Use set_current_state instead of a direct assignment to set the
task state of the current process.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The code in do_signal sets the TIF_SINGLE_STEP bit and calls
tracehook_signal_handler after the signal frame has been set up.
This causes two SIGTRAP signals to be delivered to the tracer.
Stop setting the TIF_SINGLE_STEP bit in do_signal to get the
correct number of SIGTRAPs.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Implement is_compat_task and use it all over the place.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
syscall_get_nr() currently returns a valid result only if the call
chain of the traced process includes do_syscall_trace_enter(). But
collect_syscall() can be called for any sleeping task, the result of
syscall_get_nr() in general is completely bogus.
To make syscall_get_nr() work for any sleeping task the traps field
in pt_regs is replace with svcnr - the system call number the process
is executing. If svcnr == 0 the process is not on a system call path.
The syscall_get_arguments and syscall_set_arguments use regs->gprs[2]
for the first system call parameter. This is incorrect since gprs[2]
may have been overwritten with the system call number if the call
chain includes do_syscall_trace_enter. Use regs->orig_gprs2 instead.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* System call parameter and result access functions
* Add tracehook calls
* Split syscall_trace into two functions do_syscall_trace_enter and
do_syscall_trace_exit
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Most noteable part of this commit is the new local header file entry.h
which contains all the function declarations of functions that get only
called from asm code or are arch internal. That way we can avoid extern
declarations in C files.
This is more or less the same that was done for sparc64.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
This is just a port of 83bd01024b
"x86: protect against sigaltstack wraparound".
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Remove includes of <linux/smp_lock.h> where it is not used/needed.
Suggested by Al Viro.
Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc,
sparc64, and arm (all 59 defconfigs).
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove system call glue for sys_clone, sys_fork, sys_vfork, sys_execve,
sys_sigreturn, sys_rt_sigreturn and sys_sigaltstack. Call do_execve from
kernel_execve directly, move pt_regs to the right place and branch to
sysc_return to start the user space program. This removes the last
in-kernel system call.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
This provides a noexec protection on s390 hardware. Our hardware does
not have any bits left in the pte for a hw noexec bit, so this is a
different approach using shadow page tables and a special addressing
mode that allows separate address spaces for code and data.
As a special feature of our "secondary-space" addressing mode, separate
page tables can be specified for the translation of data addresses
(storage operands) and instruction addresses. The shadow page table is
used for the instruction addresses and the standard page table for the
data addresses.
The shadow page table is linked to the standard page table by a pointer
in page->lru.next of the struct page corresponding to the page that
contains the standard page table (since page->private is not really
private with the pte_lock and the page table pages are not in the LRU
list).
Depending on the software bits of a pte, it is either inserted into
both page tables or just into the standard (data) page table. Pages of
a vma that does not have the VM_EXEC bit set get mapped only in the
data address space. Any try to execute code on such a page will cause a
page translation exception. The standard reaction to this is a SIGSEGV
with two exceptions: the two system call opcodes 0x0a77 (sys_sigreturn)
and 0x0aad (sys_rt_sigreturn) are allowed. They are stored by the
kernel to the signal stack frame. Unfortunately, the signal return
mechanism cannot be modified to use an SA_RESTORER because the
exception unwinding code depends on the system call opcode stored
behind the signal stack frame.
This feature requires that user space is executed in secondary-space
mode and the kernel in home-space mode, which means that the addressing
modes need to be switched and that the noexec protection only works
for user space.
After switching the addressing modes, we cannot use the mvcp/mvcs
instructions anymore to copy between kernel and user space. A new
mvcos instruction has been added to the z9 EC/BC hardware which allows
to copy between arbitrary address spaces, but on older hardware the
page tables need to be walked manually.
Signed-off-by: Gerald Schaefer <geraldsc@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Consider return values for all user space access function and
return -EFAULT on error.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Fix new restore_sigregs function. It copies the user space copy of the
old psw without correcting the psw.mask and the psw.addr high order bit.
While we are at it, simplify save_sigregs a bit.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
If do_signal() gets called several times before returning to user space
and no signal is pending (e.g. cancelled by a debugger) syscall restart
handling could be done several times. This would change the user space
PSW to an address prior to the syscall instruction.
Fix this by making sure that syscall restart handling is only done once.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Consider return value of __put_user() when setting up a signal frame
instead of ignoring it.
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add support for the new *at, pselect6 and ppoll system calls. This includes
adding required support for TIF_RESTORE_SIGMASK.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Sanitize some s390 Kconfig options. We have ARCH_S390, ARCH_S390X,
ARCH_S390_31, 64BIT, S390_SUPPORT and COMPAT. Replace these 6 options by
S390, 64BIT and COMPAT.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Check return code of do_sigaltstack and force a SIGSEGV if it is -EFAULT.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It has been reported that the way Linux handles NODEFER for signals is
not consistent with the way other Unix boxes handle it. I've written a
program to test the behavior of how this flag affects signals and had
several reports from people who ran this on various Unix boxes,
confirming that Linux seems to be unique on the way this is handled.
The way NODEFER affects signals on other Unix boxes is as follows:
1) If NODEFER is set, other signals in sa_mask are still blocked.
2) If NODEFER is set and the signal is in sa_mask, then the signal is
still blocked. (Note: this is the behavior of all tested but Linux _and_
NetBSD 2.0 *).
The way NODEFER affects signals on Linux:
1) If NODEFER is set, other signals are _not_ blocked regardless of
sa_mask (Even NetBSD doesn't do this).
2) If NODEFER is set and the signal is in sa_mask, then the signal being
handled is not blocked.
The patch converts signal handling in all current Linux architectures to
the way most Unix boxes work.
Unix boxes that were tested: DU4, AIX 5.2, Irix 6.5, NetBSD 2.0, SFU
3.5 on WinXP, AIX 5.3, Mac OSX, and of course Linux 2.6.13-rcX.
* NetBSD was the only other Unix to behave like Linux on point #2. The
main concern was brought up by point #1 which even NetBSD isn't like
Linux. So with this patch, we leave NetBSD as the lonely one that
behaves differently here with #2.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!