Below is the call trace of tegra210_init_pllu() function:
start_kernel()
-> time_init()
--> of_clk_init()
---> tegra210_clock_init()
----> tegra210_pll_init()
-----> tegra210_init_pllu()
Because the preemption is disabled in the start_kernel before calling
time_init, tegra210_init_pllu is actually in an atomic context while
it includes a readl_relaxed_poll_timeout that might sleep.
So this patch just changes this readl_relaxed_poll_timeout() to its
atomic version.
Signed-off-by: Nicolin Chen <nicoleotsuka@gmail.com>
Acked-By: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
This clock was previously called sor1_src and was modelled as an input
to the sor1 module clock. However, it's really an output clock that can
be fed either from the safe, the sor1_pad_clkout or the sor1 module
clocks. sor1 itself can take input from either of the display PLLs.
The same implementation for the sor1_out clock is used on Tegra186, so
this nicely lines up both SoC generations to deal with this clock in a
uniform way.
Signed-off-by: Thierry Reding <treding@nvidia.com>
- Added necessary delays in PLLU enable sequence during initialization
- Applied PLLU lock to all secondary gates (PLLU_48M and PLLU_60M were
missing).
Signed-off-by: Alex Frid <afrid@nvidia.com>
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Tested-by: Thierry Reding <treding@nvidia.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Increased Tegra210 UTMIPLL power on delay to 20us (spec maximum is 15us).
Also remove a few empty lines to make it more clear the ACTIVE_DLY_COUNT
and ENABLE_DLY_COUNT fields.
Signed-off-by: Alex Frid <afrid@nvidia.com>
Reviewed-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Reviewed-by: Jon Mayo <jmayo@nvidia.com>
Tested-by: Thierry Reding <treding@nvidia.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Tegra210 PLLX uses the same sequences than then PLLC instances. So there
is no need to have a special registration function and ops struct for it.
Simplify the code by changing all references to the Tegra210 PLLX
registration function to the Tegra210 PLLC registration function and
avoid duplicate functionality.
Based on work by Alex Frid <afrid@nvidia.com>
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Tested-by: Thierry Reding <treding@nvidia.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
If the PLL is on, only warn if the defaults are not yet set. Otherwise be
silent.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Reviewed-by: Timo Alho <talho@nvidia.com>
Tested-by: Thierry Reding <treding@nvidia.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Don't take the fractional part into account to calculate the effective
NDIV if fractional ndiv is not enabled.
Signed-off-by: Alex Frid <afrid@nvidia.com>
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Tested-by: Thierry Reding <treding@nvidia.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
PLLD2 is used for HDMI which does not allow Spread Spectrum clocking.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Tested-by: Thierry Reding <treding@nvidia.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Commit 8dce89a1c2 ("clk: tegra: Don't warn for PLL defaults
unnecessarily") changed the tegra210_pllcx_set_defaults() function
causing the PLL to always be reset regardless of whether it is in-use.
This function was changed so that resetting of the PLL will only be
skipped if the PLL is enabled AND 'pllcx->params->defaults_set' is not
true. However, the 'pllcx->params->defaults_set' is always true and
hence, the PLL is now always reset. This causes the boot to fail on the
Tegra210 Smaug where the PLL is already enabled and in-use. Fix this by
only resetting the PLL if not in-use and only printing the warning that
the defaults are not set after we have checked the default settings.
Fixes: 8dce89a1c2 ("clk: tegra: Don't warn for PLL defaults unnecessarily")
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Acked-By: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
iqc1, iqc2, tegra_clk_pll_a_out_adsp, tegra_clk_pll_a_out0_out_adsp, adsp
and adsp neon were not modelled. dp2 wasn't modelled for Tegra210.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
This is needed to make the JTAG debugging interface work.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
[treding@nvidia.com: add TODO comment]
Signed-off-by: Thierry Reding <treding@nvidia.com>
This will be used by the powergating driver to ensure proper sequencer
state when the SATA domain is powergated.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Tegra210 has 2 special resets which don't follow the normal pattern:
DVCO and ADSP. Add them in this patch.
Changelog:
v2: add DT bindings file
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
In normal operation pll_u is under hardware control and has a fixed rate
of 480MHz. Hardware will turn on pll_u on whenever any of the XUSB
powerdomains is on. From a software point of view we model this is if
pll_u is always on using a fixed rate clock. However the bootloader
might or might not have configured pll_u this way. So we will check the
current state of pll_u at boot and reconfigure it if required.
There are 3 possiblities at kernel boot:
1) pll_u is under hardware control: do nothing
2) pll_u is under hardware control and enabled: enable hardware control
3) pll_u is disabled: enable pll_u and enable hardware control
In all cases we also check if UTMIPLL is under hardware control at boot
and configure it for hardware control if that is not the case.
The same is done during SC7 resume.
Thanks to Joseph Lo <josephl@nvidia.com> for bug fixes.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Export UTMIPLL IDDQ functions. These will be needed when powergating the
XUSB partition.
Signed-off-by: BH Hsieh <bhsieh@nvidia.com>
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
This clock clocks the ADSP Cortex-A9.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Reviewed-by: Mikko Perttunen <mperttunen@nvidia.com>
Tested-by: Mikko Perttunen <mperttunen@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Tegra210 has 3 inputs for Digital Microphones (DMICs). Provide the
required clocks for them.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Reviewed-by: Mikko Perttunen <mperttunen@nvidia.com>
Tested-by: Mikko Perttunen <mperttunen@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Tegra210 has 3 DMIC inputs which can be clocked from the recovered clock
of several other audio inputs (eg. i2s0, i2s1, ...). To model this, we
add a 3 new clocks similar to the audio* clocks which handle the same
function for the I2S and SPDIF clocks.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Reviewed-by: Mikko Perttunen <mperttunen@nvidia.com>
Tested-by: Mikko Perttunen <mperttunen@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
This clock is used to clock the HDMI CEC interface.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Reviewed-by: Mikko Perttunen <mperttunen@nvidia.com>
Tested-by: Mikko Perttunen <mperttunen@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Return the actually achieved rate in cfg->output_rate rather than just
the requested rate. This is important to make clk_round_rate() return
the correct result.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Reviewed-by: Mikko Perttunen <mperttunen@nvidia.com>
Tested-by: Mikko Perttunen <mperttunen@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
If the PLL is on, only warn if the defaults are not yet set. Otherwise
be silent.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Reviewed-by: Mikko Perttunen <mperttunen@nvidia.com>
Tested-by: Mikko Perttunen <mperttunen@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
This clock doesn't actually exist, so remove it.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Reviewed-by: Mikko Perttunen <mperttunen@nvidia.com>
Tested-by: Mikko Perttunen <mperttunen@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
The 2 ISP clocks (ispa and ispb) share a mux/divider control. So model
this as 1 mux/divider clock and child gate clocks.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Reviewed-by: Mikko Perttunen <mperttunen@nvidia.com>
Tested-by: Mikko Perttunen <mperttunen@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
pll_a1 was using CLK_RST_CONTROLLER_PLLA1_MISC_0 for IDDQ control rather
than the correct register CLK_RST_CONTROLLER_PLLA1_MISC_1. Also add
pll_a1 to the set of clocks defined for Tegra210.
Signed-off-by: Peter De Schrijver <pdeschrijver@nvidia.com>
Reviewed-by: Mikko Perttunen <mperttunen@nvidia.com>
Tested-by: Mikko Perttunen <mperttunen@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Move the UTMI PLL initialization code form clk-tegra<chip>.c files into
clk-pll.c. UTMI PLL was being configured and set in HW control right
after registration. However, when the clock init_table is processed and
child clks of PLLU are enabled, it will call in and enable PLLU as
well, and initiate SW enabling sequence even though PLLU is already in
HW control. This leads to getting UTMIPLL stuck with a SEQ_BUSY status.
Doing the initialization once during pllu_enable means we configure it
properly into HW control.
A side effect of the commonization/localization of the UTMI PLL init
code, is that it corrects some errors that were present for earlier
generations. For instance, in clk-tegra124.c, it used to have:
#define UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(x) (((x) & 0x1f) << 6)
when the correct shift to use is present in the new version:
#define UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(x) (((x) & 0x1f) << 27)
which matches the Tegra124 TRM register definition.
Signed-off-by: Andrew Bresticker <abrestic@chromium.org>
[rklein: Merged in some later fixes for potential deadlocks]
Signed-off-by: Rhyland Klein <rklein@nvidia.com>
[treding: coding style bike-shedding, remove unused variable]
Signed-off-by: Thierry Reding <treding@nvidia.com>
sor_safe being the parent of the dpaux and dpaux1 clocks, it's not only
natural, but also slightly more efficient, to initialize it before its
children. This avoids orphaning the dpaux and dpaux1 clocks only to get
them reparented when the sor_safe clock is registered.
Acked-by: Jon Hunter <jonathanh@nvidia.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
It turns out that sor_safe, rather than pll_p, is the parent of the
dpaux and dpaux1 clocks.
Acked-by: Jon Hunter <jonathanh@nvidia.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Make the sor1 and sor1_src clocks available on Tegra210. They will be
used by the display driver to support HDMI and DP.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Enabling spread spectrum on pll_d2 can lead to issues with display
modes. HDMI monitors, for example, would report "Signal Error" and
some modes driven over DisplayPort would generate fuzzy horizontal
bands.
Signed-off-by: Thierry Reding <treding@nvidia.com>
Commit 86c679a522 ("clk: tegra: pll: Fix _pll_ramp_calc_pll logic and
_calc_dynamic_ramp_rate") changed the PLL divider computation logic to
consistently use P-divider values from tables as real dividers rather
than the hardware values. Unfortunately for some reason many of the
Tegra210 clocks didn't have their tables updated (most likely an over-
sight by me when applying the patches). This commit fixes them all up.
Cc: Jon Hunter <jonathanh@nvidia.com>
Cc: Rhyland Klein <rklein@nvidia.com>
Acked-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Most users of IS_ERR_VALUE() in the kernel are wrong, as they
pass an 'int' into a function that takes an 'unsigned long'
argument. This happens to work because the type is sign-extended
on 64-bit architectures before it gets converted into an
unsigned type.
However, anything that passes an 'unsigned short' or 'unsigned int'
argument into IS_ERR_VALUE() is guaranteed to be broken, as are
8-bit integers and types that are wider than 'unsigned long'.
Andrzej Hajda has already fixed a lot of the worst abusers that
were causing actual bugs, but it would be nice to prevent any
users that are not passing 'unsigned long' arguments.
This patch changes all users of IS_ERR_VALUE() that I could find
on 32-bit ARM randconfig builds and x86 allmodconfig. For the
moment, this doesn't change the definition of IS_ERR_VALUE()
because there are probably still architecture specific users
elsewhere.
Almost all the warnings I got are for files that are better off
using 'if (err)' or 'if (err < 0)'.
The only legitimate user I could find that we get a warning for
is the (32-bit only) freescale fman driver, so I did not remove
the IS_ERR_VALUE() there but changed the type to 'unsigned long'.
For 9pfs, I just worked around one user whose calling conventions
are so obscure that I did not dare change the behavior.
I was using this definition for testing:
#define IS_ERR_VALUE(x) ((unsigned long*)NULL == (typeof (x)*)NULL && \
unlikely((unsigned long long)(x) >= (unsigned long long)(typeof(x))-MAX_ERRNO))
which ends up making all 16-bit or wider types work correctly with
the most plausible interpretation of what IS_ERR_VALUE() was supposed
to return according to its users, but also causes a compile-time
warning for any users that do not pass an 'unsigned long' argument.
I suggested this approach earlier this year, but back then we ended
up deciding to just fix the users that are obviously broken. After
the initial warning that caused me to get involved in the discussion
(fs/gfs2/dir.c) showed up again in the mainline kernel, Linus
asked me to send the whole thing again.
[ Updated the 9p parts as per Al Viro - Linus ]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andrzej Hajda <a.hajda@samsung.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lkml.org/lkml/2016/1/7/363
Link: https://lkml.org/lkml/2016/5/27/486
Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> # For nvmem part
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use a new Tegra210 version of the pll_register_pllre function to
allow setting the proper settings for the m and n div fields.
Additionally define PLL_RE_OUT1 on Tegra210.
Signed-off-by: Rhyland Klein <rklein@nvidia.com>
[treding@nvidia.com: define PLLRE_OUT1 register offset]
Signed-off-by: Thierry Reding <treding@nvidia.com>
The sor_safe clock is a fixed factor (1:17) clock derived from pll_p. It
has a gate bit in the peripheral clock registers. While the SOR is being
powered up, sor_safe can be used as the source until the SOR brick can
generate its own clock.
Signed-off-by: Thierry Reding <treding@nvidia.com>
The dpaux (on Tegra124 and Tegra210) and dpaux1 (on Tegra210) are fixed
factor clocks (1:17) and derived from pll_p_out0 (pll_p). They also have
a gate bit in the peripheral clock registers.
Signed-off-by: Thierry Reding <treding@nvidia.com>
This clock is of the same type as dpaux and is added to feed into the
second DPAUX block used in conjunction with SOR1.
Signed-off-by: Thierry Reding <treding@nvidia.com>
On Tegra210, hardware control of the SATA and XUSB pad PLLs must be
done during the UPHY enable sequence rather than the PLLE enable
sequence. Export functions to do this so that hardware control can
be enabled from the XUSB padctl driver.
Signed-off-by: Andrew Bresticker <abrestic@chromium.org>
Signed-off-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Sparse reports the following warnings for functions in clk-tegra210.c
that should be declared as static:
drivers/clk/tegra/clk-tegra210.c:460:6: warning: symbol
'tegra210_pllcx_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:485:6: warning: symbol
'_pllc_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:490:6: warning: symbol
'_pllc2_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:495:6: warning: symbol
'_pllc3_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:500:6: warning: symbol
'_plla1_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:510:6: warning: symbol
'tegra210_plla_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:562:6: warning: symbol
'tegra210_plld_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:701:6: warning: symbol
'tegra210_plld2_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:709:6: warning: symbol
'tegra210_plldp_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:722:6: warning: symbol
'tegra210_pllc4_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:731:6: warning: symbol
'tegra210_pllre_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:844:6: warning: symbol
'tegra210_pllx_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:904:6: warning: symbol
'tegra210_pllmb_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:963:6: warning: symbol
'tegra210_pllp_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:1025:6: warning: symbol
'tegra210_pllu_set_defaults' was not declared. Should it be static?
drivers/clk/tegra/clk-tegra210.c:1215:15: warning: symbol
'tegra210_clk_adjust_vco_min' was not declared. Should it be static?
Fix this by declaring the above as static.
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Sparse generates the following warning for the pll_m params structure:
drivers/clk/tegra/clk-tegra210.c:1569:10: warning: Initializer entry
defined twice
drivers/clk/tegra/clk-tegra210.c:1570:10: also defined here
Fix this by correcting the index for the MISC1 register.
Fixes: b31eba5ff3f7 ("clk: tegra: Add support for Tegra210 clocks")
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
The definition, PLLU_BASE_OVERRIDE, for the pll_u OVERRIDE bit is defined
but not used and when the OVERRIDE bit is cleared in tegra210_pll_init()
the code directly uses the bit number. Therefore, use the definition,
PLLU_BASE_OVERRIDE when clearing the OVERRIDE bit.
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
If the pll_u is not configured by the bootloader, then on kernel boot the
following warning is seen:
clk_pll_wait_for_lock: Timed out waiting for pll pll_u_vco lock
tegra_init_from_table: Failed to enable pll_u_out1
------------[ cut here ]------------
WARNING: at drivers/clk/tegra/clk.c:269
Modules linked in:
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.4.0-rc4-next-20151214+ #1
Hardware name: NVIDIA Tegra210 P2371 reference board (E.1) (DT)
task: ffffffc0bc0a0000 ti: ffffffc0bc0a8000 task.ti: ffffffc0bc0a8000
PC is at tegra_init_from_table+0x140/0x164
LR is at tegra_init_from_table+0x140/0x164
pc : [<ffffffc0008fee78>] lr : [<ffffffc0008fee78>] pstate: 80000045
sp : ffffffc0bc0abd50
x29: ffffffc0bc0abd50 x28: ffffffc00090b8a8
x27: ffffffc000a06000 x26: ffffffc0bc019780
x25: ffffffc00086a708 x24: ffffffc00086a790
x23: ffffffc0006d7188 x22: ffffffc0bc010000
x21: 000000000000016e x20: ffffffc0bc00d100
x19: ffffffc000944178 x18: 0000000000000007
x17: 000000000000000e x16: 0000000000000001
x15: 0000000000000007 x14: 000000000000000e
x13: 0000000000000013 x12: 000000000000001a
x11: 000000000000004d x10: 0000000000000750
x9 : ffffffc0bc0a8000 x8 : ffffffc0bc0a07b0
x7 : 0000000000000001 x6 : 0000000002d5f0f8
x5 : 0000000000000000 x4 : 0000000000000000
x3 : 0000000000000002 x2 : ffffffc000996724
x1 : 0000000000000000 x0 : 0000000000000032
---[ end trace cbd20ae519e92ced ]---
Call trace:
[<ffffffc0008fee78>] tegra_init_from_table+0x140/0x164
[<ffffffc000900ac8>] tegra210_clock_apply_init_table+0x20/0x28
[<ffffffc0008fec40>] tegra_clocks_apply_init_table+0x18/0x24
[<ffffffc00008291c>] do_one_initcall+0x90/0x194
[<ffffffc0008cfab0>] kernel_init_freeable+0x148/0x1e8
[<ffffffc000636bb0>] kernel_init+0x10/0xdc
[<ffffffc000085cd0>] ret_from_fork+0x10/0x40
clk_pll_wait_for_lock: Timed out waiting for pll pll_u_vco lock
tegra_init_from_table: Failed to enable pll_u_out2
------------[ cut here ]------------
pll_u can be either controlled by software or hardware and this is
selected via the OVERRIDE bit in the pll_u base register. In the function
tegra210_pll_init(), the OVERRIDE bit for pll_u is cleared, which selects
hardware control of the pll. However, at the same time the pll_u clocks
are populated in the init_table for tegra210 and so software will try to
configure the pll_u if it is not already configured and hence, the above
warning is seen when the pll fails to lock. Remove the pll_u clocks from
the init_table so that software does not try to configure this pll on
boot.
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
The EMC clock sources for Tegra210 currently incorrectly include pll_c2
and pll_c3. However, both of these should have been pll_mb as shown in
the TRM. If Tegra210 happens to be configured such that the pll_mb is the
default clock for the EMC, as configured by the bootloader, then this will
cause a system hang on boot. This is because the kernel will disable the
pll_mb when disabling unused clock as it appears to be unused when it is
not.
Also add the additional pll_p clock source for the EMC.
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
The APB2APE clock for the audio subsystem is required for powering up the
audio power domain and accessing the various modules in this subsystem on
Tegra210 devices. Add this clock for Tegra210.
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
The logic for calculating the input rate used when figuring out the
proper dynamic steps for pllx was incorrect. It is supposed to be
calculated using parent_rate / m but it was just using the parent rate
directly, therefore using the wrong step values.
Signed-off-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Some register for PLLM and PLLMB were named MISC0 but according to the
TRM, they have different names. Sync up the names to make it easier to
understand which register they are really referring to.
Signed-off-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Most PLL's don't actually have LOCK_ENABLE bits. However, most PLL's
also had that flag set, which meant that the clk code was trying to
enable locks, and inadvertantly flipping bits in other fields.
For PLLM, ensure the correct register is used for the misc_register.
PLL_MISC0 contains the EN_LCKDET bit which should be used for enabling
the lock, and PLLM_MISC1 shouldn't be used at all.
Lastly, remove some of the settings which would point to the EN_LCKDET
bits for some PLLs. There is no need to enable the locks, and that is
done as part of the set_defaults logic already.
Signed-off-by: Rhyland Klein <rklein@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>