN scan is undertaken, resulting in
an early crash.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The SH7780 PCI controller supports 3 different ranges of PCI memory in
addition to its PCI I/O window. In the case of 29-bit mode, only 2 memory
windows are supported, while in 32-bit mode all 3 are visible. This
attempts to make the resource handling completely dynamic and to permit
platforms to map in as many apertures as they can handle.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
These were never handled before, so implement some common infrastructure
to support them, then make use of that in the SH7780-specific code. In
practice there is little here that can not be generalized for SH4 parts,
which will be an incremental change as the 7780/7751 code is gradually
unified.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
register_pci_controller() can fail, but presently is a void function.
Change this over to an int so that we can bail early before continuing on
with post-registration initialization (such as throwing the controller in
to 66MHz mode in the case of the SH7780 host controller).
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This adds some helper glue for scanning the bus and determining if all
of the devices are 66MHz capable or not before flipping on 66MHz mode.
This isn't quite to spec, but it's fairly consistent with what other
embedded controllers end up having to do.
Scanning code cribbed from the MIPS txx9 PCI code.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently headers_check complains about linux/kdebug.h being unexported,
so just bump the __KERNEL__ ifdef up, as per the x86 change.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Newer SH parts are now commonly shipping with multiple controllers, so
we wire up PCI domain support to deal with them. Shamelessly cloned from
the MIPS implementation.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This kills off the deprected fixed memory range accessors for
the cases of non-translatable ioremapping.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
IRQs are re-enabled at a later stage when doing the unmapping on R2D via
the sm501 USB coherent DMA, resulting in the irqs_disabled() check
producing considerable noise for this configuration. Just kill off the
check, which was blindly copied from x86 anyways.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This patch fixes a bug within the cmpxchg GRB version.
A problem was notices while running some tests to stress
the priority inheritance, for example pi_stress
(http://rt.wiki.kernel.org/index.php/PI_Mutex_Test).
Also, without this patch, after applying the latest work to
consolidate atomic_cmpxchg() definitions (commit:
8c0b8139c8)
the Kernel doesn't boot at all.
Signed-off-by: Giuseppe Cavallaro <peppe.cavallaro@st.com>
Signed-off-by: Stuart Menefy <stuart.menefy@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
These routines are unsuitable for cross-platform use and no new code
should be using them, flag them as deprecated in order to give drivers
sufficient time to migrate over.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
The old ctrl in/out routines are non-portable and unsuitable for
cross-platform use. While drivers/sh has already been sanitized, there
is still quite a lot of code that is not. This converts the arch/sh/ bits
over, which permits us to flag the routines as deprecated whilst still
building with -Werror for the architecture code, and to ensure that
future users are not added.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently the IOREMAP_FIXED fixmaps are always defined, even if the
platform isn't capable of supporting it. Since we already have an ifdef
for it, ifdef the entries, too.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Now that cached_to_uncached works as advertized in 32-bit mode and we're
never going to be able to map < 16MB anyways, there's no need for the
special uncached section. Kill it off.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This provides a variable for tracking the uncached mapping size, and uses
it for pretty printing the uncached lowmem range. Beyond this, we'll also
be building on top of this for figuring out from where the remainder of
P2 becomes usable when constructing unrelated mappings.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This provides a machine_ops-based reboot interface loosely cloned from
x86, and converts the native sh32 and sh64 cases over to it.
Necessary both for tying in SMP support and also enabling platforms like
SDK7786 to add support for their microcontroller-based power managers.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently __in_29bit_mode() is only defined for the PMB case, but
it's also easily derived from the CONFIG_29BIT and CONFIG_32BIT &&
CONFIG_PMB=n cases.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Implement .set_rate() for all SH "div4 clocks," .enable(), .disable(), and
.set_parent() for those, that support them. This allows, among other uses,
reparenting of SIU clocks to the external source, and enabling and
disabling of the IrDA clock on sh7722.
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
sh64 on the other hand provides both direct broken out syscalls as well
as socketcall access. As there are binaries that use both socketcall has
to stay around. The current ABI prefers direct syscalls.
It was pointed out that when sys_recvmmsg was added in, sys_accept4 was
overlooked. This takes care of wiring it up.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
sh32 at the moment only uses sys_socketcall to reach these, so unwire
recvmmsg for now. While we're at it, add it to the ignore list, as per
the s390 change.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This updates the sh64 processor info with the sh32 changes in order to
tie in to the generic task_xstate management code.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently this is duplicated between tlb-sh4 and tlb-pteaex. Split the
helpers out in to a generic tlb-urb that can be used by any parts
equipped with MMUCR.URB.
At the same time, move the SH-5 code out-of-line, as we require single
global state for DTLB entry wiring.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This provides a dummy value for legacy parts which permits the entry
wiring to be open-coded. The compiler takes care of optimizing the entry
wiring away in these cases.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently ioremap_prot() uses an unsigned long to pass the pgprot value
around. This results in the upper half of the pgprot being chomped when
using 64-bit pgprots on a 32-bit ABI (X2TLB and SH-5).
As the only users of ioremap_prot() are presently legacy parts, this
doesn't cause too much of an issue. In the future when the interface is
converted to use pgprot_t directly this can be re-enabled for the other
parts, too.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This is already taken care of in the top-level ioremap, and now that
no one should be calling ioremap_fixed() directly we can simply throw the
mapping displacement in as an additional argument.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently 'flags' gets passed around a lot between the various ioremap
helpers and implementations, which is only 32-bits. In the X2TLB case
we use 64-bit pgprots which presently results in the upper 32bits being
chopped off (which handily include our read/write/exec permissions).
As such, we convert everything internally to using pgprot_t directly and
simply convert over with pgprot_val() where needed. With this in place,
transparent fixmap utilization for early ioremap works as expected.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This converts iounmap_fixed() to return success/error if it handled the
unmap request or not. At the same time, drop the __init label, as this
can be called in to later.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Presently the fixed ioremap API is only defined when CONFIG_IOREMAP_FIXED
is set. As we want to call in to it unconditionally, provide a stubbed
out interface.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
This adds in a mem_init_done to work out when a standard ioremap() is
possible, falling back to the fixmap based ioremap otherwise.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Some devices need to be ioremap'd and accessed very early in the boot
process. It is not possible to use the standard ioremap() function in
this case because that requires kmalloc()'ing some virtual address space
and kmalloc() may not be available so early in boot.
This patch provides fixmap mappings that allow physical address ranges
to be remapped into the kernel address space during the early boot
stages.
Signed-off-by: Matt Fleming <matt@console-pimps.org>