Commit Graph

37775 Commits

Author SHA1 Message Date
Steven Rostedt (VMware)
ee11b93f95 ftrace: Fix recursion check for NMI test
The code that checks recursion will work to only do the recursion check once
if there's nested checks. The top one will do the check, the other nested
checks will see recursion was already checked and return zero for its "bit".
On the return side, nothing will be done if the "bit" is zero.

The problem is that zero is returned for the "good" bit when in NMI context.
This will set the bit for NMIs making it look like *all* NMI tracing is
recursing, and prevent tracing of anything in NMI context!

The simple fix is to return "bit + 1" and subtract that bit on the end to
get the real bit.

Cc: stable@vger.kernel.org
Fixes: edc15cafcb ("tracing: Avoid unnecessary multiple recursion checks")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-11-02 08:52:18 -05:00
Qiujun Huang
c1acb4ac1a tracing: Fix out of bounds write in get_trace_buf
The nesting count of trace_printk allows for 4 levels of nesting. The
nesting counter starts at zero and is incremented before being used to
retrieve the current context's buffer. But the index to the buffer uses the
nesting counter after it was incremented, and not its original number,
which in needs to do.

Link: https://lkml.kernel.org/r/20201029161905.4269-1-hqjagain@gmail.com

Cc: stable@vger.kernel.org
Fixes: 3d9622c12c ("tracing: Add barrier to trace_printk() buffer nesting modification")
Signed-off-by: Qiujun Huang <hqjagain@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-11-02 08:52:18 -05:00
Linus Torvalds
4312e0e8d3 Merge tag 'timers-urgent-2020-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Thomas Gleixner:
 "A few fixes for timers/timekeeping:

   - Prevent undefined behaviour in the timespec64_to_ns() conversion
     which is used for converting user supplied time input to
     nanoseconds. It lacked overflow protection.

   - Mark sched_clock_read_begin/retry() to prevent recursion in the
     tracer

   - Remove unused debug functions in the hrtimer and timerlist code"

* tag 'timers-urgent-2020-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  time: Prevent undefined behaviour in timespec64_to_ns()
  timers: Remove unused inline funtion debug_timer_free()
  hrtimer: Remove unused inline function debug_hrtimer_free()
  time/sched_clock: Mark sched_clock_read_begin/retry() as notrace
2020-11-01 11:13:45 -08:00
Linus Torvalds
82423b46fc Merge tag 'smp-urgent-2020-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull smp fix from Thomas Gleixner:
 "A single fix for stop machine.

  Mark functions no trace to prevent a crash caused by recursion when
  enabling or disabling a tracer on RISC-V (probably all architectures
  which patch through stop machine)"

* tag 'smp-urgent-2020-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  stop_machine, rcu: Mark functions as notrace
2020-11-01 11:11:38 -08:00
Linus Torvalds
8d99084efc Merge tag 'locking-urgent-2020-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Thomas Gleixner:
 "A couple of locking fixes:

   - Fix incorrect failure injection handling in the fuxtex code

   - Prevent a preemption warning in lockdep when tracking
     local_irq_enable() and interrupts are already enabled

   - Remove more raw_cpu_read() usage from lockdep which causes state
     corruption on !X86 architectures.

   - Make the nr_unused_locks accounting in lockdep correct again"

* tag 'locking-urgent-2020-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  lockdep: Fix nr_unused_locks accounting
  locking/lockdep: Remove more raw_cpu_read() usage
  futex: Fix incorrect should_fail_futex() handling
  lockdep: Fix preemption WARN for spurious IRQ-enable
2020-11-01 11:08:17 -08:00
Linus Torvalds
53760f9b74 Merge tag 'flexible-array-conversions-5.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux
Pull more flexible-array member conversions from Gustavo A. R. Silva:
 "Replace zero-length arrays with flexible-array members"

* tag 'flexible-array-conversions-5.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux:
  printk: ringbuffer: Replace zero-length array with flexible-array member
  net/smc: Replace zero-length array with flexible-array member
  net/mlx5: Replace zero-length array with flexible-array member
  mei: hw: Replace zero-length array with flexible-array member
  gve: Replace zero-length array with flexible-array member
  Bluetooth: btintel: Replace zero-length array with flexible-array member
  scsi: target: tcmu: Replace zero-length array with flexible-array member
  ima: Replace zero-length array with flexible-array member
  enetc: Replace zero-length array with flexible-array member
  fs: Replace zero-length array with flexible-array member
  Bluetooth: Replace zero-length array with flexible-array member
  params: Replace zero-length array with flexible-array member
  tracepoint: Replace zero-length array with flexible-array member
  platform/chrome: cros_ec_proto: Replace zero-length array with flexible-array member
  platform/chrome: cros_ec_commands: Replace zero-length array with flexible-array member
  mailbox: zynqmp-ipi-message: Replace zero-length array with flexible-array member
  dmaengine: ti-cppi5: Replace zero-length array with flexible-array member
2020-10-31 14:31:28 -07:00
Gustavo A. R. Silva
a38283da05 printk: ringbuffer: Replace zero-length array with flexible-array member
There is a regular need in the kernel to provide a way to declare having a
dynamically sized set of trailing elements in a structure. Kernel code should
always use “flexible array members”[1] for these cases. The older style of
one-element or zero-length arrays should no longer be used[2].

[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://www.kernel.org/doc/html/v5.9/process/deprecated.html#zero-length-and-one-element-arrays

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2020-10-30 16:57:42 -05:00
Arnd Bergmann
0774a6ed29 timekeeping: default GENERIC_CLOCKEVENTS to enabled
Almost all machines use GENERIC_CLOCKEVENTS, so it feels wrong to
require each one to select that symbol manually.

Instead, enable it whenever CONFIG_LEGACY_TIMER_TICK is disabled as
a simplification. It should be possible to select both
GENERIC_CLOCKEVENTS and LEGACY_TIMER_TICK from an architecture now
and decide at runtime between the two.

For the clockevents arch-support.txt file, this means that additional
architectures are marked as TODO when they have at least one machine
that still uses LEGACY_TIMER_TICK, rather than being marked 'ok' when
at least one machine has been converted. This means that both m68k and
arm (for riscpc) revert to TODO.

At this point, we could just always enable CONFIG_GENERIC_CLOCKEVENTS
rather than leaving it off when not needed. I built an m68k
defconfig kernel (using gcc-10.1.0) and found that this would add
around 5.5KB in kernel image size:

   text	   data	    bss	    dec	    hex	filename
3861936	1092236	 196656	5150828	 4e986c	obj-m68k/vmlinux-no-clockevent
3866201	1093832	 196184	5156217	 4ead79	obj-m68k/vmlinux-clockevent

On Arm (MACH_RPC), that difference appears to be twice as large,
around 11KB on top of an 6MB vmlinux.

Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2020-10-30 21:57:07 +01:00
Arnd Bergmann
56cc7b8acf timekeeping: remove xtime_update
There are no more users of xtime_update aside from legacy_timer_tick(),
so fold it into that function and remove the declaration.

update_process_times() is now only called inside of the kernel/time/
code, so the declaration can be moved there.

Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2020-10-30 21:57:07 +01:00
Arnd Bergmann
b3550164a1 timekeeping: add CONFIG_LEGACY_TIMER_TICK
All platforms that currently do not use generic clockevents roughly call
the same set of functions in their timer interrupts: xtime_update(),
update_process_times() and profile_tick(), sometimes in a different
sequence.

Add a helper function that performs all three of them, to make the
callers more uniform and simplify the interface.

Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2020-10-30 21:57:04 +01:00
Arnd Bergmann
77f6c0b874 timekeeping: remove arch_gettimeoffset
With Arm EBSA110 gone, nothing uses it any more, so the corresponding
code and the Kconfig option can be removed.

Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2020-10-30 21:57:04 +01:00
Song Liu
20b6cc34ea bpf: Avoid hashtab deadlock with map_locked
If a hashtab is accessed in both non-NMI and NMI context, the system may
deadlock on bucket->lock. Fix this issue with percpu counter map_locked.
map_locked rejects concurrent access to the same bucket from the same CPU.
To reduce memory overhead, map_locked is not added per bucket. Instead,
8 percpu counters are added to each hashtab. buckets are assigned to these
counters based on the lower bits of its hash.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201029071925.3103400-3-songliubraving@fb.com
2020-10-30 13:03:29 -07:00
Song Liu
c50eb518e2 bpf: Use separate lockdep class for each hashtab
If a hashtab is accessed in both NMI and non-NMI contexts, it may cause
deadlock in bucket->lock. LOCKDEP NMI warning highlighted this issue:

./test_progs -t stacktrace

[   74.828970]
[   74.828971] ================================
[   74.828972] WARNING: inconsistent lock state
[   74.828973] 5.9.0-rc8+ #275 Not tainted
[   74.828974] --------------------------------
[   74.828975] inconsistent {INITIAL USE} -> {IN-NMI} usage.
[   74.828976] taskset/1174 [HC2[2]:SC0[0]:HE0:SE1] takes:
[   74.828977] ffffc90000ee96b0 (&htab->buckets[i].raw_lock){....}-{2:2}, at: htab_map_update_elem+0x271/0x5a0
[   74.828981] {INITIAL USE} state was registered at:
[   74.828982]   lock_acquire+0x137/0x510
[   74.828983]   _raw_spin_lock_irqsave+0x43/0x90
[   74.828984]   htab_map_update_elem+0x271/0x5a0
[   74.828984]   0xffffffffa0040b34
[   74.828985]   trace_call_bpf+0x159/0x310
[   74.828986]   perf_trace_run_bpf_submit+0x5f/0xd0
[   74.828987]   perf_trace_urandom_read+0x1be/0x220
[   74.828988]   urandom_read_nowarn.isra.0+0x26f/0x380
[   74.828989]   vfs_read+0xf8/0x280
[   74.828989]   ksys_read+0xc9/0x160
[   74.828990]   do_syscall_64+0x33/0x40
[   74.828991]   entry_SYSCALL_64_after_hwframe+0x44/0xa9
[   74.828992] irq event stamp: 1766
[   74.828993] hardirqs last  enabled at (1765): [<ffffffff82800ace>] asm_exc_page_fault+0x1e/0x30
[   74.828994] hardirqs last disabled at (1766): [<ffffffff8267df87>] irqentry_enter+0x37/0x60
[   74.828995] softirqs last  enabled at (856): [<ffffffff81043e7c>] fpu__clear+0xac/0x120
[   74.828996] softirqs last disabled at (854): [<ffffffff81043df0>] fpu__clear+0x20/0x120
[   74.828997]
[   74.828998] other info that might help us debug this:
[   74.828999]  Possible unsafe locking scenario:
[   74.828999]
[   74.829000]        CPU0
[   74.829001]        ----
[   74.829001]   lock(&htab->buckets[i].raw_lock);
[   74.829003]   <Interrupt>
[   74.829004]     lock(&htab->buckets[i].raw_lock);
[   74.829006]
[   74.829006]  *** DEADLOCK ***
[   74.829007]
[   74.829008] 1 lock held by taskset/1174:
[   74.829008]  #0: ffff8883ec3fd020 (&cpuctx_lock){-...}-{2:2}, at: perf_event_task_tick+0x101/0x650
[   74.829012]
[   74.829013] stack backtrace:
[   74.829014] CPU: 0 PID: 1174 Comm: taskset Not tainted 5.9.0-rc8+ #275
[   74.829015] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
[   74.829016] Call Trace:
[   74.829016]  <NMI>
[   74.829017]  dump_stack+0x9a/0xd0
[   74.829018]  lock_acquire+0x461/0x510
[   74.829019]  ? lock_release+0x6b0/0x6b0
[   74.829020]  ? stack_map_get_build_id_offset+0x45e/0x800
[   74.829021]  ? htab_map_update_elem+0x271/0x5a0
[   74.829022]  ? rcu_read_lock_held_common+0x1a/0x50
[   74.829022]  ? rcu_read_lock_held+0x5f/0xb0
[   74.829023]  _raw_spin_lock_irqsave+0x43/0x90
[   74.829024]  ? htab_map_update_elem+0x271/0x5a0
[   74.829025]  htab_map_update_elem+0x271/0x5a0
[   74.829026]  bpf_prog_1fd9e30e1438d3c5_oncpu+0x9c/0xe88
[   74.829027]  bpf_overflow_handler+0x127/0x320
[   74.829028]  ? perf_event_text_poke_output+0x4d0/0x4d0
[   74.829029]  ? sched_clock_cpu+0x18/0x130
[   74.829030]  __perf_event_overflow+0xae/0x190
[   74.829030]  handle_pmi_common+0x34c/0x470
[   74.829031]  ? intel_pmu_save_and_restart+0x90/0x90
[   74.829032]  ? lock_acquire+0x3f8/0x510
[   74.829033]  ? lock_release+0x6b0/0x6b0
[   74.829034]  intel_pmu_handle_irq+0x11e/0x240
[   74.829034]  perf_event_nmi_handler+0x40/0x60
[   74.829035]  nmi_handle+0x110/0x360
[   74.829036]  ? __intel_pmu_enable_all.constprop.0+0x72/0xf0
[   74.829037]  default_do_nmi+0x6b/0x170
[   74.829038]  exc_nmi+0x106/0x130
[   74.829038]  end_repeat_nmi+0x16/0x55
[   74.829039] RIP: 0010:__intel_pmu_enable_all.constprop.0+0x72/0xf0
[   74.829042] Code: 2f 1f 03 48 8d bb b8 0c 00 00 e8 29 09 41 00 48 ...
[   74.829043] RSP: 0000:ffff8880a604fc90 EFLAGS: 00000002
[   74.829044] RAX: 000000070000000f RBX: ffff8883ec2195a0 RCX: 000000000000038f
[   74.829045] RDX: 0000000000000007 RSI: ffffffff82e72c20 RDI: ffff8883ec21a258
[   74.829046] RBP: 000000070000000f R08: ffffffff8101b013 R09: fffffbfff0a7982d
[   74.829047] R10: ffffffff853cc167 R11: fffffbfff0a7982c R12: 0000000000000000
[   74.829049] R13: ffff8883ec3f0af0 R14: ffff8883ec3fd120 R15: ffff8883e9c92098
[   74.829049]  ? intel_pmu_lbr_enable_all+0x43/0x240
[   74.829050]  ? __intel_pmu_enable_all.constprop.0+0x72/0xf0
[   74.829051]  ? __intel_pmu_enable_all.constprop.0+0x72/0xf0
[   74.829052]  </NMI>
[   74.829053]  perf_event_task_tick+0x48d/0x650
[   74.829054]  scheduler_tick+0x129/0x210
[   74.829054]  update_process_times+0x37/0x70
[   74.829055]  tick_sched_handle.isra.0+0x35/0x90
[   74.829056]  tick_sched_timer+0x8f/0xb0
[   74.829057]  __hrtimer_run_queues+0x364/0x7d0
[   74.829058]  ? tick_sched_do_timer+0xa0/0xa0
[   74.829058]  ? enqueue_hrtimer+0x1e0/0x1e0
[   74.829059]  ? recalibrate_cpu_khz+0x10/0x10
[   74.829060]  ? ktime_get_update_offsets_now+0x1a3/0x360
[   74.829061]  hrtimer_interrupt+0x1bb/0x360
[   74.829062]  ? rcu_read_lock_sched_held+0xa1/0xd0
[   74.829063]  __sysvec_apic_timer_interrupt+0xed/0x3d0
[   74.829064]  sysvec_apic_timer_interrupt+0x3f/0xd0
[   74.829064]  ? asm_sysvec_apic_timer_interrupt+0xa/0x20
[   74.829065]  asm_sysvec_apic_timer_interrupt+0x12/0x20
[   74.829066] RIP: 0033:0x7fba18d579b4
[   74.829068] Code: 74 54 44 0f b6 4a 04 41 83 e1 0f 41 80 f9 ...
[   74.829069] RSP: 002b:00007ffc9ba69570 EFLAGS: 00000206
[   74.829071] RAX: 00007fba192084c0 RBX: 00007fba18c24d28 RCX: 00000000000007a4
[   74.829072] RDX: 00007fba18c30488 RSI: 0000000000000000 RDI: 000000000000037b
[   74.829073] RBP: 00007fba18ca5760 R08: 00007fba18c248fc R09: 00007fba18c94c30
[   74.829074] R10: 000000000000002f R11: 0000000000073c30 R12: 00007ffc9ba695e0
[   74.829075] R13: 00000000000003f3 R14: 00007fba18c21ac8 R15: 00000000000058d6

However, such warning should not apply across multiple hashtabs. The
system will not deadlock if one hashtab is used in NMI, while another
hashtab is used in non-NMI.

Use separate lockdep class for each hashtab, so that we don't get this
false alert.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201029071925.3103400-2-songliubraving@fb.com
2020-10-30 13:03:29 -07:00
Linus Torvalds
8843f40550 Merge tag 'pm-5.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management fixes from Rafael Wysocki:
 "These fix a few issues related to running intel_pstate in the passive
  mode with HWP enabled, correct the handling of the max_cstate module
  parameter in intel_idle and make a few janitorial changes.

  Specifics:

   - Modify Kconfig to prevent configuring either the "conservative" or
     the "ondemand" governor as the default cpufreq governor if
     intel_pstate is selected, in which case "schedutil" is the default
     choice for the default governor setting (Rafael Wysocki).

   - Modify the cpufreq core, intel_pstate and the schedutil governor to
     avoid missing updates of the HWP max limit when intel_pstate
     operates in the passive mode with HWP enabled (Rafael Wysocki).

   - Fix max_cstate module parameter handling in intel_idle for
     processor models with C-state tables coming from ACPI (Chen Yu).

   - Clean up assorted pieces of power management code (Jackie Zamow,
     Tom Rix, Zhang Qilong)"

* tag 'pm-5.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
  cpufreq: schedutil: Always call driver if CPUFREQ_NEED_UPDATE_LIMITS is set
  cpufreq: Introduce cpufreq_driver_test_flags()
  cpufreq: speedstep: remove unneeded semicolon
  PM: sleep: fix typo in kernel/power/process.c
  intel_idle: Fix max_cstate for processor models without C-state tables
  cpufreq: intel_pstate: Avoid missing HWP max updates in passive mode
  cpufreq: Introduce CPUFREQ_NEED_UPDATE_LIMITS driver flag
  cpufreq: Avoid configuring old governors as default with intel_pstate
  cpufreq: e_powersaver: remove unreachable break
2020-10-30 12:45:04 -07:00
Peter Zijlstra
1a39340865 lockdep: Fix nr_unused_locks accounting
Chris reported that commit 24d5a3bffef1 ("lockdep: Fix
usage_traceoverflow") breaks the nr_unused_locks validation code
triggered by /proc/lockdep_stats.

By fully splitting LOCK_USED and LOCK_USED_READ it becomes a bad
indicator for accounting nr_unused_locks; simplyfy by using any first
bit.

Fixes: 24d5a3bffef1 ("lockdep: Fix usage_traceoverflow")
Reported-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://lkml.kernel.org/r/20201027124834.GL2628@hirez.programming.kicks-ass.net
2020-10-30 17:07:18 +01:00
Peter Zijlstra
d48e385003 locking/lockdep: Remove more raw_cpu_read() usage
I initially thought raw_cpu_read() was OK, since if it is !0 we have
IRQs disabled and can't get migrated, so if we get migrated both CPUs
must have 0 and it doesn't matter which 0 we read.

And while that is true; it isn't the whole store, on pretty much all
architectures (except x86) this can result in computing the address for
one CPU, getting migrated, the old CPU continuing execution with another
task (possibly setting recursion) and then the new CPU reading the value
of the old CPU, which is no longer 0.

Similer to:

  baffd723e4 ("lockdep: Revert "lockdep: Use raw_cpu_*() for per-cpu variables"")

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201026152256.GB2651@hirez.programming.kicks-ass.net
2020-10-30 17:07:18 +01:00
Rafael J. Wysocki
dea47cf45a Merge branches 'pm-cpuidle' and 'pm-sleep'
* pm-cpuidle:
  intel_idle: Fix max_cstate for processor models without C-state tables

* pm-sleep:
  PM: sleep: fix typo in kernel/power/process.c
2020-10-30 16:30:14 +01:00
Ard Biesheuvel
080b6f4076 bpf: Don't rely on GCC __attribute__((optimize)) to disable GCSE
Commit 3193c0836 ("bpf: Disable GCC -fgcse optimization for
___bpf_prog_run()") introduced a __no_fgcse macro that expands to a
function scope __attribute__((optimize("-fno-gcse"))), to disable a
GCC specific optimization that was causing trouble on x86 builds, and
was not expected to have any positive effect in the first place.

However, as the GCC manual documents, __attribute__((optimize))
is not for production use, and results in all other optimization
options to be forgotten for the function in question. This can
cause all kinds of trouble, but in one particular reported case,
it causes -fno-asynchronous-unwind-tables to be disregarded,
resulting in .eh_frame info to be emitted for the function.

This reverts commit 3193c0836, and instead, it disables the -fgcse
optimization for the entire source file, but only when building for
X86 using GCC with CONFIG_BPF_JIT_ALWAYS_ON disabled. Note that the
original commit states that CONFIG_RETPOLINE=n triggers the issue,
whereas CONFIG_RETPOLINE=y performs better without the optimization,
so it is kept disabled in both cases.

Fixes: 3193c0836f ("bpf: Disable GCC -fgcse optimization for ___bpf_prog_run()")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/lkml/CAMuHMdUg0WJHEcq6to0-eODpXPOywLot6UD2=GFHpzoj_hCoBQ@mail.gmail.com/
Link: https://lore.kernel.org/bpf/20201028171506.15682-2-ardb@kernel.org
2020-10-29 20:01:46 -07:00
Gustavo A. R. Silva
fa29c9c11d params: Replace zero-length array with flexible-array member
There is a regular need in the kernel to provide a way to declare having a
dynamically sized set of trailing elements in a structure. Kernel code should
always use “flexible array members”[1] for these cases. The older style of
one-element or zero-length arrays should no longer be used[2].

[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://www.kernel.org/doc/html/v5.9-rc1/process/deprecated.html#zero-length-and-one-element-arrays

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2020-10-29 17:22:59 -05:00
Gustavo A. R. Silva
9d0a49c702 tracepoint: Replace zero-length array with flexible-array member
There is a regular need in the kernel to provide a way to declare having a
dynamically sized set of trailing elements in a structure. Kernel code should
always use “flexible array members”[1] for these cases. The older style of
one-element or zero-length arrays should no longer be used[2].

[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://www.kernel.org/doc/html/v5.9-rc1/process/deprecated.html#zero-length-and-one-element-arrays

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2020-10-29 17:22:59 -05:00
Rafael J. Wysocki
d1e7c2996e cpufreq: schedutil: Always call driver if CPUFREQ_NEED_UPDATE_LIMITS is set
Because sugov_update_next_freq() may skip a frequency update even if
the need_freq_update flag has been set for the policy at hand, policy
limits updates may not take effect as expected.

For example, if the intel_pstate driver operates in the passive mode
with HWP enabled, it needs to update the HWP min and max limits when
the policy min and max limits change, respectively, but that may not
happen if the target frequency does not change along with the limit
at hand.  In particular, if the policy min is changed first, causing
the target frequency to be adjusted to it, and the policy max limit
is changed later to the same value, the HWP max limit will not be
updated to follow it as expected, because the target frequency is
still equal to the policy min limit and it will not change until
that limit is updated.

To address this issue, modify get_next_freq() to let the driver
callback run if the CPUFREQ_NEED_UPDATE_LIMITS cpufreq driver flag
is set regardless of whether or not the new frequency to set is
equal to the previous one.

Fixes: f6ebbcf08f ("cpufreq: intel_pstate: Implement passive mode with HWP enabled")
Reported-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Cc: 5.9+ <stable@vger.kernel.org> # 5.9+: 1c534352f4 cpufreq: Introduce CPUFREQ_NEED_UPDATE_LIMITS ...
Cc: 5.9+ <stable@vger.kernel.org> # 5.9+: a62f68f5ca cpufreq: Introduce cpufreq_driver_test_flags()
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-10-29 14:12:18 +01:00
Miroslav Benes
5e8ed280da module: set MODULE_STATE_GOING state when a module fails to load
If a module fails to load due to an error in prepare_coming_module(),
the following error handling in load_module() runs with
MODULE_STATE_COMING in module's state. Fix it by correctly setting
MODULE_STATE_GOING under "bug_cleanup" label.

Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2020-10-29 12:29:16 +01:00
Ira Weiny
45ff510517 entry: Fixup irqentry_enter() comment
irq_enter_from_user_mode() was changed to irqentry_enter_from_user_mode().
Update the comment within irqentry_enter() to reflect this change.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201028163632.965518-1-ira.weiny@intel.com
2020-10-29 11:31:29 +01:00
Peter Zijlstra
51b646b2d9 perf,mm: Handle non-page-table-aligned hugetlbfs
A limited nunmber of architectures support hugetlbfs sizes that do not
align with the page-tables (ARM64, Power, Sparc64). Add support for
this to the generic perf_get_page_size() implementation, and also
allow an architecture to override this implementation.

This latter is only needed when it uses non-page-table aligned huge
pages in its kernel map.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2020-10-29 11:00:39 +01:00
Stephane Eranian
995f088efe perf/core: Add support for PERF_SAMPLE_CODE_PAGE_SIZE
When studying code layout, it is useful to capture the page size of the
sampled code address.

Add a new sample type for code page size.
The new sample type requires collecting the ip. The code page size can
be calculated from the NMI-safe perf_get_page_size().

For large PEBS, it's very unlikely that the mapping is gone for the
earlier PEBS records. Enable the feature for the large PEBS. The worst
case is that page-size '0' is returned.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001135749.2804-5-kan.liang@linux.intel.com
2020-10-29 11:00:39 +01:00
Kan Liang
8d97e71811 perf/core: Add PERF_SAMPLE_DATA_PAGE_SIZE
Current perf can report both virtual addresses and physical addresses,
but not the MMU page size. Without the MMU page size information of the
utilized page, users cannot decide whether to promote/demote large pages
to optimize memory usage.

Add a new sample type for the data MMU page size.

Current perf already has a facility to collect data virtual addresses.
A page walker is required to walk the pages tables and calculate the
MMU page size from a given virtual address.

On some platforms, e.g., X86, the page walker is invoked in an NMI
handler. So the page walker must be NMI-safe and low overhead. Besides,
the page walker should work for both user and kernel virtual address.
The existing generic page walker, e.g., walk_page_range_novma(), is a
little bit complex and doesn't guarantee the NMI-safe. The follow_page()
is only for user-virtual address.

Add a new function perf_get_page_size() to walk the page tables and
calculate the MMU page size. In the function:
- Interrupts have to be disabled to prevent any teardown of the page
  tables.
- For user space threads, the current->mm is used for the page walker.
  For kernel threads and the like, the current->mm is NULL. The init_mm
  is used for the page walker. The active_mm is not used here, because
  it can be NULL.
  Quote from Peter Zijlstra,
  "context_switch() can set prev->active_mm to NULL when it transfers it
   to @next. It does this before @current is updated. So an NMI that
   comes in between this active_mm swizzling and updating @current will
   see !active_mm."
- The MMU page size is calculated from the page table level.

The method should work for all architectures, but it has only been
verified on X86. Should there be some architectures, which support perf,
where the method doesn't work, it can be fixed later separately.
Reporting the wrong page size would not be fatal for the architecture.

Some under discussion features may impact the method in the future.
Quote from Dave Hansen,
  "There are lots of weird things folks are trying to do with the page
   tables, like Address Space Isolation.  For instance, if you get a
   perf NMI when running userspace, current->mm->pgd is *different* than
   the PGD that was in use when userspace was running. It's close enough
   today, but it might not stay that way."
If the case happens later, lots of consecutive page walk errors will
happen. The worst case is that lots of page-size '0' are returned, which
would not be fatal.
In the perf tool, a check is implemented to detect this case. Once it
happens, a kernel patch could be implemented accordingly then.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201001135749.2804-2-kan.liang@linux.intel.com
2020-10-29 11:00:38 +01:00
Julia Lawall
d8fcb81f1a sched/fair: Check for idle core in wake_affine
In the case of a thread wakeup, wake_affine determines whether a core
will be chosen for the thread on the socket where the thread ran
previously or on the socket of the waker.  This is done primarily by
comparing the load of the core where th thread ran previously (prev)
and the load of the waker (this).

commit 11f10e5420 ("sched/fair: Use load instead of runnable load
in wakeup path") changed the load computation from the runnable load
to the load average, where the latter includes the load of threads
that have already blocked on the core.

When a short-running daemon processes happens to run on prev, this
change raised the situation that prev could appear to have a greater
load than this, even when prev is actually idle.  When prev and this
are on the same socket, the idle prev is detected later, in
select_idle_sibling.  But if that does not hold, prev is completely
ignored, causing the waking thread to move to the socket of the waker.
In the case of N mostly active threads on N cores, this triggers other
migrations and hurts performance.

In contrast, before commit 11f10e5420, the load on an idle core
was 0, and in the case of a non-idle waker core, the effect of
wake_affine was to select prev as the target for searching for a core
for the waking thread.

To avoid unnecessary migrations, extend wake_affine_idle to check
whether the core where the thread previously ran is currently idle,
and if so simply return that core as the target.

[1] commit 11f10e5420 ("sched/fair: Use load instead of runnable
load in wakeup path")

This particularly has an impact when using the ondemand power manager,
where kworkers run every 0.004 seconds on all cores, increasing the
likelihood that an idle core will be considered to have a load.

The following numbers were obtained with the benchmarking tool
hyperfine (https://github.com/sharkdp/hyperfine) on the NAS parallel
benchmarks (https://www.nas.nasa.gov/publications/npb.html).  The
tests were run on an 80-core Intel(R) Xeon(R) CPU E7-8870 v4 @
2.10GHz.  Active (intel_pstate) and passive (intel_cpufreq) power
management were used.  Times are in seconds.  All experiments use all
160 hardware threads.

	v5.9/intel-pstate	v5.9+patch/intel-pstate
bt.C.c	24.725724+-0.962340	23.349608+-1.607214
lu.C.x	29.105952+-4.804203	25.249052+-5.561617
sp.C.x	31.220696+-1.831335	30.227760+-2.429792
ua.C.x	26.606118+-1.767384	25.778367+-1.263850

	v5.9/ondemand		v5.9+patch/ondemand
bt.C.c	25.330360+-1.028316	23.544036+-1.020189
lu.C.x	35.872659+-4.872090	23.719295+-3.883848
sp.C.x	32.141310+-2.289541	29.125363+-0.872300
ua.C.x	29.024597+-1.667049	25.728888+-1.539772

On the smaller data sets (A and B) and on the other NAS benchmarks
there is no impact on performance.

This also has a major impact on the splash2x.volrend benchmark of the
parsec benchmark suite that goes from 1m25 without this patch to 0m45,
in active (intel_pstate) mode.

Fixes: 11f10e5420 ("sched/fair: Use load instead of runnable load in wakeup path")
Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/1603372550-14680-1-git-send-email-Julia.Lawall@inria.fr
2020-10-29 11:00:32 +01:00
Peter Zijlstra
43c31ac0e6 sched: Remove relyance on STRUCT_ALIGNMENT
Florian reported that all of kernel/sched/ is rebuild when
CONFIG_BLK_DEV_INITRD is changed, which, while not a bug is
unexpected. This is due to us including vmlinux.lds.h.

Jakub explained that the problem is that we put the alignment
requirement on the type instead of on a variable. Type alignment is a
minimum, the compiler is free to pick any larger alignment for a
specific instance of the type (eg. the variable).

So force the type alignment on all individual variable definitions and
remove the undesired dependency on vmlinux.lds.h.

Fixes: 85c2ce9104 ("sched, vmlinux.lds: Increase STRUCT_ALIGNMENT to 64 bytes for GCC-4.9")
Reported-by: Florian Fainelli <f.fainelli@gmail.com>
Suggested-by: Jakub Jelinek <jakub@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2020-10-29 11:00:32 +01:00
Thomas Gleixner
345a957fcc sched: Reenable interrupts in do_sched_yield()
do_sched_yield() invokes schedule() with interrupts disabled which is
not allowed. This goes back to the pre git era to commit a6efb709806c
("[PATCH] irqlock patch 2.5.27-H6") in the history tree.

Reenable interrupts and remove the misleading comment which "explains" it.

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/87r1pt7y5c.fsf@nanos.tec.linutronix.de
2020-10-29 11:00:31 +01:00
Mathieu Desnoyers
25595eb6aa sched: membarrier: document memory ordering scenarios
Document membarrier ordering scenarios in membarrier.c. Thanks to Alan
Stern for refreshing my memory. Now that I have those in mind, it seems
appropriate to serialize them to comments for posterity.

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201020134715.13909-4-mathieu.desnoyers@efficios.com
2020-10-29 11:00:31 +01:00
Mathieu Desnoyers
618758ed3a sched: membarrier: cover kthread_use_mm (v4)
Add comments and memory barrier to kthread_use_mm and kthread_unuse_mm
to allow the effect of membarrier(2) to apply to kthreads accessing
user-space memory as well.

Given that no prior kthread use this guarantee and that it only affects
kthreads, adding this guarantee does not affect user-space ABI.

Refine the check in membarrier_global_expedited to exclude runqueues
running the idle thread rather than all kthreads from the IPI cpumask.

Now that membarrier_global_expedited can IPI kthreads, the scheduler
also needs to update the runqueue's membarrier_state when entering lazy
TLB state.

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201020134715.13909-3-mathieu.desnoyers@efficios.com
2020-10-29 11:00:31 +01:00
Mathieu Desnoyers
5bc7850232 sched: fix exit_mm vs membarrier (v4)
exit_mm should issue memory barriers after user-space memory accesses,
before clearing current->mm, to order user-space memory accesses
performed prior to exit_mm before clearing tsk->mm, which has the
effect of skipping the membarrier private expedited IPIs.

exit_mm should also update the runqueue's membarrier_state so
membarrier global expedited IPIs are not sent when they are not
needed.

The membarrier system call can be issued concurrently with do_exit
if we have thread groups created with CLONE_VM but not CLONE_THREAD.

Here is the scenario I have in mind:

Two thread groups are created, A and B. Thread group B is created by
issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
Let's assume we have a single thread within each thread group (Thread A
and Thread B).

The AFAIU we can have:

Userspace variables:

int x = 0, y = 0;

CPU 0                   CPU 1
Thread A                Thread B
(in thread group A)     (in thread group B)

x = 1
barrier()
y = 1
exit()
exit_mm()
current->mm = NULL;
                        r1 = load y
                        membarrier()
                          skips CPU 0 (no IPI) because its current mm is NULL
                        r2 = load x
                        BUG_ON(r1 == 1 && r2 == 0)

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201020134715.13909-2-mathieu.desnoyers@efficios.com
2020-10-29 11:00:30 +01:00
Peter Zijlstra
45da7a2b0a sched/fair: Exclude the current CPU from find_new_ilb()
It is possible for find_new_ilb() to select the current CPU, however,
this only happens from newidle balancing, in which case need_resched()
will be true, and consequently nohz_csd_func() will not trigger the
softirq.

Exclude the current CPU from becoming an ILB target.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2020-10-29 11:00:30 +01:00
Peter Zijlstra
b13772f813 sched/cpupri: Add CPUPRI_HIGHER
Add CPUPRI_HIGHER above the RT99 priority to denote the CPU is in use
by higher priority tasks (specifically deadline).

XXX: we should probably drive PUSH-PULL from cpupri, that would
automagically result in an RT-PUSH when DL sets cpupri to CPUPRI_HIGHER.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
2020-10-29 11:00:30 +01:00
Peter Zijlstra
934fc3314b sched/cpupri: Remap CPUPRI_NORMAL to MAX_RT_PRIO-1
This makes the mapping continuous and frees up 100 for other usage.

Prev mapping:

p->rt_priority   p->prio   newpri   cpupri

                               -1       -1 (CPUPRI_INVALID)

                              100        0 (CPUPRI_NORMAL)

             1        98       98        1
           ...
            49        50       50       49
            50        49       49       50
           ...
            99         0        0       99

New mapping:

p->rt_priority   p->prio   newpri   cpupri

                               -1       -1 (CPUPRI_INVALID)

                               99        0 (CPUPRI_NORMAL)

             1        98       98        1
           ...
            49        50       50       49
            50        49       49       50
           ...
            99         0        0       99

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
2020-10-29 11:00:30 +01:00
Dietmar Eggemann
1b08782ce3 sched/cpupri: Remove pri_to_cpu[1]
pri_to_cpu[1] isn't used since cpupri_set(..., newpri) is
never called with newpri = 99.

The valid RT priorities RT1..RT99 (p->rt_priority = [1..99]) map into
cpupri (idx of pri_to_cpu[]) = [2..100]

Current mapping:

p->rt_priority   p->prio   newpri   cpupri

                               -1       -1 (CPUPRI_INVALID)

                              100        0 (CPUPRI_NORMAL)

             1        98       98        2
           ...
            49        50       50       50
            50        49       49       51
           ...
            99         0        0      100

So cpupri = 1 isn't used.

Reduce the size of pri_to_cpu[] by 1 and adapt the cpupri
implementation accordingly. This will save a useless for loop with an
atomic_read in cpupri_find_fitness() calling __cpupri_find().

New mapping:

p->rt_priority   p->prio   newpri   cpupri

                               -1       -1 (CPUPRI_INVALID)

                              100        0 (CPUPRI_NORMAL)

             1        98       98        1
           ...
            49        50       50       49
            50        49       49       50
           ...
            99         0        0       99

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200922083934.19275-3-dietmar.eggemann@arm.com
2020-10-29 11:00:29 +01:00
Dietmar Eggemann
5e054bca44 sched/cpupri: Remove pri_to_cpu[CPUPRI_IDLE]
pri_to_cpu[CPUPRI_IDLE=0] isn't used since cpupri_set(..., newpri) is
never called with newpri = MAX_PRIO (140).

Current mapping:

p->rt_priority   p->prio   newpri   cpupri

                               -1       -1 (CPUPRI_INVALID)

                              140        0 (CPUPRI_IDLE)

                              100        1 (CPUPRI_NORMAL)

             1        98       98        3
           ...
            49        50       50       51
            50        49       49       52
           ...
            99         0        0      101

Even when cpupri was introduced with commit 6e0534f278 ("sched: use a
2-d bitmap for searching lowest-pri CPU") in v2.6.27, only

   (1) CPUPRI_INVALID (-1),
   (2) MAX_RT_PRIO (100),
   (3) an RT prio (RT1..RT99)

were used as newprio in cpupri_set(..., newpri) -> convert_prio(newpri).

MAX_RT_PRIO is used only in dec_rt_tasks() -> dec_rt_prio() ->
dec_rt_prio_smp() -> cpupri_set() in case of !rt_rq->rt_nr_running.
I.e. it stands for a non-rt task, including the IDLE task.

Commit 57785df5ac ("sched: Fix task priority bug") removed code in
v2.6.33 which did set the priority of the IDLE task to MAX_PRIO.
Although this happened after the introduction of cpupri, it didn't have
an effect on the values used for cpupri_set(..., newpri).

Remove CPUPRI_IDLE and adapt the cpupri implementation accordingly.
This will save a useless for loop with an atomic_read in
cpupri_find_fitness() calling __cpupri_find().

New mapping:

p->rt_priority   p->prio   newpri   cpupri

                               -1       -1 (CPUPRI_INVALID)

                              100        0 (CPUPRI_NORMAL)

             1        98       98        2
           ...
            49        50       50       50
            50        49       49       51
           ...
            99         0        0      100

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200922083934.19275-2-dietmar.eggemann@arm.com
2020-10-29 11:00:29 +01:00
Peng Liu
a57415f5d1 sched/deadline: Fix sched_dl_global_validate()
When change sched_rt_{runtime, period}_us, we validate that the new
settings should at least accommodate the currently allocated -dl
bandwidth:

  sched_rt_handler()
    -->	sched_dl_bandwidth_validate()
	{
		new_bw = global_rt_runtime()/global_rt_period();

		for_each_possible_cpu(cpu) {
			dl_b = dl_bw_of(cpu);
			if (new_bw < dl_b->total_bw)    <-------
				ret = -EBUSY;
		}
	}

But under CONFIG_SMP, dl_bw is per root domain , but not per CPU,
dl_b->total_bw is the allocated bandwidth of the whole root domain.
Instead, we should compare dl_b->total_bw against "cpus*new_bw",
where 'cpus' is the number of CPUs of the root domain.

Also, below annotation(in kernel/sched/sched.h) implied implementation
only appeared in SCHED_DEADLINE v2[1], then deadline scheduler kept
evolving till got merged(v9), but the annotation remains unchanged,
meaningless and misleading, update it.

* With respect to SMP, the bandwidth is given on a per-CPU basis,
* meaning that:
*  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
*  - dl_total_bw array contains, in the i-eth element, the currently
*    allocated bandwidth on the i-eth CPU.

[1]: https://lore.kernel.org/lkml/1267385230.13676.101.camel@Palantir/

Fixes: 332ac17ef5 ("sched/deadline: Add bandwidth management for SCHED_DEADLINE tasks")
Signed-off-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/db6bbda316048cda7a1bbc9571defde193a8d67e.1602171061.git.iwtbavbm@gmail.com
2020-10-29 11:00:29 +01:00
Peng Liu
26762423a2 sched/deadline: Optimize sched_dl_global_validate()
Under CONFIG_SMP, dl_bw is per root domain, but not per CPU.
When checking or updating dl_bw, currently iterating every CPU is
overdoing, just need iterate each root domain once.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/78d21ee792cc48ff79e8cd62a5f26208463684d6.1602171061.git.iwtbavbm@gmail.com
2020-10-29 11:00:28 +01:00
jun qian
b9c88f7522 sched/fair: Improve the accuracy of sched_stat_wait statistics
When the sched_schedstat changes from 0 to 1, some sched se maybe
already in the runqueue, the se->statistics.wait_start will be 0.
So it will let the (rq_of(cfs_rq)) - se->statistics.wait_start)
wrong. We need to avoid this scenario.

Signed-off-by: jun qian <qianjun.kernel@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20201015064846.19809-1-qianjun.kernel@gmail.com
2020-10-29 11:00:28 +01:00
Jens Axboe
114518eb64 task_work: Use TIF_NOTIFY_SIGNAL if available
If the arch supports TIF_NOTIFY_SIGNAL, then use that for TWA_SIGNAL as
it's more efficient than using the signal delivery method. This is
especially true on threaded applications, where ->sighand is shared across
threads, but it's also lighter weight on non-shared cases.

io_uring is a heavy consumer of TWA_SIGNAL based task_work. A test with
threads shows a nice improvement running an io_uring based echo server.

stock kernel:
0.01% <= 0.1 milliseconds
95.86% <= 0.2 milliseconds
98.27% <= 0.3 milliseconds
99.71% <= 0.4 milliseconds
100.00% <= 0.5 milliseconds
100.00% <= 0.6 milliseconds
100.00% <= 0.7 milliseconds
100.00% <= 0.8 milliseconds
100.00% <= 0.9 milliseconds
100.00% <= 1.0 milliseconds
100.00% <= 1.1 milliseconds
100.00% <= 2 milliseconds
100.00% <= 3 milliseconds
100.00% <= 3 milliseconds
1378930.00 requests per second
~1600% CPU

1.38M requests/second, and all 16 CPUs are maxed out.

patched kernel:
0.01% <= 0.1 milliseconds
98.24% <= 0.2 milliseconds
99.47% <= 0.3 milliseconds
99.99% <= 0.4 milliseconds
100.00% <= 0.5 milliseconds
100.00% <= 0.6 milliseconds
100.00% <= 0.7 milliseconds
100.00% <= 0.8 milliseconds
100.00% <= 0.9 milliseconds
100.00% <= 1.2 milliseconds
1666111.38 requests per second
~1450% CPU

1.67M requests/second, and we're no longer just hammering on the sighand
lock. The original reporter states:

"For 5.7.15 my benchmark achieves 1.6M qps and system cpu is at ~80%.
 for 5.7.16 or later it achieves only 1M qps and the system cpu is is
 at ~100%"

with the only difference there being that TWA_SIGNAL is used
unconditionally in 5.7.16, since it's required to be able to handle the
inability to run task_work if the application is waiting in the kernel
already on an event that needs task_work run to be satisfied. Also see
commit 0ba9c9edcd.

Reported-by: Roman Gershman <romger@amazon.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20201026203230.386348-5-axboe@kernel.dk
2020-10-29 09:37:37 +01:00
Jens Axboe
12db8b6900 entry: Add support for TIF_NOTIFY_SIGNAL
Add TIF_NOTIFY_SIGNAL handling in the generic entry code, which if set,
will return true if signal_pending() is used in a wait loop. That causes an
exit of the loop so that notify_signal tracehooks can be run. If the wait
loop is currently inside a system call, the system call is restarted once
task_work has been processed.

In preparation for only having arch_do_signal() handle syscall restarts if
_TIF_SIGPENDING isn't set, rename it to arch_do_signal_or_restart().  Pass
in a boolean that tells the architecture specific signal handler if it
should attempt to get a signal, or just process a potential syscall
restart.

For !CONFIG_GENERIC_ENTRY archs, add the TIF_NOTIFY_SIGNAL handling to
get_signal(). This is done to minimize the needed architecture changes to
support this feature.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20201026203230.386348-3-axboe@kernel.dk
2020-10-29 09:37:36 +01:00
Jens Axboe
5c251e9dc0 signal: Add task_sigpending() helper
This is in preparation for maintaining signal_pending() as the decider of
whether or not a schedule() loop should be broken, or continue sleeping.
This is different than the core signal use cases, which really need to know
whether an actual signal is pending or not. task_sigpending() returns
non-zero if TIF_SIGPENDING is set.

Only core kernel use cases should care about the distinction between
the two, make sure those use the task_sigpending() helper.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20201026203230.386348-2-axboe@kernel.dk
2020-10-29 09:37:36 +01:00
Yonghong Song
cf83b2d2e2 bpf: Permit cond_resched for some iterators
Commit e679654a70 ("bpf: Fix a rcu_sched stall issue with
bpf task/task_file iterator") tries to fix rcu stalls warning
which is caused by bpf task_file iterator when running
"bpftool prog".

      rcu: INFO: rcu_sched self-detected stall on CPU
      rcu: \x097-....: (20999 ticks this GP) idle=302/1/0x4000000000000000 softirq=1508852/1508852 fqs=4913
      \x09(t=21031 jiffies g=2534773 q=179750)
      NMI backtrace for cpu 7
      CPU: 7 PID: 184195 Comm: bpftool Kdump: loaded Tainted: G        W         5.8.0-00004-g68bfc7f8c1b4 #6
      Hardware name: Quanta Twin Lakes MP/Twin Lakes Passive MP, BIOS F09_3A17 05/03/2019
      Call Trace:
      <IRQ>
      dump_stack+0x57/0x70
      nmi_cpu_backtrace.cold+0x14/0x53
      ? lapic_can_unplug_cpu.cold+0x39/0x39
      nmi_trigger_cpumask_backtrace+0xb7/0xc7
      rcu_dump_cpu_stacks+0xa2/0xd0
      rcu_sched_clock_irq.cold+0x1ff/0x3d9
      ? tick_nohz_handler+0x100/0x100
      update_process_times+0x5b/0x90
      tick_sched_timer+0x5e/0xf0
      __hrtimer_run_queues+0x12a/0x2a0
      hrtimer_interrupt+0x10e/0x280
      __sysvec_apic_timer_interrupt+0x51/0xe0
      asm_call_on_stack+0xf/0x20
      </IRQ>
      sysvec_apic_timer_interrupt+0x6f/0x80
      ...
      task_file_seq_next+0x52/0xa0
      bpf_seq_read+0xb9/0x320
      vfs_read+0x9d/0x180
      ksys_read+0x5f/0xe0
      do_syscall_64+0x38/0x60
      entry_SYSCALL_64_after_hwframe+0x44/0xa9

The fix is to limit the number of bpf program runs to be
one million. This fixed the program in most cases. But
we also found under heavy load, which can increase the wallclock
time for bpf_seq_read(), the warning may still be possible.

For example, calling bpf_delay() in the "while" loop of
bpf_seq_read(), which will introduce artificial delay,
the warning will show up in my qemu run.

  static unsigned q;
  volatile unsigned *p = &q;
  volatile unsigned long long ll;
  static void bpf_delay(void)
  {
         int i, j;

         for (i = 0; i < 10000; i++)
                 for (j = 0; j < 10000; j++)
                         ll += *p;
  }

There are two ways to fix this issue. One is to reduce the above
one million threshold to say 100,000 and hopefully rcu warning will
not show up any more. Another is to introduce a target feature
which enables bpf_seq_read() calling cond_resched().

This patch took second approach as the first approach may cause
more -EAGAIN failures for read() syscalls. Note that not all bpf_iter
targets can permit cond_resched() in bpf_seq_read() as some, e.g.,
netlink seq iterator, rcu read lock critical section spans through
seq_ops->next() -> seq_ops->show() -> seq_ops->next().

For the kernel code with the above hack, "bpftool p" roughly takes
38 seconds to finish on my VM with 184 bpf program runs.
Using the following command, I am able to collect the number of
context switches:
   perf stat -e context-switches -- ./bpftool p >& log
Without this patch,
   69      context-switches
With this patch,
   75      context-switches
This patch added additional 6 context switches, roughly every 6 seconds
to reschedule, to avoid lengthy no-rescheduling which may cause the
above RCU warnings.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201028061054.1411116-1-yhs@fb.com
2020-10-28 14:54:31 -07:00
Al Viro
77f6ab8b77 don't dump the threads that had been already exiting when zapped.
Coredump logics needs to report not only the registers of the dumping
thread, but (since 2.5.43) those of other threads getting killed.

Doing that might require extra state saved on the stack in asm glue at
kernel entry; signal delivery logics does that (we need to be able to
save sigcontext there, at the very least) and so does seccomp.

That covers all callers of do_coredump().  Secondary threads get hit with
SIGKILL and caught as soon as they reach exit_mm(), which normally happens
in signal delivery, so those are also fine most of the time.  Unfortunately,
it is possible to end up with secondary zapped when it has already entered
exit(2) (or, worse yet, is oopsing).  In those cases we reach exit_mm()
when mm->core_state is already set, but the stack contents is not what
we would have in signal delivery.

At least on two architectures (alpha and m68k) it leads to infoleaks - we
end up with a chunk of kernel stack written into coredump, with the contents
consisting of normal C stack frames of the call chain leading to exit_mm()
instead of the expected copy of userland registers.  In case of alpha we
leak 312 bytes of stack.  Other architectures (including the regset-using
ones) might have similar problems - the normal user of regsets is ptrace
and the state of tracee at the time of such calls is special in the same
way signal delivery is.

Note that had the zapper gotten to the exiting thread slightly later,
it wouldn't have been included into coredump anyway - we skip the threads
that have already cleared their ->mm.  So let's pretend that zapper always
loses the race.  IOW, have exit_mm() only insert into the dumper list if
we'd gotten there from handling a fatal signal[*]

As the result, the callers of do_exit() that have *not* gone through get_signal()
are not seen by coredump logics as secondary threads.  Which excludes voluntary
exit()/oopsen/traps/etc.  The dumper thread itself is unaffected by that,
so seccomp is fine.

[*] originally I intended to add a new flag in tsk->flags, but ebiederman pointed
out that PF_SIGNALED is already doing just what we need.

Cc: stable@vger.kernel.org
Fixes: d89f3847def4 ("[PATCH] thread-aware coredumps, 2.5.43-C3")
History-tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-10-28 16:39:49 -04:00
David Woodhouse
2cbd5a45e5 genirq/irqdomain: Implement get_name() method on irqchip fwnodes
Prerequisite to make x86 more irqdomain compliant.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20201024213535.443185-23-dwmw2@infradead.org
2020-10-28 20:26:27 +01:00
Linus Torvalds
23859ae444 Merge tag 'trace-v5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fix from Steven Rostedt:
 "Fix synthetic event "strcat" overrun

  New synthetic event code used strcat() and miscalculated the ending,
  causing the concatenation to write beyond the allocated memory.

  Instead of using strncat(), the code is switched over to seq_buf which
  has all the mechanisms in place to protect against writing more than
  what is allocated, and cleans up the code a bit"

* tag 'trace-v5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
  tracing, synthetic events: Replace buggy strcat() with seq_buf operations
2020-10-28 12:05:14 -07:00
Mateusz Nosek
921c7ebd13 futex: Fix incorrect should_fail_futex() handling
If should_futex_fail() returns true in futex_wake_pi(), then the 'ret'
variable is set to -EFAULT and then immediately overwritten. So the failure
injection is non-functional.

Fix it by actually leaving the function and returning -EFAULT.

The Fixes tag is kinda blury because the initial commit which introduced
failure injection was already sloppy, but the below mentioned commit broke
it completely.

[ tglx: Massaged changelog ]

Fixes: 6b4f4bc9cb ("locking/futex: Allow low-level atomic operations to return -EAGAIN")
Signed-off-by: Mateusz Nosek <mateusznosek0@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20200927000858.24219-1-mateusznosek0@gmail.com
2020-10-28 15:48:51 +01:00
Richard Guy Briggs
6d915476e6 audit: trigger accompanying records when no rules present
When there are no audit rules registered, mandatory records (config,
etc.) are missing their accompanying records (syscall, proctitle, etc.).

This is due to audit context dummy set on syscall entry based on absence
of rules that signals that no other records are to be printed.  Clear the dummy
bit if any record is generated, open coding this in audit_log_start().

The proctitle context and dummy checks are pointless since the
proctitle record will not be printed if no syscall records are printed.

The fds array is reset to -1 after the first syscall to indicate it
isn't valid any more, but was never set to -1 when the context was
allocated to indicate it wasn't yet valid.

Check ctx->pwd in audit_log_name().

The audit_inode* functions can be called without going through
getname_flags() or getname_kernel() that sets audit_names and cwd, so
set the cwd in audit_alloc_name() if it has not already been done so due to
audit_names being valid and purge all other audit_getcwd() calls.

Revert the LSM dump_common_audit_data() LSM_AUDIT_DATA_* cases from the
ghak96 patch since they are no longer necessary due to cwd coverage in
audit_alloc_name().

Thanks to bauen1 <j2468h@googlemail.com> for reporting LSM situations in
which context->cwd is not valid, inadvertantly fixed by the ghak96 patch.

Please see upstream github issue
https://github.com/linux-audit/audit-kernel/issues/120
This is also related to upstream github issue
https://github.com/linux-audit/audit-kernel/issues/96

Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-10-27 21:02:57 -04:00
Mauro Carvalho Chehab
cbb5262192 audit: fix a kernel-doc markup
typo:
	kauditd_print_skb -> kauditd_printk_skb

Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Paul Moore <paul@paul-moore.com>
2020-10-27 21:02:54 -04:00