Commit Graph

16665 Commits

Author SHA1 Message Date
Adrian Bunk
cce76f9b96 fs/nfsd/export.c: make 3 functions static
This patch makes the following needlessly global functions static:
- exp_get_by_name()
- exp_parent()
- exp_find()

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Neil Brown <neilb@suse.de>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:10 -07:00
Matthias Kaehlcke
4e3dfacaa0 use mutex instead of semaphore in isdn subsystem common functions
The ISDN subsystem common functions use a semaphore as mutex. Use the
mutex API instead of the (binary) semaphore.

Signed-off-by: Matthias Kaehlcke <matthias.kaehlcke@gmail.com>
Acked-by: Karsten Keil <kkeil@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:10 -07:00
Masami Hiramatsu
f438d914b2 kprobes: support kretprobe blacklist
Introduce architecture dependent kretprobe blacklists to prohibit users
from inserting return probes on the function in which kprobes can be
inserted but kretprobes can not.

This patch also removes "__kprobes" mark from "__switch_to" on x86_64 and
registers "__switch_to" to the blacklist on x86-64, because that mark is to
prohibit user from inserting only kretprobe.

Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com>
Acked-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:10 -07:00
Tony Jones
49dce689ad spi doesn't need class_device
Make the SPI framework and drivers stop using class_device.  Update docs
accordingly ...  highlighting just which sysfs paths should be
"safe"/stable.

Signed-off-by: Tony Jones <tonyj@suse.de>
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:10 -07:00
Paul Jackson
607717a65d cpuset: remove sched domain hooks from cpusets
Remove the cpuset hooks that defined sched domains depending on the setting
of the 'cpu_exclusive' flag.

The cpu_exclusive flag can only be set on a child if it is set on the
parent.

This made that flag painfully unsuitable for use as a flag defining a
partitioning of a system.

It was entirely unobvious to a cpuset user what partitioning of sched
domains they would be causing when they set that one cpu_exclusive bit on
one cpuset, because it depended on what CPUs were in the remainder of that
cpusets siblings and child cpusets, after subtracting out other
cpu_exclusive cpusets.

Furthermore, there was no way on production systems to query the
result.

Using the cpu_exclusive flag for this was simply wrong from the get go.

Fortunately, it was sufficiently borked that so far as I know, almost no
successful use has been made of this.  One real time group did use it to
affectively isolate CPUs from any load balancing efforts.  They are willing
to adapt to alternative mechanisms for this, such as someway to manipulate
the list of isolated CPUs on a running system.  They can do without this
present cpu_exclusive based mechanism while we develop an alternative.

There is a real risk, to the best of my understanding, of users
accidentally setting up a partitioned scheduler domains, inhibiting desired
load balancing across all their CPUs, due to the nonobvious (from the
cpuset perspective) side affects of the cpu_exclusive flag.

Furthermore, since there was no way on a running system to see what one was
doing with sched domains, this change will be invisible to any using code.
Unless they have real insight to the scheduler load balancing choices, they
will be unable to detect that this change has been made in the kernel's
behaviour.

Initial discussion on lkml of this patch has generated much comment.  My
(probably controversial) take on that discussion is that it has reached a
rough concensus that the current cpuset cpu_exclusive mechanism for
defining sched domains is borked.  There is no concensus on the
replacement.  But since we can remove this mechanism, and since its
continued presence risks causing unwanted partitioning of the schedulers
load balancing, we should remove it while we can, as we proceed to work the
replacement scheduler domain mechanisms.

Signed-off-by: Paul Jackson <pj@sgi.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <clameter@engr.sgi.com>
Cc: Dinakar Guniguntala <dino@in.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:09 -07:00
Shannon Nelson
2ed6dc34f9 I/OAT: Add DCA services
Add code to connect to the DCA driver and provide cpu tags for use by
drivers that would like to use Direct Cache Access hints.

    [Adrian Bunk]                Several Kconfig cleanup items
    [Andrew Morten, Chris Leech] Fix for using cpu_physical_id() even when
			         built for uni-processor

Signed-off-by: Shannon Nelson <shannon.nelson@intel.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:09 -07:00
Shannon Nelson
7589670f37 DCA: Add Direct Cache Access driver
Direct Cache Access (DCA) is a method for warming the CPU cache before data
is used, with the intent of lessening the impact of cache misses.  This
patch adds a manager and interface for matching up client requests for DCA
services with devices that offer DCA services.

In order to use DCA, a module must do bus writes with the appropriate tag
bits set to trigger a cache read for a specific CPU.  However, different
CPUs and chipsets can require different sets of tag bits, and the methods
for determining the correct bits may be simple hardcoding or may be a
hardware specific magic incantation.  This interface is a way for DCA
clients to find the correct tag bits for the targeted CPU without needing
to know the specifics.

    [Dave Miller] use DEFINE_SPINLOCK()

Signed-off-by: Shannon Nelson <shannon.nelson@intel.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:09 -07:00
Shannon Nelson
3e037454bc I/OAT: Add support for MSI and MSI-X
Add support for MSI and MSI-X interrupt handling, including the ability
to choose the desired interrupt method.

Signed-off-by: Shannon Nelson <shannon.nelson@intel.com>
Acked-by: David S. Miller <davem@davemloft.net>
[bunk@kernel.org: drivers/dma/ioat_dma.c: make 3 functions static]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:09 -07:00
Shannon Nelson
223758c77a I/OAT: New device ids
Add device ids for new revs of the Intel I/OAT DMA engine

Signed-off-by: Shannon Nelson <shannon.nelson@intel.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:09 -07:00
Jeff Dike
f0c4cad99c uml: style fixes in FP code
Tidy the code affected by the floating point fixes.

A bunch of unused stuff is gone, including two sigcontext.c files,
which turned out to be entirely unneeded.

There are the usual fixes -
	whitespace and style cleanups
	copyright updates
	emacs formatting comments gone
	include cleanups
	adding severities to printks

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:07 -07:00
Jeff Dike
058ac308f3 uml: coredumping floating point fixes
Fix core dumping of floating point state.  ELF_CORE_COPY_FPREGS gets a
definitions, and as a result, dump_fpu no longer needs to exist.  Also,
elf_fpregset_t needed a real definition.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:07 -07:00
Jeff Dike
e8012b584f uml: ptrace floating point fixes
Handle floating point state better in ptrace.  The code now correctly
distinguishes between PTRACE_[GS]ETFPREGS and PTRACE_[GS]ETFPXREGS.  The FPX
requests get handed off to arch-specific code because that's not generic.

get_fpregs, set_fpregs, set_fpregs, and set_fpxregs needed real
implementations.

Something here exposed a missing include in asm/page.h, which needed
linux/types.h in order to get gfp_t, so that's fixed here.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:07 -07:00
Jeff Dike
b21d4b08b6 uml: fix inlines
"extern inline" will have different semantics with gcc 4.3.

Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:06 -07:00
Jeff Dike
18badddaa8 uml: rename pt_regs general-purpose register file
Before the removal of tt mode, access to a register on the skas-mode side of a
pt_regs struct looked like pt_regs.regs.skas.regs.regs[FOO].  This was bad
enough, but it became pt_regs.regs.regs.regs[FOO] with the removal of the
union from the middle.  To get rid of the run of three "regs", the last field
is renamed to "gp".

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:06 -07:00
Jeff Dike
6c738ffa9f uml: fold mmu_context_skas into mm_context
This patch folds mmu_context_skas into struct mm_context, changing all users
of these structures as needed.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:06 -07:00
Jeff Dike
fab95c55e3 uml: get rid of do_longjmp
do_longjmp used to be needed when UML didn't have its own implementation of
setjmp and longjmp.  They came from libc, and couldn't be called directly from
kernel code, as the libc jmp_buf couldn't be imported there.  do_longjmp was a
userspace function which served to provide longjmp access to kernel code.

This is gone, and a number of void * pointers can now be jmp_buf *.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:05 -07:00
Jeff Dike
ba180fd437 uml: style fixes pass 3
Formatting changes in the files which have been changed in the course
of folding foo_skas functions into their callers.  These include:
	copyright updates
	header file trimming
	style fixes
	adding severity to printks

These changes should be entirely non-functional.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:05 -07:00
Jeff Dike
77bf440031 uml: remove code made redundant by CHOOSE_MODE removal
This patch makes a number of simplifications enabled by the removal of
CHOOSE_MODE.  There were lots of functions that looked like

	int foo(args){
		foo_skas(args);
	}

The bodies of foo_skas are now folded into foo, and their declarations (and
sometimes entire header files) are deleted.

In addition, the union uml_pt_regs, which was a union between the tt and skas
register formats, is now a struct, with the tt-mode arm of the union being
removed.

It turns out that usr2_handler was unused, so it is gone.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:05 -07:00
Jeff Dike
ae2587e412 uml: style fixes pass 2
Formatting changes in the files which have been changed in the course
of removing CHOOSE_MODE.  These include:
	copyright updates
	header file trimming
	style fixes
	adding severity to printks

These changes should be entirely non-functional.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:05 -07:00
Jeff Dike
6aa802ce6a uml: throw out CHOOSE_MODE
The next stage after removing code which depends on CONFIG_MODE_TT is removing
the CHOOSE_MODE abstraction, which provided both compile-time and run-time
branching to either tt-mode or skas-mode code.

This patch removes choose-mode.h and all inclusions of it, and replaces all
CHOOSE_MODE invocations with the skas branch.  This leaves a number of trivial
functions which will be dealt with in a later patch.

There are some changes in the uaccess and tls support which go somewhat beyond
this and eliminate some of the now-redundant functions.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:05 -07:00
Jeff Dike
42fda66387 uml: throw out CONFIG_MODE_TT
This patchset throws out tt mode, which has been non-functional for a while.

This is done in phases, interspersed with code cleanups on the affected files.

The removal is done as follows:
	remove all code, config options, and files which depend on
CONFIG_MODE_TT
	get rid of the CHOOSE_MODE macro, which decided whether to
call tt-mode or skas-mode code, and replace invocations with their
skas portions
	replace all now-trivial procedures with their skas equivalents

There are now a bunch of now-redundant pieces of data structures, including
mode-specific pieces of the thread structure, pt_regs, and mm_context.  These
are all replaced with their skas-specific contents.

As part of the ongoing style compliance project, I made a style pass over all
files that were changed.  There are three such patches, one for each phase,
covering the files affected by that phase but no later ones.

I noticed that we weren't freeing the LDT state associated with a process when
it exited, so that's fixed in one of the later patches.

The last patch is a tidying patch which I've had for a while, but which caused
inexplicable crashes under tt mode.  Since that is no longer a problem, this
can now go in.

This patch:

Start getting rid of tt mode support.

This patch throws out CONFIG_MODE_TT and all config options, code, and files
which depend on it.

CONFIG_MODE_SKAS is gone and everything that depends on it is included
unconditionally.

The few changed lines are in re-written Kconfig help, lines which needed
something skas-related removed from them, and a few more which weren't
strictly deletions.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:05 -07:00
Christoph Hellwig
0ac1555915 m32r: convert to generic sys_ptrace
Convert m32r to the generic sys_ptrace.  The conversion requires an
architecture hook after ptrace_attach which this patch adds.  The hook
will also be needed for a conersion of ia64 to the generic ptrace code.

Thanks to Hirokazu Takata for fixing a bug in the first version of this
code.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:04 -07:00
Mariusz Kozlowski
3165c0d16a include/asm-m32r/thread_info.h: kmalloc + memset conversion to kzalloc
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:03 -07:00
Sam Ravnborg
b2b5d37d7e alpha: beautify vmlinux.lds
Introduced a consistent style in vmlinux.lds and it now matches the
soon-to-be common style for all arch's vmlinux.lds files.

In addition:
- Replaced hardcoded constant with PAGE_SIZE
- Fix page.h so PAGE_SIZE can be used from assembler and in lds files
- Move a few labels inside brackets so linker alignment will not
  make label point ot a too low address
- Replaced DWARF and STABS sections with definitions from asm-generic

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Richard Henderson <rth@twiddle.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:03 -07:00
Christoph Hellwig
a5f833f3c1 alpha: convert to generic sys_ptrace
This patch converts alpha to the generic sys_ptrace.  We use
force_successful_syscall_return to avoid having to pass the pt_regs pointer
down to the function.  I think the removal of the assemly stub is correct,
but I could only compile-test this patch, so please give it a spin before
commiting :)

Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:03 -07:00
Greg Ungerer
fabc7f66ee M68KNOMMU: remove unused config symbol CONFIG_DISKtel
Remove unused config symbol CONFIG_DISKtel.
Pointed out by Robert P. J. Day <rpjday@mindspring.com>.

Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:03 -07:00
Mariusz Kozlowski
33bbf9597f include/asm-frv/thread_info.h: kmalloc + memset conversion to kzalloc
Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl>
Acked-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:03 -07:00
Benjamin Herrenschmidt
ef0fce8556 remove frv usage of flush_tlb_pgtables()
frv is the last user in the tree of that dubious hook, and it's my
understanding that it's not even needed.  It's only called by memory.c
free_pgd_range() which is always called within an mmu_gather, and
tlb_flush() on frv will do a flush_tlb_mm(), which from my reading of the
code, seems to do what flush_tlb_ptables() does, which is to clear the
cached PGE.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:03 -07:00
Adrian Bunk
dbcb0f19c8 mm/mempolicy.c: cleanups
This patch contains the following cleanups:
- every file should include the headers containing the prototypes for
  its global functions
- make the follosing needlessly global functions static:
  - migrate_to_node()
  - do_mbind()
  - sp_alloc()
  - mpol_rebind_policy()

[akpm@linux-foundation.org: fix uninitialised var warning]
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:03 -07:00
Adrian Bunk
d8dc74f212 mm/shmem.c: make 3 functions static
This patch makes three needlessly global functions static.

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:03 -07:00
Adam Litke
54f9f80d65 hugetlb: Add hugetlb_dynamic_pool sysctl
The maximum size of the huge page pool can be controlled using the overall
size of the hugetlb filesystem (via its 'size' mount option).  However in the
common case the this will not be set as the pool is traditionally fixed in
size at boot time.  In order to maintain the expected semantics, we need to
prevent the pool expanding by default.

This patch introduces a new sysctl controlling dynamic pool resizing.  When
this is enabled the pool will expand beyond its base size up to the size of
the hugetlb filesystem.  It is disabled by default.

Signed-off-by: Adam Litke <agl@us.ibm.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Dave McCracken <dave.mccracken@oracle.com>
Cc: William Irwin <bill.irwin@oracle.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:02 -07:00
Yasunori Goto
98f3cfc1dc memory hotplug: Hot-add with sparsemem-vmemmap
This patch is to avoid panic when memory hot-add is executed with
sparsemem-vmemmap.  Current vmemmap-sparsemem code doesn't support memory
hot-add.  Vmemmap must be populated when hot-add.  This is for
2.6.23-rc2-mm2.

Todo: # Even if this patch is applied, the message "[xxxx-xxxx] potential
        offnode page_structs" is displayed. To allocate memmap on its node,
        memmap (and pgdat) must be initialized itself like chicken and
        egg relationship.

      # vmemmap_unpopulate will be necessary for followings.
         - For cancel hot-add due to error.
         - For unplug.

Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:02 -07:00
KAMEZAWA Hiroyuki
48e94196a5 fix memory hot remove not configured case.
Now, arch dependent code around CONFIG_MEMORY_HOTREMOVE is a mess.
This patch cleans up them. This is against 2.6.23-rc6-mm1.

 - fix compile failure on ia64/ CONFIG_MEMORY_HOTPLUG && !CONFIG_MEMORY_HOTREMOVE case.
 - For !CONFIG_MEMORY_HOTREMOVE, add generic no-op remove_memory(),
   which returns -EINVAL.
 - removed remove_pages() only used in powerpc.
 - removed no-op remove_memory() in i386, sh, sparc64, x86_64.

 - only powerpc returns -ENOSYS at memory hot remove(no-op). changes it
   to return -EINVAL.

Note:
Currently, only ia64 supports CONFIG_MEMORY_HOTREMOVE. I welcome other
archs if there are requirements and testers.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:02 -07:00
KAMEZAWA Hiroyuki
0c0e619589 memory unplug: page offline
Logic.
 - set all pages in  [start,end)  as isolated migration-type.
   by this, all free pages in the range will be not-for-use.
 - Migrate all LRU pages in the range.
 - Test all pages in the range's refcnt is zero or not.

Todo:
 - allocate migration destination page from better area.
 - confirm page_count(page)== 0 && PageReserved(page) page is safe to be freed..
 (I don't like this kind of page but..
 - Find out pages which cannot be migrated.
 - more running tests.
 - Use reclaim for unplugging other memory type area.

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:02 -07:00
KAMEZAWA Hiroyuki
a5d76b54a3 memory unplug: page isolation
Implement generic chunk-of-pages isolation method by using page grouping ops.

This patch add MIGRATE_ISOLATE to MIGRATE_TYPES. By this
 - MIGRATE_TYPES increases.
 - bitmap for migratetype is enlarged.

pages of MIGRATE_ISOLATE migratetype will not be allocated even if it is free.
By this, you can isolated *freed* pages from users. How-to-free pages is not
a purpose of this patch. You may use reclaim and migrate codes to free pages.

If start_isolate_page_range(start,end) is called,
 - migratetype of the range turns to be MIGRATE_ISOLATE  if
   its type is MIGRATE_MOVABLE. (*) this check can be updated if other
   memory reclaiming works make progress.
 - MIGRATE_ISOLATE is not on migratetype fallback list.
 - All free pages and will-be-freed pages are isolated.
To check all pages in the range are isolated or not,  use test_pages_isolated(),
To cancel isolation, use undo_isolate_page_range().

Changes V6 -> V7
 - removed unnecessary #ifdef

There are HOLES_IN_ZONE handling codes...I'm glad if we can remove them..

Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:02 -07:00
KAMEZAWA Hiroyuki
75884fb1c6 memory unplug: memory hotplug cleanup
A clean up patch for "scanning memory resource [start, end)" operation.

Now, find_next_system_ram() function is used in memory hotplug, but this
interface is not easy to use and codes are complicated.

This patch adds walk_memory_resouce(start,len,arg,func) function.
The function 'func' is called per valid memory resouce range in [start,pfn).

[pbadari@us.ibm.com: Error handling in walk_memory_resource()]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Badari Pulavarty <pbadari@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:01 -07:00
Christoph Lameter
42a9fdbb12 SLUB: Optimize cacheline use for zeroing
We touch a cacheline in the kmem_cache structure for zeroing to get the
size. However, the hot paths in slab_alloc and slab_free do not reference
any other fields in kmem_cache, so we may have to just bring in the
cacheline for this one access.

Add a new field to kmem_cache_cpu that contains the object size. That
cacheline must already be used in the hotpaths. So we save one cacheline
on every slab_alloc if we zero.

We need to update the kmem_cache_cpu object size if an aliasing operation
changes the objsize of an non debug slab.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:01 -07:00
Christoph Lameter
4c93c355d5 SLUB: Place kmem_cache_cpu structures in a NUMA aware way
The kmem_cache_cpu structures introduced are currently an array placed in the
kmem_cache struct. Meaning the kmem_cache_cpu structures are overwhelmingly
on the wrong node for systems with a higher amount of nodes. These are
performance critical structures since the per node information has
to be touched for every alloc and free in a slab.

In order to place the kmem_cache_cpu structure optimally we put an array
of pointers to kmem_cache_cpu structs in kmem_cache (similar to SLAB).

However, the kmem_cache_cpu structures can now be allocated in a more
intelligent way.

We would like to put per cpu structures for the same cpu but different
slab caches in cachelines together to save space and decrease the cache
footprint. However, the slab allocators itself control only allocations
per node. We set up a simple per cpu array for every processor with
100 per cpu structures which is usually enough to get them all set up right.
If we run out then we fall back to kmalloc_node. This also solves the
bootstrap problem since we do not have to use slab allocator functions
early in boot to get memory for the small per cpu structures.

Pro:
	- NUMA aware placement improves memory performance
	- All global structures in struct kmem_cache become readonly
	- Dense packing of per cpu structures reduces cacheline
	  footprint in SMP and NUMA.
	- Potential avoidance of exclusive cacheline fetches
	  on the free and alloc hotpath since multiple kmem_cache_cpu
	  structures are in one cacheline. This is particularly important
	  for the kmalloc array.

Cons:
	- Additional reference to one read only cacheline (per cpu
	  array of pointers to kmem_cache_cpu) in both slab_alloc()
	  and slab_free().

[akinobu.mita@gmail.com: fix cpu hotplug offline/online path]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: "Pekka Enberg" <penberg@cs.helsinki.fi>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:01 -07:00
Christoph Lameter
b3fba8da65 SLUB: Move page->offset to kmem_cache_cpu->offset
We need the offset from the page struct during slab_alloc and slab_free. In
both cases we also reference the cacheline of the kmem_cache_cpu structure.
We can therefore move the offset field into the kmem_cache_cpu structure
freeing up 16 bits in the page struct.

Moving the offset allows an allocation from slab_alloc() without touching the
page struct in the hot path.

The only thing left in slab_free() that touches the page struct cacheline for
per cpu freeing is the checking of SlabDebug(page). The next patch deals with
that.

Use the available 16 bits to broaden page->inuse. More than 64k objects per
slab become possible and we can get rid of the checks for that limitation.

No need anymore to shrink the order of slabs if we boot with 2M sized slabs
(slub_min_order=9).

No need anymore to switch off the offset calculation for very large slabs
since the field in the kmem_cache_cpu structure is 32 bits and so the offset
field can now handle slab sizes of up to 8GB.

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:01 -07:00
Christoph Lameter
8e65d24c7c SLUB: Do not use page->mapping
After moving the lockless_freelist to kmem_cache_cpu we no longer need
page->lockless_freelist. Restructure the use of the struct page fields in
such a way that we never touch the mapping field.

This is turn allows us to remove the special casing of SLUB when determining
the mapping of a page (needed for corner cases of virtual caches machines that
need to flush caches of processors mapping a page).

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:01 -07:00
Christoph Lameter
dfb4f09609 SLUB: Avoid page struct cacheline bouncing due to remote frees to cpu slab
A remote free may access the same page struct that also contains the lockless
freelist for the cpu slab. If objects have a short lifetime and are freed by
a different processor then remote frees back to the slab from which we are
currently allocating are frequent. The cacheline with the page struct needs
to be repeately acquired in exclusive mode by both the allocating thread and
the freeing thread. If this is frequent enough then performance will suffer
because of cacheline bouncing.

This patchset puts the lockless_freelist pointer in its own cacheline. In
order to make that happen we introduce a per cpu structure called
kmem_cache_cpu.

Instead of keeping an array of pointers to page structs we now keep an array
to a per cpu structure that--among other things--contains the pointer to the
lockless freelist. The freeing thread can then keep possession of exclusive
access to the page struct cacheline while the allocating thread keeps its
exclusive access to the cacheline containing the per cpu structure.

This works as long as the allocating cpu is able to service its request
from the lockless freelist. If the lockless freelist runs empty then the
allocating thread needs to acquire exclusive access to the cacheline with
the page struct lock the slab.

The allocating thread will then check if new objects were freed to the per
cpu slab. If so it will keep the slab as the cpu slab and continue with the
recently remote freed objects. So the allocating thread can take a series
of just freed remote pages and dish them out again. Ideally allocations
could be just recycling objects in the same slab this way which will lead
to an ideal allocation / remote free pattern.

The number of objects that can be handled in this way is limited by the
capacity of one slab. Increasing slab size via slub_min_objects/
slub_max_order may increase the number of objects and therefore performance.

If the allocating thread runs out of objects and finds that no objects were
put back by the remote processor then it will retrieve a new slab (from the
partial lists or from the page allocator) and start with a whole
new set of objects while the remote thread may still be freeing objects to
the old cpu slab. This may then repeat until the new slab is also exhausted.
If remote freeing has freed objects in the earlier slab then that earlier
slab will now be on the partial freelist and the allocating thread will
pick that slab next for allocation. So the loop is extended. However,
both threads need to take the list_lock to make the swizzling via
the partial list happen.

It is likely that this kind of scheme will keep the objects being passed
around to a small set that can be kept in the cpu caches leading to increased
performance.

More code cleanups become possible:

- Instead of passing a cpu we can now pass a kmem_cache_cpu structure around.
  Allows reducing the number of parameters to various functions.
- Can define a new node_match() function for NUMA to encapsulate locality
  checks.

Effect on allocations:

Cachelines touched before this patch:

	Write:	page cache struct and first cacheline of object

Cachelines touched after this patch:

	Write:	kmem_cache_cpu cacheline and first cacheline of object
	Read: page cache struct (but see later patch that avoids touching
		that cacheline)

The handling when the lockless alloc list runs empty gets to be a bit more
complicated since another cacheline has now to be written to. But that is
halfway out of the hot path.

Effect on freeing:

Cachelines touched before this patch:

	Write: page_struct and first cacheline of object

Cachelines touched after this patch depending on how we free:

  Write(to cpu_slab):	kmem_cache_cpu struct and first cacheline of object
  Write(to other):	page struct and first cacheline of object

  Read(to cpu_slab):	page struct to id slab etc. (but see later patch that
  			avoids touching the page struct on free)
  Read(to other):	cpu local kmem_cache_cpu struct to verify its not
  			the cpu slab.

Summary:

Pro:
	- Distinct cachelines so that concurrent remote frees and local
	  allocs on a cpuslab can occur without cacheline bouncing.
	- Avoids potential bouncing cachelines because of neighboring
	  per cpu pointer updates in kmem_cache's cpu_slab structure since
	  it now grows to a cacheline (Therefore remove the comment
	  that talks about that concern).

Cons:
	- Freeing objects now requires the reading of one additional
	  cacheline. That can be mitigated for some cases by the following
	  patches but its not possible to completely eliminate these
	  references.

	- Memory usage grows slightly.

	The size of each per cpu object is blown up from one word
	(pointing to the page_struct) to one cacheline with various data.
	So this is NR_CPUS*NR_SLABS*L1_BYTES more memory use. Lets say
	NR_SLABS is 100 and a cache line size of 128 then we have just
	increased SLAB metadata requirements by 12.8k per cpu.
	(Another later patch reduces these requirements)

Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:01 -07:00
Mel Gorman
467c996c1e Print out statistics in relation to fragmentation avoidance to /proc/pagetypeinfo
This patch provides fragmentation avoidance statistics via /proc/pagetypeinfo.
 The information is collected only on request so there is no runtime overhead.
 The statistics are in three parts:

The first part prints information on the size of blocks that pages are
being grouped on and looks like

Page block order: 10
Pages per block:  1024

The second part is a more detailed version of /proc/buddyinfo and looks like

Free pages count per migrate type at order       0      1      2      3      4      5      6      7      8      9     10
Node    0, zone      DMA, type    Unmovable      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type  Reclaimable      1      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type      Movable      0      0      0      0      0      0      0      0      0      0      0
Node    0, zone      DMA, type      Reserve      0      4      4      0      0      0      0      1      0      1      0
Node    0, zone   Normal, type    Unmovable    111      8      4      4      2      3      1      0      0      0      0
Node    0, zone   Normal, type  Reclaimable    293     89      8      0      0      0      0      0      0      0      0
Node    0, zone   Normal, type      Movable      1      6     13      9      7      6      3      0      0      0      0
Node    0, zone   Normal, type      Reserve      0      0      0      0      0      0      0      0      0      0      4

The third part looks like

Number of blocks type     Unmovable  Reclaimable      Movable      Reserve
Node 0, zone      DMA            0            1            2            1
Node 0, zone   Normal            3           17           94            4

To walk the zones within a node with interrupts disabled, walk_zones_in_node()
is introduced and shared between /proc/buddyinfo, /proc/zoneinfo and
/proc/pagetypeinfo to reduce code duplication.  It seems specific to what
vmstat.c requires but could be broken out as a general utility function in
mmzone.c if there were other other potential users.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
d9c2340052 Do not depend on MAX_ORDER when grouping pages by mobility
Currently mobility grouping works at the MAX_ORDER_NR_PAGES level.  This makes
sense for the majority of users where this is also the huge page size.
However, on platforms like ia64 where the huge page size is runtime
configurable it is desirable to group at a lower order.  On x86_64 and
occasionally on x86, the hugepage size may not always be MAX_ORDER_NR_PAGES.

This patch groups pages together based on the value of HUGETLB_PAGE_ORDER.  It
uses a compile-time constant if possible and a variable where the huge page
size is runtime configurable.

It is assumed that grouping should be done at the lowest sensible order and
that the user would not want to override this.  If this is not true,
page_block order could be forced to a variable initialised via a boot-time
kernel parameter.

One potential issue with this patch is that IA64 now parses hugepagesz with
early_param() instead of __setup().  __setup() is called after the memory
allocator has been initialised and the pageblock bitmaps already setup.  In
tests on one IA64 there did not seem to be any problem with using
early_param() and in fact may be more correct as it guarantees the parameter
is handled before the parsing of hugepages=.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
64c5e135bf don't group high order atomic allocations
Grouping high-order atomic allocations together was intended to allow
bursty users of atomic allocations to work such as e1000 in situations
where their preallocated buffers were depleted.  This did not work in at
least one case with a wireless network adapter needing order-1 allocations
frequently.  To resolve that, the free pages used for min_free_kbytes were
moved to separate contiguous blocks with the patch
bias-the-location-of-pages-freed-for-min_free_kbytes-in-the-same-max_order_nr_pages-blocks.

It is felt that keeping the free pages in the same contiguous blocks should
be sufficient for bursty short-lived high-order atomic allocations to
succeed, maybe even with the e1000.  Even if there is a failure, increasing
the value of min_free_kbytes will free pages as contiguous bloks in
contrast to the standard buddy allocator which makes no attempt to keep the
minimum number of free pages contiguous.

This patch backs out grouping high order atomic allocations together to
determine if it is really needed or not.  If a new report comes in about
high-order atomic allocations failing, the feature can be reintroduced to
determine if it fixes the problem or not.  As a side-effect, this patch
reduces by 1 the number of bits required to track the mobility type of
pages within a MAX_ORDER_NR_PAGES block.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
ac0e5b7a6b remove PAGE_GROUP_BY_MOBILITY
Grouping pages by mobility can be disabled at compile-time. This was
considered undesirable by a number of people. However, in the current stack of
patches, it is not a simple case of just dropping the configurable patch as it
would cause merge conflicts.  This patch backs out the configuration option.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
56fd56b868 Bias the location of pages freed for min_free_kbytes in the same MAX_ORDER_NR_PAGES blocks
The standard buddy allocator always favours the smallest block of pages.
The effect of this is that the pages free to satisfy min_free_kbytes tends
to be preserved since boot time at the same location of memory ffor a very
long time and as a contiguous block.  When an administrator sets the
reserve at 16384 at boot time, it tends to be the same MAX_ORDER blocks
that remain free.  This allows the occasional high atomic allocation to
succeed up until the point the blocks are split.  In practice, it is
difficult to split these blocks but when they do split, the benefit of
having min_free_kbytes for contiguous blocks disappears.  Additionally,
increasing min_free_kbytes once the system has been running for some time
has no guarantee of creating contiguous blocks.

On the other hand, CONFIG_PAGE_GROUP_BY_MOBILITY favours splitting large
blocks when there are no free pages of the appropriate type available.  A
side-effect of this is that all blocks in memory tends to be used up and
the contiguous free blocks from boot time are not preserved like in the
vanilla allocator.  This can cause a problem if a new caller is unwilling
to reclaim or does not reclaim for long enough.

A failure scenario was found for a wireless network device allocating
order-1 atomic allocations but the allocations were not intense or frequent
enough for a whole block of pages to be preserved for MIGRATE_HIGHALLOC.
This was reproduced on a desktop by booting with mem=256mb, forcing the
driver to allocate at order-1, running a bittorrent client (downloading a
debian ISO) and building a kernel with -j2.

This patch addresses the problem on the desktop machine booted with
mem=256mb.  It works by setting aside a reserve of MAX_ORDER_NR_PAGES
blocks, the number of which depends on the value of min_free_kbytes.  These
blocks are only fallen back to when there is no other free pages.  Then the
smallest possible page is used just like the normal buddy allocator instead
of the largest possible page to preserve contiguous pages The pages in free
lists in the reserve blocks are never taken for another migrate type.  The
results is that even if min_free_kbytes is set to a low value, contiguous
blocks will be preserved in the MIGRATE_RESERVE blocks.

This works better than the vanilla allocator because if min_free_kbytes is
increased, a new reserve block will be chosen based on the location of
reclaimable pages and the block will free up as contiguous pages.  In the
vanilla allocator, no effort is made to target a block of pages to free as
contiguous pages and min_free_kbytes pages are scattered randomly.

This effect has been observed on the test machine.  min_free_kbytes was set
initially low but it was kept as a contiguous free block within
MIGRATE_RESERVE.  min_free_kbytes was then set to a higher value and over a
period of time, the free blocks were within the reserve and coalescing.
How long it takes to free up depends on how quickly LRU is rotating.
Amusingly, this means that more activity will free the blocks faster.

This mechanism potentially replaces MIGRATE_HIGHALLOC as it may be more
effective than grouping contiguous free pages together.  It all depends on
whether the number of active atomic high allocations exceeds
min_free_kbytes or not.  If the number of active allocations exceeds
min_free_kbytes, it's worth it but maybe in that situation, min_free_kbytes
should be set higher.  Once there are no more reports of allocation
failures, a patch will be submitted that backs out MIGRATE_HIGHALLOC and
see if the reports stay missing.

Credit to Mariusz Kozlowski for discovering the problem, describing the
failure scenario and testing patches and scenarios.

[akpm@linux-foundation.org: cleanups]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
5c0e306647 Fix corruption of memmap on IA64 SPARSEMEM when mem_section is not a power of 2
There are problems in the use of SPARSEMEM and pageblock flags that causes
problems on ia64.

The first part of the problem is that units are incorrect in
SECTION_BLOCKFLAGS_BITS computation.  This results in a map_section's
section_mem_map being treated as part of a bitmap which isn't good.  This
was evident with an invalid virtual address when mem_init attempted to free
bootmem pages while relinquishing control from the bootmem allocator.

The second part of the problem occurs because the pageblock flags bitmap is
be located with the mem_section.  The SECTIONS_PER_ROOT computation using
sizeof (mem_section) may not be a power of 2 depending on the size of the
bitmap.  This renders masks and other such things not power of 2 base.
This issue was seen with SPARSEMEM_EXTREME on ia64.  This patch moves the
bitmap outside of mem_section and uses a pointer instead in the
mem_section.  The bitmaps are allocated when the section is being
initialised.

Note that sparse_early_usemap_alloc() does not use alloc_remap() like
sparse_early_mem_map_alloc().  The allocation required for the bitmap on
x86, the only architecture that uses alloc_remap is typically smaller than
a cache line.  alloc_remap() pads out allocations to the cache size which
would be a needless waste.

Credit to Bob Picco for identifying the original problem and effecting a
fix for the SECTION_BLOCKFLAGS_BITS calculation.  Credit to Andy Whitcroft
for devising the best way of allocating the bitmaps only when required for
the section.

[wli@holomorphy.com: warning fix]
Signed-off-by: Bob Picco <bob.picco@hp.com>
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: William Irwin <bill.irwin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
e010487dbe Group high-order atomic allocations
In rare cases, the kernel needs to allocate a high-order block of pages
without sleeping.  For example, this is the case with e1000 cards configured
to use jumbo frames.  Migrating or reclaiming pages in this situation is not
an option.

This patch groups these allocations together as much as possible by adding a
new MIGRATE_TYPE.  The MIGRATE_HIGHATOMIC type are exactly what they sound
like.  Care is taken that pages of other migrate types do not use the same
blocks as high-order atomic allocations.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
e12ba74d8f Group short-lived and reclaimable kernel allocations
This patch marks a number of allocations that are either short-lived such as
network buffers or are reclaimable such as inode allocations.  When something
like updatedb is called, long-lived and unmovable kernel allocations tend to
be spread throughout the address space which increases fragmentation.

This patch groups these allocations together as much as possible by adding a
new MIGRATE_TYPE.  The MIGRATE_RECLAIMABLE type is for allocations that can be
reclaimed on demand, but not moved.  i.e.  they can be migrated by deleting
them and re-reading the information from elsewhere.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:43:00 -07:00
Mel Gorman
b92a6edd4b Add a configure option to group pages by mobility
The grouping mechanism has some memory overhead and a more complex allocation
path.  This patch allows the strategy to be disabled for small memory systems
or if it is known the workload is suffering because of the strategy.  It also
acts to show where the page groupings strategy interacts with the standard
buddy allocator.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Joel Schopp <jschopp@austin.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 09:42:59 -07:00