Commit Graph

34 Commits

Author SHA1 Message Date
Kees Cook
10a7e9d849 Do not hash userspace addresses in fault handlers
The hashing of %p was designed to restrict kernel addresses. There is
no reason to hash the userspace values seen during a segfault report,
so switch these to %px. (Some architectures already use %lx.)

Fixes: ad67b74d24 ("printk: hash addresses printed with %p")
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-12-19 17:04:43 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Ingo Molnar
b17b01533b sched/headers: Prepare for new header dependencies before moving code to <linux/sched/debug.h>
We are going to split <linux/sched/debug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/debug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:34 +01:00
Paul Gortmaker
cdd4f4c710 sparc: migrate exception table users off module.h and onto extable.h
These files were only including module.h for exception table
related functions.  We've now separated that content out into its
own file "extable.h" so now move over to that and avoid all the
extra header content in module.h that we don't really need to compile
these files.

Cc: "David S. Miller" <davem@davemloft.net>
Cc: sparclinux@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-06 01:42:30 -04:00
Mike Kravetz
1e953d846a sparc64 mm: Fix more TSB sizing issues
Commit af1b1a9b36 ("sparc64 mm: Fix base TSB sizing when hugetlb
pages are used") addressed the difference between hugetlb and THP
pages when computing TSB sizes.  The following additional issues
were also discovered while working with the code.

In order to save memory, THP makes use of a huge zero page.  This huge
zero page does not count against a task's RSS, but it does consume TSB
entries.  This is similar to hugetlb pages.  Therefore, count huge
zero page entries in hugetlb_pte_count.

Accounting of THP pages is done in the routine set_pmd_at().
Unfortunately, this does not catch the case where a THP page is split.
To handle this case, decrement the count in pmdp_invalidate().
pmdp_invalidate is only called when splitting a THP.  However, 'sanity
checks' are added in case it is ever called for other purposes.

A more general issue exists with HPAGE_SIZE accounting.
hugetlb_pte_count tracks the number of HPAGE_SIZE (8M) pages.  This
value is used to size the TSB for HPAGE_SIZE pages.  However,
each HPAGE_SIZE page consists of two REAL_HPAGE_SIZE (4M) pages.
The TSB contains an entry for each REAL_HPAGE_SIZE page.  Therefore,
the number of REAL_HPAGE_SIZE pages should be used to size the huge
page TSB.  A new compile time constant REAL_HPAGE_PER_HPAGE is used
to multiply hugetlb_pte_count before sizing the TSB.

Changes from V1
- Fixed build issue if hugetlb or THP not configured

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-28 08:24:02 -07:00
Nitin Gupta
7bc3777ca1 sparc64: Trim page tables for 8M hugepages
For PMD aligned (8M) hugepages, we currently allocate
all four page table levels which is wasteful. We now
allocate till PMD level only which saves memory usage
from page tables.

Also, when freeing page table for 8M hugepage backed region,
make sure we don't try to access non-existent PTE level.

Orabug: 22630259

Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-29 10:49:16 -07:00
Mike Kravetz
af1b1a9b36 sparc64 mm: Fix base TSB sizing when hugetlb pages are used
do_sparc64_fault() calculates both the base and huge page RSS sizes and
uses this information in calls to tsb_grow().  The calculation for base
page TSB size is not correct if the task uses hugetlb pages.  hugetlb
pages are not accounted for in RSS, therefore the call to get_mm_rss(mm)
does not include hugetlb pages.  However, the number of pages based on
huge_pte_count (which does include hugetlb pages) is subtracted from
this value.  This will result in an artificially small and often negative
RSS calculation.  The base TSB size is then often set to max_tsb_size
as the passed RSS is unsigned, so a negative value looks really big.

THP pages are also accounted for in huge_pte_count, and THP pages are
accounted for in RSS so the calculation in do_sparc64_fault() is correct
if a task only uses THP pages.

A single huge_pte_count is not sufficient for TSB sizing if both hugetlb
and THP pages can be used.  Instead of a single counter, use two:  one
for hugetlb and one for THP.

Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-28 21:22:12 -07:00
Kirill A. Shutemov
dcddffd41d mm: do not pass mm_struct into handle_mm_fault
We always have vma->vm_mm around.

Link: http://lkml.kernel.org/r/1466021202-61880-8-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Kirill A. Shutemov
99f1bc0116 sparc, thp: remove infrastructure for handling splitting PMDs
With new refcounting we don't need to mark PMDs splitting.  Let's drop
code to handle this.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
David Ahern
2bf7c3efc3 sparc64: Convert BUG_ON to warning
Pagefault handling has a BUG_ON path that panics the system. Convert it to
a warning instead. There is no need to bring down the system for this kind
of failure.

The following was hit while running:
    perf sched record -g -- make -j 16

[3609412.782801] kernel BUG at /opt/dahern/linux.git/arch/sparc/mm/fault_64.c:416!
[3609412.782833]               \|/ ____ \|/
[3609412.782833]               "@'/ .. \`@"
[3609412.782833]               /_| \__/ |_\
[3609412.782833]                  \__U_/
[3609412.782870] cat(4516): Kernel bad sw trap 5 [#1]
[3609412.782889] CPU: 0 PID: 4516 Comm: cat Tainted: G            E   4.1.0-rc8+ #6
[3609412.782909] task: fff8000126e31f80 ti: fff8000110d90000 task.ti: fff8000110d90000
[3609412.782931] TSTATE: 0000004411001603 TPC: 000000000096b164 TNPC: 000000000096b168 Y: 0000004e    Tainted: G            E
[3609412.782964] TPC: <do_sparc64_fault+0x5e4/0x6a0>
[3609412.782979] g0: 000000000096abe0 g1: 0000000000d314c4 g2: 0000000000000000 g3: 0000000000000001
[3609412.783009] g4: fff8000126e31f80 g5: fff80001302d2000 g6: fff8000110d90000 g7: 00000000000000ff
[3609412.783045] o0: 0000000000aff6a8 o1: 00000000000001a0 o2: 0000000000000001 o3: 0000000000000054
[3609412.783080] o4: fff8000100026820 o5: 0000000000000001 sp: fff8000110d935f1 ret_pc: 000000000096b15c
[3609412.783117] RPC: <do_sparc64_fault+0x5dc/0x6a0>
[3609412.783137] l0: 000007feff996000 l1: 0000000000030001 l2: 0000000000000004 l3: fff8000127bd0120
[3609412.783174] l4: 0000000000000054 l5: fff8000127bd0188 l6: 0000000000000000 l7: fff8000110d9dba8
[3609412.783210] i0: fff8000110d93f60 i1: fff8000110ca5530 i2: 000000000000003f i3: 0000000000000054
[3609412.783244] i4: fff800010000081a i5: fff8000100000398 i6: fff8000110d936a1 i7: 0000000000407c6c
[3609412.783286] I7: <sparc64_realfault_common+0x10/0x20>
[3609412.783308] Call Trace:
[3609412.783329]  [0000000000407c6c] sparc64_realfault_common+0x10/0x20
[3609412.783353] Disabling lock debugging due to kernel taint
[3609412.783379] Caller[0000000000407c6c]: sparc64_realfault_common+0x10/0x20
[3609412.783449] Caller[fff80001002283e4]: 0xfff80001002283e4
[3609412.783471] Instruction DUMP: 921021a0  7feaff91  901222a8 <91d02005> 82086100  02f87f7b  808a2873  81cfe008  01000000
[3609412.783542] Kernel panic - not syncing: Fatal exception
[3609412.784605] Press Stop-A (L1-A) to return to the boot prom
[3609412.784615] ---[ end Kernel panic - not syncing: Fatal exception

With this patch rather than a panic I occasionally get something like this:
    perf sched record -g -m 1024  -- make -j N

where N is based on number of cpus (128 to 1024 for a T7-4 and 8 for an 8 cpu
VM on a T5-2).

WARNING: CPU: 211 PID: 52565 at /opt/dahern/linux.git/arch/sparc/mm/fault_64.c:417 do_sparc64_fault+0x340/0x70c()
address (7feffcd6000) != regs->tpc (fff80001004873c0)
Modules linked in: ipt_REJECT nf_reject_ipv4 nf_conntrack_ipv4 nf_defrag_ipv4 iptable_filter ip_tables ip6t_REJECT nf_reject_ipv6 xt_tcpudp nf_conntrack_ipv6 nf_defrag_ipv6 xt_state nf_conntrack ip6table_filter ip6_tables x_tables ipv6 cdc_ether usbnet mii ixgbe mdio igb i2c_algo_bit i2c_core ptp crc32c_sparc64 camellia_sparc64 des_sparc64 des_generic md5_sparc64 sha512_sparc64 sha1_sparc64 uio_pdrv_genirq uio usb_storage mpt3sas scsi_transport_sas raid_class aes_sparc64 sunvnet sunvdc sha256_sparc64(E) sha256_generic(E)
CPU: 211 PID: 52565 Comm: ld Tainted: G        W   E   4.1.0-rc8+ #19
Call Trace:
 [000000000045ce30] warn_slowpath_common+0x7c/0xa0
 [000000000045ceec] warn_slowpath_fmt+0x30/0x40
 [000000000098ad64] do_sparc64_fault+0x340/0x70c
 [0000000000407c2c] sparc64_realfault_common+0x10/0x20
---[ end trace 62ee02065a01a049 ]---
ld[52565]: segfault at fff80001004873c0 ip fff80001004873c0 (rpc fff8000100158868) sp 000007feffcd70e1 error 30002 in libc-2.12.so[fff8000100410000+184000]

The segfault is horrible, but better than a system panic.

An 8-cpu VM on a T5-2 also showed the above traces from time to time,
so it is a general problem and not specific to the T7 or baremetal.

Signed-off-by: David Ahern <david.ahern@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-25 06:01:02 -07:00
David Hildenbrand
70ffdb9393 mm/fault, arch: Use pagefault_disable() to check for disabled pagefaults in the handler
Introduce faulthandler_disabled() and use it to check for irq context and
disabled pagefaults (via pagefault_disable()) in the pagefault handlers.

Please note that we keep the in_atomic() checks in place - to detect
whether in irq context (in which case preemption is always properly
disabled).

In contrast, preempt_disable() should never be used to disable pagefaults.
With !CONFIG_PREEMPT_COUNT, preempt_disable() doesn't modify the preempt
counter, and therefore the result of in_atomic() differs.
We validate that condition by using might_fault() checks when calling
might_sleep().

Therefore, add a comment to faulthandler_disabled(), describing why this
is needed.

faulthandler_disabled() and pagefault_disable() are defined in
linux/uaccess.h, so let's properly add that include to all relevant files.

This patch is based on a patch from Thomas Gleixner.

Reviewed-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David.Laight@ACULAB.COM
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: airlied@linux.ie
Cc: akpm@linux-foundation.org
Cc: benh@kernel.crashing.org
Cc: bigeasy@linutronix.de
Cc: borntraeger@de.ibm.com
Cc: daniel.vetter@intel.com
Cc: heiko.carstens@de.ibm.com
Cc: herbert@gondor.apana.org.au
Cc: hocko@suse.cz
Cc: hughd@google.com
Cc: mst@redhat.com
Cc: paulus@samba.org
Cc: ralf@linux-mips.org
Cc: schwidefsky@de.ibm.com
Cc: yang.shi@windriver.com
Link: http://lkml.kernel.org/r/1431359540-32227-7-git-send-email-dahi@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 08:39:15 +02:00
Linus Torvalds
33692f2759 vm: add VM_FAULT_SIGSEGV handling support
The core VM already knows about VM_FAULT_SIGBUS, but cannot return a
"you should SIGSEGV" error, because the SIGSEGV case was generally
handled by the caller - usually the architecture fault handler.

That results in lots of duplication - all the architecture fault
handlers end up doing very similar "look up vma, check permissions, do
retries etc" - but it generally works.  However, there are cases where
the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV.

In particular, when accessing the stack guard page, libsigsegv expects a
SIGSEGV.  And it usually got one, because the stack growth is handled by
that duplicated architecture fault handler.

However, when the generic VM layer started propagating the error return
from the stack expansion in commit fee7e49d45 ("mm: propagate error
from stack expansion even for guard page"), that now exposed the
existing VM_FAULT_SIGBUS result to user space.  And user space really
expected SIGSEGV, not SIGBUS.

To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those
duplicate architecture fault handlers about it.  They all already have
the code to handle SIGSEGV, so it's about just tying that new return
value to the existing code, but it's all a bit annoying.

This is the mindless minimal patch to do this.  A more extensive patch
would be to try to gather up the mostly shared fault handling logic into
one generic helper routine, and long-term we really should do that
cleanup.

Just from this patch, you can generally see that most architectures just
copied (directly or indirectly) the old x86 way of doing things, but in
the meantime that original x86 model has been improved to hold the VM
semaphore for shorter times etc and to handle VM_FAULT_RETRY and other
"newer" things, so it would be a good idea to bring all those
improvements to the generic case and teach other architectures about
them too.

Reported-and-tested-by: Takashi Iwai <tiwai@suse.de>
Tested-by: Jan Engelhardt <jengelh@inai.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots"
Cc: linux-arch@vger.kernel.org
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-29 10:51:32 -08:00
bob picco
4ccb927289 sparc64: sun4v TLB error power off events
We've witnessed a few TLB events causing the machine to power off because
of prom_halt. In one case it was some nfs related area during rmmod. Another
was an mmapper of /dev/mem. A more recent one is an ITLB issue with
a bad pagesize which could be a hardware bug. Bugs happen but we should
attempt to not power off the machine and/or hang it when possible.

This is a DTLB error from an mmapper of /dev/mem:
[root@sparcie ~]# SUN4V-DTLB: Error at TPC[fffff80100903e6c], tl 1
SUN4V-DTLB: TPC<0xfffff80100903e6c>
SUN4V-DTLB: O7[fffff801081979d0]
SUN4V-DTLB: O7<0xfffff801081979d0>
SUN4V-DTLB: vaddr[fffff80100000000] ctx[1250] pte[98000000000f0610] error[2]
.

This is recent mainline for ITLB:
[ 3708.179864] SUN4V-ITLB: TPC<0xfffffc010071cefc>
[ 3708.188866] SUN4V-ITLB: O7[fffffc010071cee8]
[ 3708.197377] SUN4V-ITLB: O7<0xfffffc010071cee8>
[ 3708.206539] SUN4V-ITLB: vaddr[e0003] ctx[1a3c] pte[2900000dcc800eeb] error[4]
.

Normally sun4v_itlb_error_report() and sun4v_dtlb_error_report() would call
prom_halt() and drop us to OF command prompt "ok". This isn't the case for
LDOMs and the machine powers off.

For the HV reported error of HV_ENORADDR for HV HV_MMU_MAP_ADDR_TRAP we cause
a SIGBUS error by qualifying it within do_sparc64_fault() for fault code mask
of FAULT_CODE_BAD_RA. This is done when trap level (%tl) is less or equal
one("1"). Otherwise, for %tl > 1,  we proceed eventually to die_if_kernel().

The logic of this patch was partially inspired by David Miller's feedback.

Power off of large sparc64 machines is painful. Plus die_if_kernel provides
more context. A reset sequence isn't a brief period on large sparc64 but
better than power-off/power-on sequence.

Cc: sparclinux@vger.kernel.org
Signed-off-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-16 17:46:44 -07:00
Linus Torvalds
c4222e4635 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next
Pull sparc fixes from David Miller:
 "Sparc sparse fixes from Sam Ravnborg"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next: (67 commits)
  sparc64: fix sparse warnings in int_64.c
  sparc64: fix sparse warning in ftrace.c
  sparc64: fix sparse warning in kprobes.c
  sparc64: fix sparse warning in kgdb_64.c
  sparc64: fix sparse warnings in compat_audit.c
  sparc64: fix sparse warnings in init_64.c
  sparc64: fix sparse warnings in aes_glue.c
  sparc: fix sparse warnings in smp_32.c + smp_64.c
  sparc64: fix sparse warnings in perf_event.c
  sparc64: fix sparse warnings in kprobes.c
  sparc64: fix sparse warning in tsb.c
  sparc64: clean up compat_sigset_t.seta handling
  sparc64: fix sparse "Should it be static?" warnings in signal32.c
  sparc64: fix sparse warnings in sys_sparc32.c
  sparc64: fix sparse warning in pci.c
  sparc64: fix sparse warnings in smp_64.c
  sparc64: fix sparse warning in prom_64.c
  sparc64: fix sparse warning in btext.c
  sparc64: fix sparse warnings in sys_sparc_64.c + unaligned_64.c
  sparc64: fix sparse warning in process_64.c
  ...

Conflicts:
	arch/sparc/include/asm/pgtable_64.h
2014-06-19 07:50:07 -10:00
Sam Ravnborg
8df52620e6 sparc64: fix sparse warnings in sys_sparc_64.c + unaligned_64.c
Fix following warnings:
kernel/sys_sparc_64.c:643:17: warning: symbol 'sys_kern_features' was not declared. Should it be static?
kernel/unaligned_64.c:297:17: warning: symbol 'kernel_unaligned_trap' was not declared. Should it be static?
kernel/unaligned_64.c:387:5: warning: symbol 'handle_popc' was not declared. Should it be static?
kernel/unaligned_64.c:428:5: warning: symbol 'handle_ldf_stq' was not declared. Should it be static?
kernel/unaligned_64.c:553:6: warning: symbol 'handle_ld_nf' was not declared. Should it be static?
kernel/unaligned_64.c:579:6: warning: symbol 'handle_lddfmna' was not declared. Should it be static?
kernel/unaligned_64.c:643:6: warning: symbol 'handle_stdfmna' was not declared. Should it be static?

Functions that are only used in kernel/ - add prototypes in kernel.h
Functions used outside kernel/ - add prototype in asm/setup.h
Removed local prototypes

One of the local prototypes had wrong signature (return void - not int).

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-18 19:01:30 -07:00
David S. Miller
e5c460f46a sparc64: Don't bark so loudly about 32-bit tasks generating 64-bit fault addresses.
This was found using Dave Jone's trinity tool.

When a user process which is 32-bit performs a load or a store, the
cpu chops off the top 32-bits of the effective address before
translating it.

This is because we run 32-bit tasks with the PSTATE_AM (address
masking) bit set.

We can't run the kernel with that bit set, so when the kernel accesses
userspace no address masking occurs.

Since a 32-bit process will have no mappings in that region we will
properly fault, so we don't try to handle this using access_ok(),
which can safely just be a NOP on sparc64.

Real faults from 32-bit processes should never generate such addresses
so a bug check was added long ago, and it barks in the logs if this
happens.

But it also barks when a kernel user access causes this condition, and
that _can_ happen.  For example, if a pointer passed into a system call
is "0xfffffffc" and the kernel access 4 bytes offset from that pointer.

Just handle such faults normally via the exception entries.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-06 21:27:37 -07:00
David S. Miller
70ffc6ebae sparc64: Fix top-level fault handling bugs.
Make get_user_insn() able to cope with huge PMDs.

Next, make do_fault_siginfo() more robust when get_user_insn() can't
actually fetch the instruction.  In particular, use the MMU announced
fault address when that happens, instead of calling
compute_effective_address() and computing garbage.

Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-03 22:41:19 -07:00
Kirill Tkhai
812cb83a56 sparc64: Implement HAVE_CONTEXT_TRACKING
Mark the places when the system are in user or are in kernel.
This is used to make full dynticks system (tickless) --
CONFIG_NO_HZ_FULL dependence.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
CC: David Miller <davem@davemloft.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-14 14:57:21 -08:00
Johannes Weiner
759496ba64 arch: mm: pass userspace fault flag to generic fault handler
Unlike global OOM handling, memory cgroup code will invoke the OOM killer
in any OOM situation because it has no way of telling faults occuring in
kernel context - which could be handled more gracefully - from
user-triggered faults.

Pass a flag that identifies faults originating in user space from the
architecture-specific fault handlers to generic code so that memcg OOM
handling can be improved.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12 15:38:01 -07:00
David S. Miller
0fbebed682 sparc64: Fix tsb_grow() in atomic context.
If our first THP installation for an MM is via the set_pmd_at() done
during khugepaged's collapsing we'll end up in tsb_grow() trying to do
a GFP_KERNEL allocation with several locks held.

Simply using GFP_ATOMIC in this situation is not the best option
because we really can't have this fail, so we'd really like to keep
this an order 0 GFP_KERNEL allocation if possible.

Also, doing the TSB allocation from khugepaged is a really bad idea
because we'll allocate it potentially from the wrong NUMA node in that
context.

So what we do is defer the hugepage TSB allocation until the first TLB
miss we take on a hugepage.  This is slightly tricky because we have
to handle two unusual cases:

1) Taking the first hugepage TLB miss in the window trap handler.
   We'll call the winfix_trampoline when that is detected.

2) An initial TSB allocation via TLB miss races with a hugetlb
   fault on another cpu running the same MM.  We handle this by
   unconditionally loading the TSB we see into the current cpu
   even if it's non-NULL at hugetlb_setup time.

Reported-by: Meelis Roos <mroos@ut.ee>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-20 09:46:08 -08:00
David S. Miller
f88620b9c5 sparc64: Fix deficiencies in sun4v error reporting.
Missing error types, attributes, and report fields.  Pad out
to 64-bytes.

Make string reporting cleaner and easier to extend in the future using
"const char *" arrays that index by either bit position, or absolute
field value.

Report the raw 64-byte error report as a sequence of u64s before the
annotated version.

Only report fields which are valid, given the context and the
attribute bits which are set.

For shutdown requests, use the local copy of the error report not the
one we just freed up back to the queue.  Also, use orderly_poweroff()
just like the Domain Services shutdown request code does.

If the real-address reported is "-1" (unknown) try to disassemble the
instruction to report the effective address of the access.  Only do
this in privileged mode.

Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-10 17:19:32 -07:00
David Miller
9e695d2ecc sparc64: Support transparent huge pages.
This is relatively easy since PMD's now cover exactly 4MB of memory.

Our PMD entries are 32-bits each, so we use a special encoding.  The
lowest bit, PMD_ISHUGE, determines the interpretation.  This is possible
because sparc64's page tables are purely software entities so we can use
whatever encoding scheme we want.  We just have to make the TLB miss
assembler page table walkers aware of the layout.

set_pmd_at() works much like set_pte_at() but it has to operate in two
page from a table of non-huge PTEs, so we have to queue up TLB flushes
based upon what mappings are valid in the PTE table.  In the second regime
we are going from huge-page to non-huge-page, and in that case we need
only queue up a single TLB flush to push out the huge page mapping.

We still have 5 bits remaining in the huge PMD encoding so we can very
likely support any new pieces of THP state tracking that might get added
in the future.

With lots of help from Johannes Weiner.

Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:23:06 +09:00
Shaohua Li
45cac65b0f readahead: fault retry breaks mmap file read random detection
.fault now can retry.  The retry can break state machine of .fault.  In
filemap_fault, if page is miss, ra->mmap_miss is increased.  In the second
try, since the page is in page cache now, ra->mmap_miss is decreased.  And
these are done in one fault, so we can't detect random mmap file access.

Add a new flag to indicate .fault is tried once.  In the second try, skip
ra->mmap_miss decreasing.  The filemap_fault state machine is ok with it.

I only tested x86, didn't test other archs, but looks the change for other
archs is obvious, but who knows :)

Signed-off-by: Shaohua Li <shaohua.li@fusionio.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:47 +09:00
Kautuk Consul
7358e51082 sparc/mm/fault_64.c: Port OOM changes to do_sparc64_fault
Commit d065bd810b
(mm: retry page fault when blocking on disk transfer) and
commit 37b23e0525
(x86,mm: make pagefault killable)

The above commits introduced changes into the x86 pagefault handler
for making the page fault handler retryable as well as killable.

These changes reduce the mmap_sem hold time, which is crucial
during OOM killer invocation.

Port these changes to 64-bit sparc.

Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-04 15:42:24 -07:00
Peter Zijlstra
a8b0ca17b8 perf: Remove the nmi parameter from the swevent and overflow interface
The nmi parameter indicated if we could do wakeups from the current
context, if not, we would set some state and self-IPI and let the
resulting interrupt do the wakeup.

For the various event classes:

  - hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from
    the PMI-tail (ARM etc.)
  - tracepoint: nmi=0; since tracepoint could be from NMI context.
  - software: nmi=[0,1]; some, like the schedule thing cannot
    perform wakeups, and hence need 0.

As one can see, there is very little nmi=1 usage, and the down-side of
not using it is that on some platforms some software events can have a
jiffy delay in wakeup (when arch_irq_work_raise isn't implemented).

The up-side however is that we can remove the nmi parameter and save a
bunch of conditionals in fast paths.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-07-01 11:06:35 +02:00
David S. Miller
4b17764737 sparc: Support show_unhandled_signals.
Just faults right now, will add other traps later.

Signed-off-by: David S. Miller <davem@davemloft.net>
2010-03-01 00:02:23 -08:00
David S. Miller
a084b6678a sparc: Add missing SW perf fault events.
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-01-20 16:23:03 -08:00
David S. Miller
4ed5d5e429 sparc64: Add some missing __kprobes annotations to kernel fault paths.
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-12-10 18:08:29 -08:00
David S. Miller
135d082171 sparc64: Use kprobes_built_in() to avoid ifdefs in fault_64.c
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-12-10 18:02:19 -08:00
David S. Miller
a923c28fc5 sparc: Use page_fault_out_of_memory() for VM_FAULT_OOM.
As noted by Nick Piggin.

Signed-off-by: David S. Miller <davem@davemloft.net>
2009-08-02 19:17:15 -07:00
Linus Torvalds
d06063cc22 Move FAULT_FLAG_xyz into handle_mm_fault() callers
This allows the callers to now pass down the full set of FAULT_FLAG_xyz
flags to handle_mm_fault().  All callers have been (mechanically)
converted to the new calling convention, there's almost certainly room
for architectures to clean up their code and then add FAULT_FLAG_RETRY
when that support is added.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-21 13:08:22 -07:00
David S. Miller
9b02605826 sparc64: Kill bogus TPC/address truncation during 32-bit faults.
This builds upon eeabac7386
("sparc64: Validate kernel generated fault addresses on sparc64.")

Upon further consideration, we actually should never see any
fault addresses for 32-bit tasks with the upper 32-bits set.

If it does every happen, by definition it's a bug.  Whatever
context created that fault would only have that fault satisfied
if we used the full 64-bit address.  If we truncate it, we'll
always fault the wrong address and we'll always loop faulting
forever.

So catch such conditions and mark them as errors always.  Log
the error and fail the fault.

Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-03 16:28:23 -08:00
David S. Miller
eeabac7386 sparc64: Validate kernel generated fault addresses on sparc64.
In order to handle all of the cases of address calculation overflow
properly, we run sparc 32-bit processes in "address masking" mode
when running on a 64-bit kernel.

Address masking mode zeros out the top 32-bits of the address
calculated for every load and store instruction.

However, when we're in privileged mode we have to run with that
address masking mode disabled even when accessing userspace from
the kernel.

To "simulate" the address masking mode we clear the top-bits by
hand for 32-bit processes in the fault handler.

It is the responsibility of code in the compat layer to properly
zero extend addresses used to access userspace.  If this isn't
followed properly we can get into a fault loop.

Say that the user address is 0xf0000000 but for whatever reason
the kernel code sign extends this to 64-bit, and then the kernel
tries to access the result.

In such a case we'll fault on address 0xfffffffff0000000 but the fault
handler will process that fault as if it were to address 0xf0000000.
We'll loop faulting forever because the fault never gets satisfied.

So add a check specifically for this case, when the kernel is faulting
on a user address access and the addresses don't match up.

This code path is sufficiently slow path, and this bug is sufficiently
painful to diagnose, that this kind of bug check is warranted.

Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-02 22:08:15 -08:00
Sam Ravnborg
27137e5285 sparc,sparc64: unify mm/
- move all sparc64/mm/ files to arch/sparc/mm/
- commonly named files are named _64.c
- add files to sparc/mm/Makefile preserving link order
- delete now unused sparc64/mm/Makefile
- sparc64 now finds mm/ in sparc

Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-12-04 09:16:59 -08:00