cc8a4ea182
266 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Vlastimil Babka
|
258f669e7e |
mm: /proc/pid/smaps_rollup: convert to single value seq_file
The /proc/pid/smaps_rollup file is currently implemented via the m_start/m_next/m_stop seq_file iterators shared with the other maps files, that iterate over vma's. However, the rollup file doesn't print anything for each vma, only accumulate the stats. There are some issues with the current code as reported in [1] - the accumulated stats can get skewed if seq_file start()/stop() op is called multiple times, if show() is called multiple times, and after seeks to non-zero position. Patch [1] fixed those within existing design, but I believe it is fundamentally wrong to expose the vma iterators to the seq_file mechanism when smaps_rollup shows logically a single set of values for the whole address space. This patch thus refactors the code to provide a single "value" at offset 0, with vma iteration to gather the stats done internally. This fixes the situations where results are skewed, and simplifies the code, especially in show_smap(), at the expense of somewhat less code reuse. [1] https://marc.info/?l=linux-mm&m=151927723128134&w=2 [vbabka@suse.c: use seq_file infrastructure] Link: http://lkml.kernel.org/r/bf4525b0-fd5b-4c4c-2cb3-adee3dd95a48@suse.cz Link: http://lkml.kernel.org/r/20180723111933.15443-5-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reported-by: Daniel Colascione <dancol@google.com> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
f1547959d9 |
mm: /proc/pid/smaps: factor out common stats printing
To prepare for handling /proc/pid/smaps_rollup differently from /proc/pid/smaps factor out from show_smap() printing the parts of output that are common for both variants, which is the bulk of the gathered memory stats. [vbabka@suse.cz: add const, per Alexey] Link: http://lkml.kernel.org/r/b45f319f-cd04-337b-37f8-77f99786aa8a@suse.cz Link: http://lkml.kernel.org/r/20180723111933.15443-4-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Daniel Colascione <dancol@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
8e68d689af |
mm: /proc/pid/smaps: factor out mem stats gathering
To prepare for handling /proc/pid/smaps_rollup differently from /proc/pid/smaps factor out vma mem stats gathering from show_smap() - it will be used by both. Link: http://lkml.kernel.org/r/20180723111933.15443-3-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Daniel Colascione <dancol@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
871305bb20 |
mm: /proc/pid/*maps remove is_pid and related wrappers
Patch series "cleanups and refactor of /proc/pid/smaps*". The recent regression in /proc/pid/smaps made me look more into the code. Especially the issues with smaps_rollup reported in [1] as explained in Patch 4, which fixes them by refactoring the code. Patches 2 and 3 are preparations for that. Patch 1 is me realizing that there's a lot of boilerplate left from times where we tried (unsuccessfuly) to mark thread stacks in the output. Originally I had also plans to rework the translation from /proc/pid/*maps* file offsets to the internal structures. Now the offset means "vma number", which is not really stable (vma's can come and go between read() calls) and there's an extra caching of last vma's address. My idea was that offsets would be interpreted directly as addresses, which would also allow meaningful seeks (see the ugly seek_to_smaps_entry() in tools/testing/selftests/vm/mlock2.h). However loff_t is (signed) long long so that might be insufficient somewhere for the unsigned long addresses. So the result is fixed issues with skewed /proc/pid/smaps_rollup results, simpler smaps code, and a lot of unused code removed. [1] https://marc.info/?l=linux-mm&m=151927723128134&w=2 This patch (of 4): Commit |
||
Vlastimil Babka
|
e70cc2bd57 |
fs/proc/task_mmu.c: fix Locked field in /proc/pid/smaps*
Thomas reports: "While looking around in /proc on my v4.14.52 system I noticed that all processes got a lot of "Locked" memory in /proc/*/smaps. A lot more memory than a regular user can usually lock with mlock(). Commit |
||
Kees Cook
|
6da2ec5605 |
treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org> |
||
Huang Ying
|
ab6ecf247a |
mm: /proc/pid/pagemap: hide swap entries from unprivileged users
In commit |
||
Linus Torvalds
|
c90fca951e |
powerpc updates for 4.18
Notable changes: - Support for split PMD page table lock on 64-bit Book3S (Power8/9). - Add support for HAVE_RELIABLE_STACKTRACE, so we properly support live patching again. - Add support for patching barrier_nospec in copy_from_user() and syscall entry. - A couple of fixes for our data breakpoints on Book3S. - A series from Nick optimising TLB/mm handling with the Radix MMU. - Numerous small cleanups to squash sparse/gcc warnings from Mathieu Malaterre. - Several series optimising various parts of the 32-bit code from Christophe Leroy. - Removal of support for two old machines, "SBC834xE" and "C2K" ("GEFanuc,C2K"), which is why the diffstat has so many deletions. And many other small improvements & fixes. There's a few out-of-area changes. Some minor ftrace changes OK'ed by Steve, and a fix to our powernv cpuidle driver. Then there's a series touching mm, x86 and fs/proc/task_mmu.c, which cleans up some details around pkey support. It was ack'ed/reviewed by Ingo & Dave and has been in next for several weeks. Thanks to: Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al Viro, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd Bergmann, Balbir Singh, Cédric Le Goater, Christophe Leroy, Christophe Lombard, Colin Ian King, Dave Hansen, Fabio Estevam, Finn Thain, Frederic Barrat, Gautham R. Shenoy, Haren Myneni, Hari Bathini, Ingo Molnar, Jonathan Neuschäfer, Josh Poimboeuf, Kamalesh Babulal, Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu Malaterre, Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao, Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica Gupta, Ravi Bangoria, Russell Currey, Sam Bobroff, Samuel Mendoza-Jonas, Segher Boessenkool, Shilpasri G Bhat, Simon Guo, Souptick Joarder, Stewart Smith, Thiago Jung Bauermann, Torsten Duwe, Vaibhav Jain, Wei Yongjun, Wolfram Sang, Yisheng Xie, YueHaibing. -----BEGIN PGP SIGNATURE----- iQIwBAABCAAaBQJbGQKBExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYBq TRAAioK7rz5xYMkxaM3Ng3ybobEeNAwQqOolz98xvmnB9SfDWNuc99vf8cGu0/fQ zc8AKZ5RcnwipOjyGlxW9oa1ZhVq0xtYnQPiYLEKMdLQmh5D+C7+KpvAd1UElweg ub40/xDySWfMujfuMSF9JDCWPIXyojt4Xg5nJKIVRrAm/3YMe/+i5Am7NWHuMCEb aQmZtlYW5Mz81XY0968hjpUO6eKFRmsaM7yFAhGTXx6+oLRpGj1PZB4AwdRIKS2L Ak7q/VgxtE4W+s3a0GK2s+eXIhGKeFuX9AVnx3nti+8/K1OqrqhDcLMUC/9JpCpv EvOtO7dxPnZujHjdu4Eai/xNoo4h6zRy7bWqve9LoBM40CP5jljKzu1lwqqb5yO0 jC7/aXhgiSIxxcRJLjoI/TYpZPu40MifrkydmczykdPyPCnMIWEJDcj4KsRL/9Y8 9SSbJzRNC/SgQNTbUYPZFFi6G0QaMmlcbCb628k8QT+Gn3Xkdf/ZtxzqEyoF4Irq 46kFBsiSSK4Bu0rVlcUtJQLgdqytWULO6NKEYnD67laxYcgQd8pGFQ8SjZhRZLgU q5LA3HIWhoAI4M0wZhOnKXO6JfiQ1UbO8gUJLsWsfF0Fk5KAcdm+4kb4jbI1H4Qk Vol9WNRZwEllyaiqScZN9RuVVuH0GPOZeEH1dtWK+uWi0lM= =ZlBf -----END PGP SIGNATURE----- Merge tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc updates from Michael Ellerman: "Notable changes: - Support for split PMD page table lock on 64-bit Book3S (Power8/9). - Add support for HAVE_RELIABLE_STACKTRACE, so we properly support live patching again. - Add support for patching barrier_nospec in copy_from_user() and syscall entry. - A couple of fixes for our data breakpoints on Book3S. - A series from Nick optimising TLB/mm handling with the Radix MMU. - Numerous small cleanups to squash sparse/gcc warnings from Mathieu Malaterre. - Several series optimising various parts of the 32-bit code from Christophe Leroy. - Removal of support for two old machines, "SBC834xE" and "C2K" ("GEFanuc,C2K"), which is why the diffstat has so many deletions. And many other small improvements & fixes. There's a few out-of-area changes. Some minor ftrace changes OK'ed by Steve, and a fix to our powernv cpuidle driver. Then there's a series touching mm, x86 and fs/proc/task_mmu.c, which cleans up some details around pkey support. It was ack'ed/reviewed by Ingo & Dave and has been in next for several weeks. Thanks to: Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al Viro, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd Bergmann, Balbir Singh, Cédric Le Goater, Christophe Leroy, Christophe Lombard, Colin Ian King, Dave Hansen, Fabio Estevam, Finn Thain, Frederic Barrat, Gautham R. Shenoy, Haren Myneni, Hari Bathini, Ingo Molnar, Jonathan Neuschäfer, Josh Poimboeuf, Kamalesh Babulal, Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu Malaterre, Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao, Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica Gupta, Ravi Bangoria, Russell Currey, Sam Bobroff, Samuel Mendoza-Jonas, Segher Boessenkool, Shilpasri G Bhat, Simon Guo, Souptick Joarder, Stewart Smith, Thiago Jung Bauermann, Torsten Duwe, Vaibhav Jain, Wei Yongjun, Wolfram Sang, Yisheng Xie, YueHaibing" * tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (251 commits) powerpc/64s/radix: Fix missing ptesync in flush_cache_vmap cpuidle: powernv: Fix promotion from snooze if next state disabled powerpc: fix build failure by disabling attribute-alias warning in pci_32 ocxl: Fix missing unlock on error in afu_ioctl_enable_p9_wait() powerpc-opal: fix spelling mistake "Uniterrupted" -> "Uninterrupted" powerpc: fix spelling mistake: "Usupported" -> "Unsupported" powerpc/pkeys: Detach execute_only key on !PROT_EXEC powerpc/powernv: copy/paste - Mask SO bit in CR powerpc: Remove core support for Marvell mv64x60 hostbridges powerpc/boot: Remove core support for Marvell mv64x60 hostbridges powerpc/boot: Remove support for Marvell mv64x60 i2c controller powerpc/boot: Remove support for Marvell MPSC serial controller powerpc/embedded6xx: Remove C2K board support powerpc/lib: optimise PPC32 memcmp powerpc/lib: optimise 32 bits __clear_user() powerpc/time: inline arch_vtime_task_switch() powerpc/Makefile: set -mcpu=860 flag for the 8xx powerpc: Implement csum_ipv6_magic in assembly powerpc/32: Optimise __csum_partial() powerpc/lib: Adjust .balign inside string functions for PPC32 ... |
||
Ram Pai
|
27cca866e3 |
mm/pkeys, x86, powerpc: Display pkey in smaps if arch supports pkeys
Currently the architecture specific code is expected to display the protection keys in smap for a given vma. This can lead to redundant code and possibly to divergent formats in which the key gets displayed. This patch changes the implementation. It displays the pkey only if the architecture support pkeys, i.e arch_pkeys_enabled() returns true. x86 arch_show_smap() function is not needed anymore, delete it. Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> [mpe: Split out from larger patch, rebased on header changes] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Dave Hansen <dave.hansen@intel.com> |
||
Ram Pai
|
2c9e0a6fa2 |
mm, powerpc, x86: introduce an additional vma bit for powerpc pkey
Currently only 4bits are allocated in the vma flags to hold 16 keys. This is sufficient for x86. PowerPC supports 32 keys, which needs 5bits. This patch allocates an additional bit. Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> [mpe: Fold in #if VM_PKEY_BIT4 as noticed by Dave Hansen] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> |
||
Ram Pai
|
5212213aa5 |
mm, powerpc, x86: define VM_PKEY_BITx bits if CONFIG_ARCH_HAS_PKEYS is enabled
VM_PKEY_BITx are defined only if CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS is enabled. Powerpc also needs these bits. Hence lets define the VM_PKEY_BITx bits for any architecture that enables CONFIG_ARCH_HAS_PKEYS. Reviewed-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Ram Pai <linuxram@us.ibm.com> Reviewed-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> |
||
Jonathan Corbet
|
ccf2b06794 |
Linux 4.17-rc2
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlrdQu4eHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGVjEIAJqS+sFJCAL8rNAv tiVJHuAjogVdZGJJFBUWyb4yNZw7nRSKfitaSe875WdF55IGEhnMDbAGe7IMEb5j 1F8Ml2bzJzMWxfBWAzeU+wj6FaQksbIsI1gVM8tqk/Wtu121pB32VW8R82oHg+Hr sjsFTKFicNsqih+7QTVujaRjSmabKf0/JdyYM6p1cqWrxZQ0pmFaGDu0rwet9PFx lJsewOmnoZ0GV/Qzn40E304Xf+Vv2gVDVbC5wY86ejNigFt+5qN+gtDqDu7UkftR ZfD4vJuiKCigNfUrpbJWfpbegBiQc0JMvjLWWhgo/AYdGhNGMlwjQanh2oZcXlrw VmrNduo= =/j3z -----END PGP SIGNATURE----- Merge tag 'v4.17-rc2' into docs-next Merge -rc2 to pick up the changes to Documentation/core-api/kernel-api.rst that hit mainline via the networking tree. In their absence, subsequent patches cannot be applied. |
||
Mike Rapoport
|
1ad1335dc5 |
docs/admin-guide/mm: start moving here files from Documentation/vm
Several documents in Documentation/vm fit quite well into the "admin/user guide" category. The documents that don't overload the reader with lots of implementation details and provide coherent description of certain feature can be moved to Documentation/admin-guide/mm. Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Huang Ying
|
88c28f2469 |
mm, pagemap: fix swap offset value for PMD migration entry
The swap offset reported by /proc/<pid>/pagemap may be not correct for PMD migration entries. If addr passed into pagemap_pmd_range() isn't aligned with PMD start address, the swap offset reported doesn't reflect this. And in the loop to report information of each sub-page, the swap offset isn't increased accordingly as that for PFN. This may happen after opening /proc/<pid>/pagemap and seeking to a page whose address doesn't align with a PMD start address. I have verified this with a simple test program. BTW: migration swap entries have PFN information, do we need to restrict whether to show them? [akpm@linux-foundation.org: fix typo, per Huang, Ying] Link: http://lkml.kernel.org/r/20180408033737.10897-1-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrei Vagin <avagin@openvz.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "Jerome Glisse" <jglisse@redhat.com> Cc: Daniel Colascione <dancol@google.com> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jonathan Corbet
|
24844fd339 |
Merge branch 'mm-rst' into docs-next
Mike Rapoport says: These patches convert files in Documentation/vm to ReST format, add an initial index and link it to the top level documentation. There are no contents changes in the documentation, except few spelling fixes. The relatively large diffstat stems from the indentation and paragraph wrapping changes. I've tried to keep the formatting as consistent as possible, but I could miss some places that needed markup and add some markup where it was not necessary. [jc: significant conflicts in vm/hmm.rst] |
||
Mike Rapoport
|
ad56b738c5 |
docs/vm: rename documentation files to .rst
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net> |
||
Andrei Vagin
|
f66406638f |
proc: replace seq_printf on seq_putc to speed up /proc/pid/smaps
seq_putc() works much faster than seq_printf() == Before patch == $ time python test_smaps.py real 0m3.828s user 0m0.413s sys 0m3.408s == After patch == $ time python test_smaps.py real 0m3.405s user 0m0.401s sys 0m3.003s == Before patch == - 75.51% 4.62% python [kernel.kallsyms] [k] show_smap.isra.33 - 70.88% show_smap.isra.33 + 24.82% seq_put_decimal_ull_aligned + 19.78% __walk_page_range + 12.74% seq_printf + 11.08% show_map_vma.isra.23 + 1.68% seq_puts == After patch == - 69.16% 5.70% python [kernel.kallsyms] [k] show_smap.isra.33 - 63.46% show_smap.isra.33 + 25.98% seq_put_decimal_ull_aligned + 20.90% __walk_page_range + 12.60% show_map_vma.isra.23 1.56% seq_putc + 1.55% seq_puts Link: http://lkml.kernel.org/r/20180212074931.7227-2-avagin@openvz.org Signed-off-by: Andrei Vagin <avagin@openvz.org> Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrei Vagin
|
d1be35cb6f |
proc: add seq_put_decimal_ull_width to speed up /proc/pid/smaps
seq_put_decimal_ull_w(m, str, val, width) prints a decimal number with a specified minimal field width. It is equivalent of seq_printf(m, "%s%*d", str, width, val), but it works much faster. == test_smaps.py num = 0 with open("/proc/1/smaps") as f: for x in xrange(10000): data = f.read() f.seek(0, 0) == == Before patch == $ time python test_smaps.py real 0m4.593s user 0m0.398s sys 0m4.158s == After patch == $ time python test_smaps.py real 0m3.828s user 0m0.413s sys 0m3.408s $ perf -g record python test_smaps.py == Before patch == - 79.01% 3.36% python [kernel.kallsyms] [k] show_smap.isra.33 - 75.65% show_smap.isra.33 + 48.85% seq_printf + 15.75% __walk_page_range + 9.70% show_map_vma.isra.23 0.61% seq_puts == After patch == - 75.51% 4.62% python [kernel.kallsyms] [k] show_smap.isra.33 - 70.88% show_smap.isra.33 + 24.82% seq_put_decimal_ull_w + 19.78% __walk_page_range + 12.74% seq_printf + 11.08% show_map_vma.isra.23 + 1.68% seq_puts [akpm@linux-foundation.org: fix drivers/of/unittest.c build] Link: http://lkml.kernel.org/r/20180212074931.7227-1-avagin@openvz.org Signed-off-by: Andrei Vagin <avagin@openvz.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andrei Vagin
|
0e3dc01914 |
procfs: add seq_put_hex_ll to speed up /proc/pid/maps
seq_put_hex_ll() prints a number in hexadecimal notation and works faster than seq_printf(). == test.py num = 0 with open("/proc/1/maps") as f: while num < 10000 : data = f.read() f.seek(0, 0) num = num + 1 == == Before patch == $ time python test.py real 0m1.561s user 0m0.257s sys 0m1.302s == After patch == $ time python test.py real 0m0.986s user 0m0.279s sys 0m0.707s $ perf -g record python test.py: == Before patch == - 67.42% 2.82% python [kernel.kallsyms] [k] show_map_vma.isra.22 - 64.60% show_map_vma.isra.22 - 44.98% seq_printf - seq_vprintf - vsnprintf + 14.85% number + 12.22% format_decode 5.56% memcpy_erms + 15.06% seq_path + 4.42% seq_pad + 2.45% __GI___libc_read == After patch == - 47.35% 3.38% python [kernel.kallsyms] [k] show_map_vma.isra.23 - 43.97% show_map_vma.isra.23 + 20.84% seq_path - 15.73% show_vma_header_prefix 10.55% seq_put_hex_ll + 2.65% seq_put_decimal_ull 0.95% seq_putc + 6.96% seq_pad + 2.94% __GI___libc_read [avagin@openvz.org: use unsigned int instead of int where it is suitable] Link: http://lkml.kernel.org/r/20180214025619.4005-1-avagin@openvz.org [avagin@openvz.org: v2] Link: http://lkml.kernel.org/r/20180117082050.25406-1-avagin@openvz.org Link: http://lkml.kernel.org/r/20180112185812.7710-1-avagin@openvz.org Signed-off-by: Andrei Vagin <avagin@openvz.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
a3cf988fcb |
mm: use updated pmdp_invalidate() interface to track dirty/accessed bits
Use the modifed pmdp_invalidate() that returns the previous value of pmd to transfer dirty and accessed bits. Link: http://lkml.kernel.org/r/20171213105756.69879-12-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Daney <david.daney@cavium.com> Cc: David Miller <davem@davemloft.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nitin Gupta <nitin.m.gupta@oracle.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
8526d84f81 |
fs/proc/task_mmu.c: do not show VmExe bigger than total executable virtual memory
If start_code / end_code pointers are screwed then "VmExe" could be bigger than total executable virtual memory and "VmLib" becomes negative: VmExe: 294320 kB VmLib: 18446744073709327564 kB VmExe and VmLib documented as text segment and shared library code size. Now their sum will be always equal to mm->exec_vm which sums size of executable and not writable and not stack areas. I've seen this for huge (>2Gb) statically linked binary which has whole world inside. For it start_code .. end_code range also covers one of rodata sections. Probably this is bug in customized linker, elf loader or both. Anyway CONFIG_CHECKPOINT_RESTORE allows to change these pointers, thus we cannot trust them without validation. Link: http://lkml.kernel.org/r/150728955451.743749.11276392315459539583.stgit@buzz Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
a3841f94c7 |
libnvdimm for 4.15
* Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable 'userspace flush' of persistent memory updates via filesystem-dax mappings. It arranges for any filesystem metadata updates that may be required to satisfy a write fault to also be flushed ("on disk") before the kernel returns to userspace from the fault handler. Effectively every write-fault that dirties metadata completes an fsync() before returning from the fault handler. The new MAP_SHARED_VALIDATE mapping type guarantees that the MAP_SYNC flag is validated as supported by the filesystem's ->mmap() file operation. * Add support for the standard ACPI 6.2 label access methods that replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods. This enables interoperability with environments that only implement the standardized methods. * Add support for the ACPI 6.2 NVDIMM media error injection methods. * Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for latch last shutdown status, firmware update, SMART error injection, and SMART alarm threshold control. * Cleanup physical address information disclosures to be root-only. * Fix revalidation of the DIMM "locked label area" status to support dynamic unlock of the label area. * Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA (system-physical-address) command and error injection commands. Acknowledgements that came after the commits were pushed to -next: |
||
Kirill A. Shutemov
|
af5b0f6a09 |
mm: consolidate page table accounting
Currently, we account page tables separately for each page table level, but that's redundant -- we only make use of total memory allocated to page tables for oom_badness calculation. We also provide the information to userspace, but it has dubious value there too. This patch switches page table accounting to single counter. mm->pgtables_bytes is now used to account all page table levels. We use bytes, because page table size for different levels of page table tree may be different. The change has user-visible effect: we don't have VmPMD and VmPUD reported in /proc/[pid]/status. Not sure if anybody uses them. (As alternative, we can always report 0 kB for them.) OOM-killer report is also slightly changed: we now report pgtables_bytes instead of nr_ptes, nr_pmd, nr_puds. Apart from reducing number of counters per-mm, the benefit is that we now calculate oom_badness() more correctly for machines which have different size of page tables depending on level or where page tables are less than a page in size. The only downside can be debuggability because we do not know which page table level could leak. But I do not remember many bugs that would be caught by separate counters so I wouldn't lose sleep over this. [akpm@linux-foundation.org: fix mm/huge_memory.c] Link: http://lkml.kernel.org/r/20171006100651.44742-2-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> [kirill.shutemov@linux.intel.com: fix build] Link: http://lkml.kernel.org/r/20171016150113.ikfxy3e7zzfvsr4w@black.fi.intel.com Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
c4812909f5 |
mm: introduce wrappers to access mm->nr_ptes
Let's add wrappers for ->nr_ptes with the same interface as for nr_pmd and nr_pud. The patch also makes nr_ptes accounting dependent onto CONFIG_MMU. Page table accounting doesn't make sense if you don't have page tables. It's preparation for consolidation of page-table counters in mm_struct. Link: http://lkml.kernel.org/r/20171006100651.44742-1-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
b4e98d9ac7 |
mm: account pud page tables
On a machine with 5-level paging support a process can allocate
significant amount of memory and stay unnoticed by oom-killer and memory
cgroup. The trick is to allocate a lot of PUD page tables. We don't
account PUD page tables, only PMD and PTE.
We already addressed the same issue for PMD page tables, see commit
|
||
Huang Ying
|
b83d7e4323 |
mm, /proc/pid/pagemap: fix soft dirty marking for PMD migration entry
When the pagetable is walked in the implementation of /proc/<pid>/pagemap,
pmd_soft_dirty() is used for both the PMD huge page map and the PMD
migration entries. That is wrong, pmd_swp_soft_dirty() should be used
for the PMD migration entries instead because the different page table
entry flag is used.
As a result, /proc/pid/pagemap may report incorrect soft dirty information
for PMD migration entries.
Link: http://lkml.kernel.org/r/20171017081818.31795-1-ying.huang@intel.com
Fixes:
|
||
Jan Kara
|
b6fb293f24 |
mm: Define MAP_SYNC and VM_SYNC flags
Define new MAP_SYNC flag and corresponding VMA VM_SYNC flag. As the MAP_SYNC flag is not part of LEGACY_MAP_MASK, currently it will be refused by all MAP_SHARED_VALIDATE map attempts and silently ignored for everything else. Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Dan Williams <dan.j.williams@intel.com> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Michal Hocko
|
0ee931c4e3 |
mm: treewide: remove GFP_TEMPORARY allocation flag
GFP_TEMPORARY was introduced by commit
|
||
David Rientjes
|
1403830294 |
fs, proc: unconditional cond_resched when reading smaps
If there are large numbers of hugepages to iterate while reading /proc/pid/smaps, the page walk never does cond_resched(). On archs without split pmd locks, there can be significant and observable contention on mm->page_table_lock which cause lengthy delays without rescheduling. Always reschedule in smaps_pte_range() if necessary since the pagewalk iteration can be expensive. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708211405520.131071@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Michal Hocko
|
1240ea0dc3 |
fs, proc: remove priv argument from is_stack
Commit
|
||
Jérôme Glisse
|
df6ad69838 |
mm/device-public-memory: device memory cache coherent with CPU
Platform with advance system bus (like CAPI or CCIX) allow device memory to be accessible from CPU in a cache coherent fashion. Add a new type of ZONE_DEVICE to represent such memory. The use case are the same as for the un-addressable device memory but without all the corners cases. Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
5042db43cc |
mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory
HMM (heterogeneous memory management) need struct page to support migration from system main memory to device memory. Reasons for HMM and migration to device memory is explained with HMM core patch. This patch deals with device memory that is un-addressable memory (ie CPU can not access it). Hence we do not want those struct page to be manage like regular memory. That is why we extend ZONE_DEVICE to support different types of memory. A persistent memory type is define for existing user of ZONE_DEVICE and a new device un-addressable type is added for the un-addressable memory type. There is a clear separation between what is expected from each memory type and existing user of ZONE_DEVICE are un-affected by new requirement and new use of the un-addressable type. All specific code path are protect with test against the memory type. Because memory is un-addressable we use a new special swap type for when a page is migrated to device memory (this reduces the number of maximum swap file). The main two additions beside memory type to ZONE_DEVICE is two callbacks. First one, page_free() is call whenever page refcount reach 1 (which means the page is free as ZONE_DEVICE page never reach a refcount of 0). This allow device driver to manage its memory and associated struct page. The second callback page_fault() happens when there is a CPU access to an address that is back by a device page (which are un-addressable by the CPU). This callback is responsible to migrate the page back to system main memory. Device driver can not block migration back to system memory, HMM make sure that such page can not be pin into device memory. If device is in some error condition and can not migrate memory back then a CPU page fault to device memory should end with SIGBUS. [arnd@arndb.de: fix warning] Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
ab6e3d0939 |
mm: soft-dirty: keep soft-dirty bits over thp migration
Soft dirty bit is designed to keep tracked over page migration. This patch makes it work in the same manner for thp migration too. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Zi Yan
|
84c3fc4e9c |
mm: thp: check pmd migration entry in common path
When THP migration is being used, memory management code needs to handle pmd migration entries properly. This patch uses !pmd_present() or is_swap_pmd() (depending on whether pmd_none() needs separate code or not) to check pmd migration entries at the places where a pmd entry is present. Since pmd-related code uses split_huge_page(), split_huge_pmd(), pmd_trans_huge(), pmd_trans_unstable(), or pmd_none_or_trans_huge_or_clear_bad(), this patch: 1. adds pmd migration entry split code in split_huge_pmd(), 2. takes care of pmd migration entries whenever pmd_trans_huge() is present, 3. makes pmd_none_or_trans_huge_or_clear_bad() pmd migration entry aware. Since split_huge_page() uses split_huge_pmd() and pmd_trans_unstable() is equivalent to pmd_none_or_trans_huge_or_clear_bad(), we do not change them. Until this commit, a pmd entry should be: 1. pointing to a pte page, 2. is_swap_pmd(), 3. pmd_trans_huge(), 4. pmd_devmap(), or 5. pmd_none(). Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rik van Riel
|
d2cd9ede6e |
mm,fork: introduce MADV_WIPEONFORK
Introduce MADV_WIPEONFORK semantics, which result in a VMA being empty in the child process after fork. This differs from MADV_DONTFORK in one important way. If a child process accesses memory that was MADV_WIPEONFORK, it will get zeroes. The address ranges are still valid, they are just empty. If a child process accesses memory that was MADV_DONTFORK, it will get a segmentation fault, since those address ranges are no longer valid in the child after fork. Since MADV_DONTFORK also seems to be used to allow very large programs to fork in systems with strict memory overcommit restrictions, changing the semantics of MADV_DONTFORK might break existing programs. MADV_WIPEONFORK only works on private, anonymous VMAs. The use case is libraries that store or cache information, and want to know that they need to regenerate it in the child process after fork. Examples of this would be: - systemd/pulseaudio API checks (fail after fork) (replacing a getpid check, which is too slow without a PID cache) - PKCS#11 API reinitialization check (mandated by specification) - glibc's upcoming PRNG (reseed after fork) - OpenSSL PRNG (reseed after fork) The security benefits of a forking server having a re-inialized PRNG in every child process are pretty obvious. However, due to libraries having all kinds of internal state, and programs getting compiled with many different versions of each library, it is unreasonable to expect calling programs to re-initialize everything manually after fork. A further complication is the proliferation of clone flags, programs bypassing glibc's functions to call clone directly, and programs calling unshare, causing the glibc pthread_atfork hook to not get called. It would be better to have the kernel take care of this automatically. The patch also adds MADV_KEEPONFORK, to undo the effects of a prior MADV_WIPEONFORK. This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO: https://man.openbsd.org/minherit.2 [akpm@linux-foundation.org: numerically order arch/parisc/include/uapi/asm/mman.h #defines] Link: http://lkml.kernel.org/r/20170811212829.29186-3-riel@redhat.com Signed-off-by: Rik van Riel <riel@redhat.com> Reported-by: Florian Weimer <fweimer@redhat.com> Reported-by: Colm MacCártaigh <colm@allcosts.net> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: Kees Cook <keescook@chromium.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Daniel Colascione
|
493b0e9d94 |
mm: add /proc/pid/smaps_rollup
/proc/pid/smaps_rollup is a new proc file that improves the performance of user programs that determine aggregate memory statistics (e.g., total PSS) of a process. Android regularly "samples" the memory usage of various processes in order to balance its memory pool sizes. This sampling process involves opening /proc/pid/smaps and summing certain fields. For very large processes, sampling memory use this way can take several hundred milliseconds, due mostly to the overhead of the seq_printf calls in task_mmu.c. smaps_rollup improves the situation. It contains most of the fields of /proc/pid/smaps, but instead of a set of fields for each VMA, smaps_rollup instead contains one synthetic smaps-format entry representing the whole process. In the single smaps_rollup synthetic entry, each field is the summation of the corresponding field in all of the real-smaps VMAs. Using a common format for smaps_rollup and smaps allows userspace parsers to repurpose parsers meant for use with non-rollup smaps for smaps_rollup, and it allows userspace to switch between smaps_rollup and smaps at runtime (say, based on the availability of smaps_rollup in a given kernel) with minimal fuss. By using smaps_rollup instead of smaps, a caller can avoid the significant overhead of formatting, reading, and parsing each of a large process's potentially very numerous memory mappings. For sampling system_server's PSS in Android, we measured a 12x speedup, representing a savings of several hundred milliseconds. One alternative to a new per-process proc file would have been including PSS information in /proc/pid/status. We considered this option but thought that PSS would be too expensive (by a few orders of magnitude) to collect relative to what's already emitted as part of /proc/pid/status, and slowing every user of /proc/pid/status for the sake of readers that happen to want PSS feels wrong. The code itself works by reusing the existing VMA-walking framework we use for regular smaps generation and keeping the mem_size_stats structure around between VMA walks instead of using a fresh one for each VMA. In this way, summation happens automatically. We let seq_file walk over the VMAs just as it does for regular smaps and just emit nothing to the seq_file until we hit the last VMA. Benchmarks: using smaps: iterations:1000 pid:1163 pss:220023808 0m29.46s real 0m08.28s user 0m20.98s system using smaps_rollup: iterations:1000 pid:1163 pss:220702720 0m04.39s real 0m00.03s user 0m04.31s system We're using the PSS samples we collect asynchronously for system-management tasks like fine-tuning oom_adj_score, memory use tracking for debugging, application-level memory-use attribution, and deciding whether we want to kill large processes during system idle maintenance windows. Android has been using PSS for these purposes for a long time; as the average process VMA count has increased and and devices become more efficiency-conscious, PSS-collection inefficiency has started to matter more. IMHO, it'd be a lot safer to optimize the existing PSS-collection model, which has been fine-tuned over the years, instead of changing the memory tracking approach entirely to work around smaps-generation inefficiency. Tim said: : There are two main reasons why Android gathers PSS information: : : 1. Android devices can show the user the amount of memory used per : application via the settings app. This is a less important use case. : : 2. We log PSS to help identify leaks in applications. We have found : an enormous number of bugs (in the Android platform, in Google's own : apps, and in third-party applications) using this data. : : To do this, system_server (the main process in Android userspace) will : sample the PSS of a process three seconds after it changes state (for : example, app is launched and becomes the foreground application) and about : every ten minutes after that. The net result is that PSS collection is : regularly running on at least one process in the system (usually a few : times a minute while the screen is on, less when screen is off due to : suspend). PSS of a process is an incredibly useful stat to track, and we : aren't going to get rid of it. We've looked at some very hacky approaches : using RSS ("take the RSS of the target process, subtract the RSS of the : zygote process that is the parent of all Android apps") to reduce the : accounting time, but it regularly overestimated the memory used by 20+ : percent. Accordingly, I don't think that there's a good alternative to : using PSS. : : We started looking into PSS collection performance after we noticed random : frequency spikes while a phone's screen was off; occasionally, one of the : CPU clusters would ramp to a high frequency because there was 200-300ms of : constant CPU work from a single thread in the main Android userspace : process. The work causing the spike (which is reasonable governor : behavior given the amount of CPU time needed) was always PSS collection. : As a result, Android is burning more power than we should be on PSS : collection. : : The other issue (and why I'm less sure about improving smaps as a : long-term solution) is that the number of VMAs per process has increased : significantly from release to release. After trying to figure out why we : were seeing these 200-300ms PSS collection times on Android O but had not : noticed it in previous versions, we found that the number of VMAs in the : main system process increased by 50% from Android N to Android O (from : ~1800 to ~2700) and varying increases in every userspace process. Android : M to N also had an increase in the number of VMAs, although not as much. : I'm not sure why this is increasing so much over time, but thinking about : ASLR and ways to make ASLR better, I expect that this will continue to : increase going forward. I would not be surprised if we hit 5000 VMAs on : the main Android process (system_server) by 2020. : : If we assume that the number of VMAs is going to increase over time, then : doing anything we can do to reduce the overhead of each VMA during PSS : collection seems like the right way to go, and that means outputting an : aggregate statistic (to avoid whatever overhead there is per line in : writing smaps and in reading each line from userspace). Link: http://lkml.kernel.org/r/20170812022148.178293-1-dancol@google.com Signed-off-by: Daniel Colascione <dancol@google.com> Cc: Tim Murray <timmurray@google.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sonny Rao <sonnyrao@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
b3a81d0841 |
mm: fix KSM data corruption
Nadav reported KSM can corrupt the user data by the TLB batching race[1]. That means data user written can be lost. Quote from Nadav Amit: "For this race we need 4 CPUs: CPU0: Caches a writable and dirty PTE entry, and uses the stale value for write later. CPU1: Runs madvise_free on the range that includes the PTE. It would clear the dirty-bit. It batches TLB flushes. CPU2: Writes 4 to /proc/PID/clear_refs , clearing the PTEs soft-dirty. We care about the fact that it clears the PTE write-bit, and of course, batches TLB flushes. CPU3: Runs KSM. Our purpose is to pass the following test in write_protect_page(): if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) Since it will avoid TLB flush. And we want to do it while the PTE is stale. Later, and before replacing the page, we would be able to change the page. Note that all the operations the CPU1-3 perform canhappen in parallel since they only acquire mmap_sem for read. We start with two identical pages. Everything below regards the same page/PTE. CPU0 CPU1 CPU2 CPU3 ---- ---- ---- ---- Write the same value on page [cache PTE as dirty in TLB] MADV_FREE pte_mkclean() 4 > clear_refs pte_wrprotect() write_protect_page() [ success, no flush ] pages_indentical() [ ok ] Write to page different value [Ok, using stale PTE] replace_page() Later, CPU1, CPU2 and CPU3 would flush the TLB, but that is too late. CPU0 already wrote on the page, but KSM ignored this write, and it got lost" In above scenario, MADV_FREE is fixed by changing TLB batching API including [set|clear]_tlb_flush_pending. Remained thing is soft-dirty part. This patch changes soft-dirty uses TLB batching API instead of flush_tlb_mm and KSM checks pending TLB flush by using mm_tlb_flush_pending so that it will flush TLB to avoid data lost if there are other parallel threads pending TLB flush. [1] http://lkml.kernel.org/r/BD3A0EBE-ECF4-41D4-87FA-C755EA9AB6BD@gmail.com Link: http://lkml.kernel.org/r/20170802000818.4760-8-namit@vmware.com Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Nadav Amit <namit@vmware.com> Reported-by: Nadav Amit <namit@vmware.com> Tested-by: Nadav Amit <namit@vmware.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Hugh Dickins <hughd@google.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vasily Averin
|
8c03cc85a0 |
fs/proc/task_mmu.c: remove obsolete comment in show_map_vma()
After commit
|
||
Hugh Dickins
|
1be7107fbe |
mm: larger stack guard gap, between vmas
Stack guard page is a useful feature to reduce a risk of stack smashing into a different mapping. We have been using a single page gap which is sufficient to prevent having stack adjacent to a different mapping. But this seems to be insufficient in the light of the stack usage in userspace. E.g. glibc uses as large as 64kB alloca() in many commonly used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX] which is 256kB or stack strings with MAX_ARG_STRLEN. This will become especially dangerous for suid binaries and the default no limit for the stack size limit because those applications can be tricked to consume a large portion of the stack and a single glibc call could jump over the guard page. These attacks are not theoretical, unfortunatelly. Make those attacks less probable by increasing the stack guard gap to 1MB (on systems with 4k pages; but make it depend on the page size because systems with larger base pages might cap stack allocations in the PAGE_SIZE units) which should cover larger alloca() and VLA stack allocations. It is obviously not a full fix because the problem is somehow inherent, but it should reduce attack space a lot. One could argue that the gap size should be configurable from userspace, but that can be done later when somebody finds that the new 1MB is wrong for some special case applications. For now, add a kernel command line option (stack_guard_gap) to specify the stack gap size (in page units). Implementation wise, first delete all the old code for stack guard page: because although we could get away with accounting one extra page in a stack vma, accounting a larger gap can break userspace - case in point, a program run with "ulimit -S -v 20000" failed when the 1MB gap was counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK and strict non-overcommit mode. Instead of keeping gap inside the stack vma, maintain the stack guard gap as a gap between vmas: using vm_start_gap() in place of vm_start (or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few places which need to respect the gap - mainly arch_get_unmapped_area(), and and the vma tree's subtree_gap support for that. Original-patch-by: Oleg Nesterov <oleg@redhat.com> Original-patch-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Tested-by: Helge Deller <deller@gmx.de> # parisc Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shaohua Li
|
cf8496ea80 |
proc: show MADV_FREE pages info in smaps
Show MADV_FREE pages info of each vma in smaps. The interface is for diganose or monitoring purpose, userspace could use it to understand what happens in the application. Since userspace could dirty MADV_FREE pages without notice from kernel, this interface is the only place we can get accurate accounting info about MADV_FREE pages. [mhocko@kernel.org: update Documentation/filesystems/proc.txt] Link: http://lkml.kernel.org/r/89efde633559de1ec07444f2ef0f4963a97a2ce8.1487965799.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
5b7abeae3a |
thp: fix MADV_DONTNEED vs clear soft dirty race
Yet another instance of the same race. Fix is identical to change_huge_pmd(). See "thp: fix MADV_DONTNEED vs. numa balancing race" for more details. Link: http://lkml.kernel.org/r/20170302151034.27829-5-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ingo Molnar
|
6e84f31522 |
sched/headers: Prepare for new header dependencies before moving code to <linux/sched/mm.h>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/mm.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. The APIs that are going to be moved first are: mm_alloc() __mmdrop() mmdrop() mmdrop_async_fn() mmdrop_async() mmget_not_zero() mmput() mmput_async() get_task_mm() mm_access() mm_release() Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Vegard Nossum
|
388f793455 |
mm: use mmget_not_zero() helper
We already have the helper, we can convert the rest of the kernel mechanically using: git grep -l 'atomic_inc_not_zero.*mm_users' | xargs sed -i 's/atomic_inc_not_zero(&\(.*\)->mm_users)/mmget_not_zero\(\1\)/' This is needed for a later patch that hooks into the helper, but might be a worthwhile cleanup on its own. Link: http://lkml.kernel.org/r/20161218123229.22952-3-vegard.nossum@oracle.com Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
7c0f6ba682 |
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
This was entirely automated, using the script by Al: PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>' sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \ $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h) to do the replacement at the end of the merge window. Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
a66c0410b9 |
mm: add cond_resched() in gather_pte_stats()
The other pagetable walks in task_mmu.c have a cond_resched() after walking their ptes: add a cond_resched() in gather_pte_stats() too, for reading /proc/<id>/numa_maps. Only pagemap_pmd_range() has a cond_resched() in its (unusually expensive) pmd_trans_huge case: more should probably be added, but leave them unchanged for now. Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1612052157400.13021@eggly.anvils Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Andy Lutomirski
|
b18cb64ead |
fs/proc: Stop trying to report thread stacks
This reverts more of: |
||
Robert Ho
|
855af072b6 |
mm, proc: fix region lost in /proc/self/smaps
Recently, Redhat reported that nvml test suite failed on QEMU/KVM, more detailed info please refer to: https://bugzilla.redhat.com/show_bug.cgi?id=1365721 Actually, this bug is not only for NVDIMM/DAX but also for any other file systems. This simple test case abstracted from nvml can easily reproduce this bug in common environment: -------------------------- testcase.c ----------------------------- int is_pmem_proc(const void *addr, size_t len) { const char *caddr = addr; FILE *fp; if ((fp = fopen("/proc/self/smaps", "r")) == NULL) { printf("!/proc/self/smaps"); return 0; } int retval = 0; /* assume false until proven otherwise */ char line[PROCMAXLEN]; /* for fgets() */ char *lo = NULL; /* beginning of current range in smaps file */ char *hi = NULL; /* end of current range in smaps file */ int needmm = 0; /* looking for mm flag for current range */ while (fgets(line, PROCMAXLEN, fp) != NULL) { static const char vmflags[] = "VmFlags:"; static const char mm[] = " wr"; /* check for range line */ if (sscanf(line, "%p-%p", &lo, &hi) == 2) { if (needmm) { /* last range matched, but no mm flag found */ printf("never found mm flag.\n"); break; } else if (caddr < lo) { /* never found the range for caddr */ printf("#######no match for addr %p.\n", caddr); break; } else if (caddr < hi) { /* start address is in this range */ size_t rangelen = (size_t)(hi - caddr); /* remember that matching has started */ needmm = 1; /* calculate remaining range to search for */ if (len > rangelen) { len -= rangelen; caddr += rangelen; printf("matched %zu bytes in range " "%p-%p, %zu left over.\n", rangelen, lo, hi, len); } else { len = 0; printf("matched all bytes in range " "%p-%p.\n", lo, hi); } } } else if (needmm && strncmp(line, vmflags, sizeof(vmflags) - 1) == 0) { if (strstr(&line[sizeof(vmflags) - 1], mm) != NULL) { printf("mm flag found.\n"); if (len == 0) { /* entire range matched */ retval = 1; break; } needmm = 0; /* saw what was needed */ } else { /* mm flag not set for some or all of range */ printf("range has no mm flag.\n"); break; } } } fclose(fp); printf("returning %d.\n", retval); return retval; } void *Addr; size_t Size; /* * worker -- the work each thread performs */ static void * worker(void *arg) { int *ret = (int *)arg; *ret = is_pmem_proc(Addr, Size); return NULL; } int main(int argc, char *argv[]) { if (argc < 2 || argc > 3) { printf("usage: %s file [env].\n", argv[0]); return -1; } int fd = open(argv[1], O_RDWR); struct stat stbuf; fstat(fd, &stbuf); Size = stbuf.st_size; Addr = mmap(0, stbuf.st_size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); close(fd); pthread_t threads[NTHREAD]; int ret[NTHREAD]; /* kick off NTHREAD threads */ for (int i = 0; i < NTHREAD; i++) pthread_create(&threads[i], NULL, worker, &ret[i]); /* wait for all the threads to complete */ for (int i = 0; i < NTHREAD; i++) pthread_join(threads[i], NULL); /* verify that all the threads return the same value */ for (int i = 1; i < NTHREAD; i++) { if (ret[0] != ret[i]) { printf("Error i %d ret[0] = %d ret[i] = %d.\n", i, ret[0], ret[i]); } } printf("%d", ret[0]); return 0; } It failed as some threads can not find the memory region in "/proc/self/smaps" which is allocated in the main process It is caused by proc fs which uses 'file->version' to indicate the VMA that is the last one has already been handled by read() system call. When the next read() issues, it uses the 'version' to find the VMA, then the next VMA is what we want to handle, the related code is as follows: if (last_addr) { vma = find_vma(mm, last_addr); if (vma && (vma = m_next_vma(priv, vma))) return vma; } However, VMA will be lost if the last VMA is gone, e.g: The process VMA list is A->B->C->D CPU 0 CPU 1 read() system call handle VMA B version = B return to userspace unmap VMA B issue read() again to continue to get the region info find_vma(version) will get VMA C m_next_vma(C) will get VMA D handle D !!! VMA C is lost !!! In order to fix this bug, we make 'file->version' indicate the end address of the current VMA. m_start will then look up a vma which with vma_start < last_vm_end and moves on to the next vma if we found the same or an overlapping vma. This will guarantee that we will not miss an exclusive vma but we can still miss one if the previous vma was shrunk. This is acceptable because guaranteeing "never miss a vma" is simply not feasible. User has to cope with some inconsistencies if the file is not read in one go. [mhocko@suse.com: changelog fixes] Link: http://lkml.kernel.org/r/1475296958-27652-1-git-send-email-robert.hu@intel.com Acked-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com> Signed-off-by: Robert Hu <robert.hu@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Gleb Natapov <gleb@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Stefan Hajnoczi <stefanha@redhat.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
James Morse
|
0f30206bf2 |
fs/proc/task_mmu.c: make the task_mmu walk_page_range() limit in clear_refs_write() obvious
Trying to walk all of virtual memory requires architecture specific knowledge. On x86_64, addresses must be sign extended from bit 48, whereas on arm64 the top VA_BITS of address space have their own set of page tables. clear_refs_write() calls walk_page_range() on the range 0 to ~0UL, it provides a test_walk() callback that only expects to be walking over VMAs. Currently walk_pmd_range() will skip memory regions that don't have a VMA, reporting them as a hole. As this call only expects to walk user address space, make it walk 0 to 'highest_vm_end'. Link: http://lkml.kernel.org/r/1472655792-22439-1-git-send-email-james.morse@arm.com Signed-off-by: James Morse <james.morse@arm.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dan Williams
|
ca120cf688 |
mm: fix show_smap() for zone_device-pmd ranges
Attempting to dump /proc/<pid>/smaps for a process with pmd dax mappings currently results in the following VM_BUG_ONs: kernel BUG at mm/huge_memory.c:1105! task: ffff88045f16b140 task.stack: ffff88045be14000 RIP: 0010:[<ffffffff81268f9b>] [<ffffffff81268f9b>] follow_trans_huge_pmd+0x2cb/0x340 [..] Call Trace: [<ffffffff81306030>] smaps_pte_range+0xa0/0x4b0 [<ffffffff814c2755>] ? vsnprintf+0x255/0x4c0 [<ffffffff8123c46e>] __walk_page_range+0x1fe/0x4d0 [<ffffffff8123c8a2>] walk_page_vma+0x62/0x80 [<ffffffff81307656>] show_smap+0xa6/0x2b0 kernel BUG at fs/proc/task_mmu.c:585! RIP: 0010:[<ffffffff81306469>] [<ffffffff81306469>] smaps_pte_range+0x499/0x4b0 Call Trace: [<ffffffff814c2795>] ? vsnprintf+0x255/0x4c0 [<ffffffff8123c46e>] __walk_page_range+0x1fe/0x4d0 [<ffffffff8123c8a2>] walk_page_vma+0x62/0x80 [<ffffffff81307696>] show_smap+0xa6/0x2b0 These locations are sanity checking page flags that must be set for an anonymous transparent huge page, but are not set for the zone_device pages associated with dax mappings. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> |