cfc0e7bbf4
4 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Imre Deak
|
6cfe7ec02e |
drm/i915: Remove the unneeded AUX power ref from intel_dp_detect()
We don't need the AUX power for the whole duration of the detect, only when we're doing AUX transfers. The AUX transfer function takes its own reference on the AUX power domain already. The two places during detect which access display core registers (not specific to a pipe/port/transcoder) only need the power domain that is required for that access. That power domain is equivalent to the device global power domain on most platforms (enabled whenever we hold a runtime PM reference) except on CHV/VLV where it's equivalent to the display power well. Add a new power domain that reflects the above, and use this at the two spots accessing registers. With that we can avoid taking the AUX reference for the whole duration of the detect function. Put the domains asynchronously to avoid the unneeded on-off-on toggling. Also adapt the idea from with_intel_runtime_pm et al. for making it easy to write short sequences where a display power ref is needed. v2: (Ville) - Add with_intel_display_power() helper to simplify things. - s/bool res/bool is_connected/ Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190509173446.31095-8-imre.deak@intel.com |
||
Imre Deak
|
e0da2d63ab |
drm/i915: Add support for asynchronous display power disabling
By disabling a power domain asynchronously we can restrict holding a reference on that power domain to the actual code sequence that requires the power to be on for the HW access it's doing, by also avoiding unneeded on-off-on togglings of the power domain (since the disabling happens with a delay). One benefit is potential power saving due to the following two reasons: 1. The fact that we will now be holding the reference only for the necessary duration by the end of the patchset. While simply not delaying the disabling has the same benefit, it has the problem that frequent on-off-on power switching has its own power cost (see the 2. point below) and the debug trace for power well on/off events will cause a lot of dmesg spam (see details about this further below). 2. Avoiding the power cost of freuqent on-off-on power switching. This requires us to find the optimal disabling delay based on the measured power cost of on->off and off->on switching of each power well vs. the power of keeping the given power well on. In this patchset I'm not providing this optimal delay for two reasons: a) I don't have the means yet to perform the measurement (with high enough signal-to-noise ratio, or with the help of an energy counter that takes switching into account). I'm currently looking for a way to measure this. b) Before reducing the disabling delay we need an alternative way for debug tracing powerwell on/off events. Simply avoiding/throttling the debug messages is not a solution, see further below. Note that even in the case where we can't measure any considerable power cost of frequent on-off switching of powerwells, it still would make sense to do the disabling asynchronously (with 0 delay) to avoid blocking on the disabling. On VLV I measured this disabling time overhead to be 1ms on average with a worst case of 4ms. In the case of the AUX power domains on ICL we would also need to keep the sequence where we hold the power reference short, the way it would be by the end of this patchset where we hold it only for the actual AUX transfer. Anything else would make the locking we need for ICL TypeC ports (whenever we hold a reference on any AUX power domain) rather problematic, adding for instance unnecessary lockdep dependencies to the required TypeC port lock. I chose the disabling delay to be 100msec for now to avoid the unneeded toggling (and so not to introduce dmesg spamming) in the DP MST sideband signaling code. We could optimize this delay later, once we have the means to measure the switching power cost (see above). Note that simply removing/throttling the debug tracing for power well on/off events is not a solution. We need to know the exact spots of these events and cannot rely only on incorrect register accesses caught (due to not holding a wakeref at the time of access). Incorrect powerwell enabling/disabling could lead to other problems, for instance we need to keep certain powerwells enabled for the duration of modesets and AUX transfers. v2: - Clarify the commit log parts about power cost measurement and the problem of simply removing/throttling debug tracing. (Chris) - Optimize out local wakeref vars at intel_runtime_pm_put_raw() and intel_display_power_put_async() call sites if CONFIG_DRM_I915_DEBUG_RUNTIME_PM=n. (Chris) - Rebased on v2 of the wakeref w/o power-on guarantee patch. - Add missing docbook headers. v3: - Checkpatch spelling/missing-empty-line fix. v4: - Fix unintended local wakeref var optimization when using call-arguments with side-effects, by using inline funcs instead of macros. In this patch in particular this will fix the intel_display_power_grab_async_put_ref()->intel_runtime_pm_put_raw() call). No size change in practice (would be the same disregarding the corresponding change in intel_display_power_grab_async_put_ref()): $ size i915-macro.ko text data bss dec hex filename 2455190 105890 10272 2571352 273c58 i915-macro.ko $ size i915-inline.ko text data bss dec hex filename 2455195 105890 10272 2571357 273c5d i915-inline.ko Kudos to Stan for reporting the raw-wakeref WARNs this issue caused. His config has CONFIG_DRM_I915_DEBUG_RUNTIME_PM=n, which I didn't retest after v1, and we are also not testing this config in CI. Now tested both with CONFIG_DRM_I915_DEBUG_RUNTIME_PM=y/n on ICL, connecting both Chamelium and regular DP, HDMI sinks. Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Ville Syrjala <ville.syrjala@linux.intel.com> Cc: Stanislav Lisovskiy <stanislav.lisovskiy@intel.com> Signed-off-by: Imre Deak <imre.deak@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190513192533.12586-1-imre.deak@intel.com |
||
Ville Syrjälä
|
46034d2bb7 |
drm/i915: Move the hsw/bdw pc8 code to intel_runtime_pm.c
hsw_enable_pc8()/hsw_disable_pc8() are more less equivalent to the display core init/unit functions of later platforms. Relocate the hsw/bdw code into intel_runtime_pm.c so that it sits next to its cousins. Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190503193143.28240-2-ville.syrjala@linux.intel.com Reviewed-by: Imre Deak <imre.deak@intel.com> |
||
Jani Nikula
|
0d5adc5f2f |
drm/i915: extract intel_runtime_pm.h from intel_drv.h
It used to be handy that we only had a couple of headers, but over time intel_drv.h has become unwieldy. Extract declarations to a separate header file corresponding to the implementation module, clarifying the modularity of the driver. Ensure the new header is self-contained, and do so with minimal further includes, using forward declarations as needed. Include the new header only where needed, and sort the modified include directives while at it and as needed. No functional changes. Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/87904259868782c1ad664d852b27a50c1597cfaa.1556540890.git.jani.nikula@intel.com |